Molybdenum-Modified Niobium Oxide: A Pathway to Superior Electrochromic Materials for Smart Windows and Displays
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents and Materials
2.2. Preparation of Mo-Doped Nb2O5 Thin Films
2.3. EC Device Fabrication
3. Sample Characterization and Electrochemical Measurements
4. Results and Discussion
4.1. Structural and Compositional Characteristics
4.2. Electrochromic Characteristics
5. Electrochromic Device
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Granqvist, C.G. Oxide Electrochromics: An Introduction to Devices and Materials. Sol. Energy Mater. Sol. Cells 2012, 99, 1–13. [Google Scholar] [CrossRef]
- Thakur, V.K.; Ding, G.; Ma, J.; Lee, P.S.; Lu, X. Hybrid Materials and Polymer Electrolytes for Electrochromic Device Applications. Adv. Mater. 2012, 24, 4071–4096. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Lv, Y.; Xiao, L.; Fan, Y.; Zhang, N.; Liu, X. Bifunctional MoO3-WO3/Ag/MoO3-WO3 Films for Efficient ITO-Free Electrochromic Devices. ACS Appl. Mater. Interfaces 2016, 8, 33842–33847. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.; Wu, Y.; Zhao, X.; Yang, Q. Facile Preparation of Flower-like Hierarchical Nb2O5 Microspheres Self-Assembled by Nanorod for High-Power Anodes in Advanced Hybrid Supercapacitor. J. Alloys Compd. 2017, 715, 275–283. [Google Scholar] [CrossRef]
- Koo, B.R.; Jo, M.H.; Kim, K.H.; Ahn, H.J. Amorphous-Quantized WO3·H2O Films as Novel Flexible Electrode for Advanced Electrochromic Energy Storage Devices. Chem. Eng. J. 2021, 424, 130383. [Google Scholar] [CrossRef]
- Yu, C.; Ma, D.; Wang, Z.; Zhu, L.; Guo, H.; Zhu, X.; Wang, J. Solvothermal Growth of Nb2O5 Films on FTO Coated Glasses and Their Electrochromic Properties. Ceram. Int. 2021, 47, 9651–9658. [Google Scholar] [CrossRef]
- Amate, R.U.; Morankar, P.J.; Teli, A.M.; Beknalkar, S.A.; Chavan, G.T.; Ahir, N.A.; Dalavi, D.S.; Jeon, C.W. Versatile Electrochromic Energy Storage Smart Window Utilizing Surfactant-Assisted Niobium Oxide Thin Films. Chem. Eng. J. 2024, 484, 149556. [Google Scholar] [CrossRef]
- Avellaneda, C.O.; Bueno, P.R.; Faria, R.C.; Bulhões, L.O.S. Electrochromic Properties of Lithium Doped WO3 Films Prepared by the Sol-Gel Process. Electrochim. Acta 2001, 46, 1977–1981. [Google Scholar] [CrossRef]
- Mujawar, S.; Dhale, B.; Patil, P.S. Electrochromic Properties of Layered Nb2O5-WO3 Thin Films. Mater. Today Proc. 2020, 23, 430–436. [Google Scholar] [CrossRef]
- Rani, R.A.; Zoolfakar, A.S.; Oua, J.Z.; Field, M.R.; Austin, M.; Kalantar-Zadeh, K. Nanoporous Nb2O5 Hydrogen Gas Sensor. Sens. Actuators B Chem. 2013, 176, 149–156. [Google Scholar] [CrossRef]
- Luo, G.; Li, H.; Zhang, D.; Gao, L.; Lin, T. A Template-Free Synthesis via Alkaline Route for Nb2O5/Carbon Nanotubes Composite as Pseudo-Capacitor Material with High-Rate Performance. Electrochim. Acta 2017, 235, 175–181. [Google Scholar] [CrossRef]
- Wang, X.; Yan, C.; Yan, J.; Sumboja, A.; Lee, P.S. Orthorhombic Niobium Oxide Nanowires for next Generation Hybrid Supercapacitor Device. Nano Energy 2015, 11, 765–772. [Google Scholar] [CrossRef]
- Luo, H.; Wei, M.; Wei, K. Synthesis of Nb2O5 Nanosheets and Its Electrochemical Measurements. Mater. Chem. Phys. 2010, 120, 6–9. [Google Scholar] [CrossRef]
- Mustafa, M.N.; Mohd Abdah, M.A.A.; Mohamad Saidi, N.; Wong, W.P.; Tan, Y.S.; Numan, A.; Sulaiman, Y.; Walvekar, R.; Mohammad Azlan, F.N.; Khalid, M. High-Performance Electrochromic Supercapacitor with Bimetallic Phosphate and Vanadium Carbide MXene. J. Power Sources 2024, 595, 234079. [Google Scholar] [CrossRef]
- Mjejri, I.; Gaudon, M.; Rougier, A. Mo Addition for Improved Electrochromic Properties of V2O5 Thick Films. Sol. Energy Mater. Sol. Cells 2019, 198, 19–25. [Google Scholar] [CrossRef]
- Morankar, P.J.; Amate, R.U.; Chavan, G.T.; Teli, A.M.; Dalavi, D.S.; Jeon, C.W. Improved Electrochromic Performance of Potentiostatically Electrodeposited Nanogranular WO3 Thin Films. J. Alloys Compd. 2023, 945, 169363. [Google Scholar] [CrossRef]
- Chithambararaj, A.; Nandigana, P.; Kaleesh Kumar, M.; Prakash, A.S.; Panda, S.K. Enhanced Electrochromism from Non-Stoichiometric Electrodeposited Tungsten Oxide Thin Films. Appl. Surf. Sci. 2022, 582, 152424. [Google Scholar] [CrossRef]
- Li, W.; Zhang, J.; Zheng, Y.; Cui, Y. High Performance Electrochromic Energy Storage Devices Based on Mo-Doped Crystalline/Amorphous WO3 Core-Shell Structures. Sol. Energy Mater. Sol. Cells 2022, 235, 111488. [Google Scholar] [CrossRef]
- Zhang, B.; Luo, J.; Chen, Z.; Xiang, Y.; Tang, L.; Jiang, H.; Tian, Y.; Liu, S. Nb-Doped TiO2 Mesoporous Films with Improved Electrochemical and Electrochromic Energy Storage Performance. Opt. Mater. 2022, 131, 112728. [Google Scholar] [CrossRef]
- Amate, R.U.; Morankar, P.J.; Teli, A.M.; Beknalkar, S.A.; Jeon, C.W. Synergistic Design of Processable Nb2O5-TiO2 Bilayer Nanoarchitectonics: Enabling High Coloration Efficiency and Superior Stability in Dual-Band Electrochromic Energy Storage. J. Colloid Interface Sci. 2025, 678, 431–445. [Google Scholar] [CrossRef]
- Usha, N.; Sivkumar, R.; Sanjeeviraja, C. Structural, optical and electrochromic properties of Nb2O5:MoO3 (95:5, 90:10, and 85:15) thin films prepared by RF magnetron sputtering technique. Mater. Lett. 2018, 229, 189–192. [Google Scholar] [CrossRef]
- Murphy, R.; Moreno-Tarango, A.; Ramana, C.; Sun, L.; Jones, J.; Grant, J. Hybrid co-deposition of molybdenum doped niobium pentoxide (NbxMoyOz) thin. J. Alloys Compd. 2016, 681, 350–358. [Google Scholar] [CrossRef]
- Usha, N.; Sivkumar, R.; Sanjeeviraja, C. Electrochromic properties of radio frequency magnetron sputter deposited mixed Nb2O5:MoO3 (95:5) thin films cycled in H+ and Li+ ions. Mater. Sci. Semicond. Process. 2015, 30, 31–40. [Google Scholar] [CrossRef]
- Usha, N.; Sivkumar, R.; Sanjeeviraja, C. Mixed Nb2O5:MoO3 (95:5 and 85:15) thin films and their properties for electrochromic device. J. Mater. Sci. Mater. Electron. 2016, 27, 7809–7821. [Google Scholar] [CrossRef]
- Usha, N.; Sivkumar, R.; Sanjeeviraja, C.; Kuroki, Y. Effect of substrate temperature on the properties of Nb2O5:MoO3 (90:10) thin films prepared by rf magnetron sputtering technique. J. Alloys Compd. 2015, 649, 112–121. [Google Scholar] [CrossRef]
- Schmitt, M.; Aegerter, M. Electrochromic properties of pure and doped Nb2O5 coatings and devices. Electrochim. Acta 2001, 46, 2105–2111. [Google Scholar] [CrossRef]
- Mujawar, S.H.; Inamdar, A.I.; Betty, C.A.; Ganesan, V.; Patil, P.S. Effect of Post Annealing Treatment on Electrochromic Properties of Spray Deposited Niobium Oxide Thin Films. Electrochim. Acta 2007, 52, 4899–4906. [Google Scholar] [CrossRef]
- De León, J.M.O.R.; Acosta, D.R.; Pal, U.; Castañeda, L. Improving Electrochromic Behavior of Spray Pyrolised WO3 Thin Solid Films by Mo Doping. Electrochim. Acta 2011, 56, 2599–2605. [Google Scholar] [CrossRef]
- Bathe, S.R.; Patil, P.S. Influence of Nb Doping on the Electrochromic Properties of WO3 Films. J. Phys. D Appl. Phys. 2007, 40, 7423–7431. [Google Scholar] [CrossRef]
- Besnardiere, J.; Ma, B.; Torres-Pardo, A.; Wallez, G.; Kabbour, H.; González-Calbet, J.M.; Von Bardeleben, H.J.; Fleury, B.; Buissette, V.; Sanchez, C.; et al. Structure and Electrochromism of Two-Dimensional Octahedral Molecular Sieve h’-WO3. Nat. Commun. 2019, 10, 327. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Sen, S.; Samanta, S.; Kundu, S. Study on the Role of RGO in Enhancing the Electrochromic Performance of WO3 Film. Electrochim. Acta 2022, 427, 140820. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, J.; Zhou, Z.; Shen, G.; Tang, T.; Sagar, R.U.R.; Qi, X. Growth of a High-Performance WO3 Nanofilm Directly on a Polydopamine-Modified ITO Electrode for Electrochromism and Power Storage Applications. Appl. Surf. Sci. 2022, 573, 151603. [Google Scholar] [CrossRef]
- Ahmad, K.; Shinde, M.A.; Song, G.; Kim, H. Preparation of CoS2/WO3 Thin Films for the Construction of Electrochromic Devices. Ceram. Int. 2023, 49, 10119–10128. [Google Scholar] [CrossRef]
- Rakibuddin, M.; Shinde, M.A.; Kim, H. Facile Sol-Gel Fabrication of MoS2 Bulk, Flake and Quantum Dot for Electrochromic Device and Their Enhanced Performance with WO3. Electrochim. Acta 2020, 349, 136403. [Google Scholar] [CrossRef]
- Zavatski, S.; Neilande, E.; Bandarenka, H.; Popov, A.; Piskunov, S.; Bocharov, D. Density Functional Theory for Doped TiO2: Current Research Strategies and Advancements. Nanotechnology 2024, 35, 192001. [Google Scholar] [CrossRef]
Sample Code | Diffusion Coefficient (cm2/s) | |
---|---|---|
Oxidation | Reduction | |
MN-0 | 0.0063 | 0.007 |
MN-1 | 0.0062 | 0.0073 |
MN-3 | 0.0067 | 0.0076 |
MN-5 | 0.0061 | 0.0068 |
Sample Code | Charge Intercalation () (C/cm2) |
Charge Deintercalation (Qdi) (C/cm2) | Reversibility (%) | Coloration Time (s) (tC) | Bleaching Time (s) (tb) | Tb % | TC % | Optical Modulation (ΔT600nm%) | Optical Density (ΔOD) | Coloration Efficiency (cm2/C) |
---|---|---|---|---|---|---|---|---|---|---|
MN-0 | 0.049 | 0.047 | 96% | 12.2 | 5.5 | 83.4% | 15.12% | 68.28% | 1.7 | 69.38 |
MN-1 | 0.064 | 0.063 | 98% | 10.6 | 5.3 | 82.5% | 11.05% | 71.45% | 2.01 | 62.81 |
MN-3 | 0.06 | 0.059 | 99% | 11.1 | 9.8 | 82.6% | 5.7% | 77% | 2.67 | 89 |
MN-5 | 0.078 | 0.077 | 98% | 17 | 7.9 | 58.4% | 10.8% | 47.6% | 1.68 | 43.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amate, R.U.; Morankar, P.J.; Teli, A.M.; Beknalkar, S.A.; Jeon, C.-W. Molybdenum-Modified Niobium Oxide: A Pathway to Superior Electrochromic Materials for Smart Windows and Displays. Crystals 2024, 14, 906. https://doi.org/10.3390/cryst14100906
Amate RU, Morankar PJ, Teli AM, Beknalkar SA, Jeon C-W. Molybdenum-Modified Niobium Oxide: A Pathway to Superior Electrochromic Materials for Smart Windows and Displays. Crystals. 2024; 14(10):906. https://doi.org/10.3390/cryst14100906
Chicago/Turabian StyleAmate, Rutuja U., Pritam J. Morankar, Aviraj M. Teli, Sonali A. Beknalkar, and Chan-Wook Jeon. 2024. "Molybdenum-Modified Niobium Oxide: A Pathway to Superior Electrochromic Materials for Smart Windows and Displays" Crystals 14, no. 10: 906. https://doi.org/10.3390/cryst14100906
APA StyleAmate, R. U., Morankar, P. J., Teli, A. M., Beknalkar, S. A., & Jeon, C.-W. (2024). Molybdenum-Modified Niobium Oxide: A Pathway to Superior Electrochromic Materials for Smart Windows and Displays. Crystals, 14(10), 906. https://doi.org/10.3390/cryst14100906