Floating Zone Growth of Pure and Pb-Doped Bi-2201 Crystals
Abstract
:1. Introduction
2. State of the Art
2.1. Crystal Growth
2.2. Crystal Structure
3. Results
3.1. Floating Zone Crystal Growth of Pb-Doped Bi-2201 at IFW Dresden
3.2. SCXRD Investigations on Pb-Doped Bi-2201
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zaanen, J.; Chakravarty, S.; Senthil, T.; Anderson, P.; Lee, P.; Schmalian, J.; Imada, M.; Pines, D.; Randeria, M.; Varma, C.; et al. Towards a Complete Theory of High Tc. Nat. Phys. 2006, 2, 138–143. [Google Scholar] [CrossRef]
- Lee, P.A.; Nagaosa, N.; Wen, X.-G. Doping a Mott Insulator: Physics of High-Temperature Superconductivity. Rev. Mod. Phys. 2006, 78, 17–85. [Google Scholar] [CrossRef]
- Keimer, B.; Kivelson, S.A.; Norman, M.R.; Uchida, S.; Zaanen, J. From Quantum Matter to High-Temperature Superconductivity in Copper Oxides. Nature 2015, 518, 179–186. [Google Scholar] [CrossRef]
- Hashimoto, M.; Vishik, I.M.; He, R.-H.; Devereaux, T.P.; Shen, Z.-X. Energy Gaps in High-Transition-Temperature Cuprate Superconductors. Nat. Phys. 2014, 10, 483–495. [Google Scholar] [CrossRef]
- Kurashima, K.; Adachi, T.; Suzuki, K.M.; Fukunaga, Y.; Kawamata, T.; Noji, T.; Miyasaka, H.; Watanabe, I.; Miyazaki, M.; Koda, A.; et al. Development of Ferromagnetic Fluctuations in Heavily Overdoped (Bi,Pb)2Sr2CuO6+δ Copper Oxides. Phys. Rev. Lett. 2018, 121, 057002. [Google Scholar] [CrossRef]
- Peng, Y.Y.; Fumagalli, R.; Ding, Y.; Minola, M.; Caprara, S.; Betto, D.; Bluschke, M.; De Luca, G.M.; Kummer, K.; Lefrançois, E.; et al. Re-Entrant Charge Order in Overdoped (Bi,Pb)2.12Sr1.88CuO6+δ Outside the Pseudogap Regime. Nat. Mater. 2018, 17, 697–702. [Google Scholar] [CrossRef]
- Wise, W.D.; Boyer, M.C.; Chatterjee, K.; Kondo, T.; Takeuchi, T.; Ikuta, H.; Wang, Y.; Hudson, E.W. Charge-Density-Wave Origin of Cuprate Checkerboard Visualized by Scanning Tunnelling Microscopy. Nat. Phys. 2008, 4, 696–699. [Google Scholar] [CrossRef]
- Božović, I.; He, X.; Wu, J.; Bollinger, A.T. Dependence of the Critical Temperature in Overdoped Copper Oxides on Superfluid Density. Nature 2016, 536, 309–311. [Google Scholar] [CrossRef]
- Piriou, A.; Jenkins, N.; Berthod, C.; Maggio-Aprile, I.; Fischer, Ø. First Direct Observation of the Van Hove Singularity in the Tunnelling Spectra of Cuprates. Nat. Commun. 2011, 2, 221. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhao, L.; Yan, H.-T.; Gao, Q.; Liu, J.; Hu, C.; Huang, J.-W.; Li, C.; Xu, Y.; Cai, Y.-Q.; et al. Disappearance of Superconductivity and a Concomitant Lifshitz Transition in Heavily Overdoped Bi2Sr2CuO6 Superconductor Revealed by Angle-Resolved Photoemission Spectroscopy. Chin. Phys. Lett. 2018, 36, 17402. [Google Scholar] [CrossRef]
- Lim, S.; Varma, C.M.; Eisaki, H.; Kapitulnik, A. Observation of Broken Inversion and Chiral Symmetries in the Pseudogap Phase in Single- and Double-Layer Bismuth-Based Cuprates. Phys. Rev. B 2022, 105, 155103. [Google Scholar] [CrossRef]
- Ivanov, A.A.; Ivanov, V.G.; Menushenkov, A.P.; Wilhelm, F.; Rogalev, A.; Puri, A.; Joseph, B.; Xu, W.; Marcelli, A.; Bianconi, A. Local Noncentrosymmetric Structure of Bi2Sr2CaCu2O8+y by X-ray Magnetic Circular Dichroism at Cu K-Edge XANES. J. Supercond. Nov. Magn. 2018, 31, 663–670. [Google Scholar] [CrossRef]
- Gotlieb, K.; Lin, C.-Y.; Serbyn, M.; Zhang, W.; Smallwood, C.L.; Jozwiak, C.; Eisaki, H.; Hussain, Z.; Vishwanath, A.; Lanzara, A. Revealing Hidden Spin-Momentum Locking in a High-Temperature Cuprate Superconductor. Science 2018, 362, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.-D.; Gromko, A.D.; Fedorov, A.; Aiura, Y.; Oka, K.; Ando, Y.; Eisaki, H.; Uchida, S.I.; Dessau, D.S. Doubling of the Bands in Overdoped Bi2Sr2CaCu2O8: Evidence for c-Axis Bilayer Coupling. Phys. Rev. Lett. 2001, 87, 117002. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, T.; Katterwe, S.O.; Motzkau, H.; Rydh, A.; Maljuk, A.; Helm, T.; Putzke, C.; Kampert, E.; Kartsovnik, M.V.; Krasnov, V.M. Electron-Tunneling Measurements of Low-Tc Single-Layer Bi2+xSr2−yCuO6+δ: Evidence for a Scaling Disparity between Superconducting and Pseudogap States. Phys. Rev. B 2012, 86, 214506. [Google Scholar] [CrossRef]
- Katterwe, S.O.; Jacobs, T.; Maljuk, A.; Krasnov, V.M. Low Anisotropy of the Upper Critical Field in a Strongly Anisotropic Layered Cuprate Bi2.15Sr1.9CuO6+δ: Evidence for a Paramagnetically Limited Superconductivity. Phys. Rev. B 2014, 89, 214516. [Google Scholar] [CrossRef]
- Chen, D.; Lin, C.; Maljuk, A.; Zhou, F. Growth and Characterization of Bulk Superconductor Material; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-319-31548-5. [Google Scholar]
- Chong, I.; Terashima, T.; Bando, Y.; Takano, M.; Matsuda, Y.; Nagaoka, T.; Kumagai, K. Growth of Heavily Pb-Substituted Bi-2201 Single Crystals by a Floating Zone Method. Phys. C Supercond. 1997, 290, 57–62. [Google Scholar] [CrossRef]
- Remschnig, K.; Tarascon, J.M.; Ramesh, R.; Hull, G.W. Growth and Properties of Large Area Bi2+xSr2−xCuO6+y Single Crystals. Phys. C Supercond. 1991, 175, 261–268. [Google Scholar] [CrossRef]
- Gorina, J.I.; Kaljushnaia, G.A.; Martovitsky, V.P.; Rodin, V.V.; Sentjurina, N.N. Comparative Study of Bi2201 Single Crystalsgrown from Solution Melt and in Cavities Formed in KCl. Solid State Commun. 1998, 108, 275–278. [Google Scholar] [CrossRef]
- Liang, B.; Maljuk, A.; Lin, C.T. Growth of Large Superconducting Bi2+xSr2−yCuO6+δ Single Crystals by Travelling Solvent Floating Zone Method. Phys. C Supercond. 2001, 361, 156–164. [Google Scholar] [CrossRef]
- Sonder, E.; Chakoumakos, B.C.; Sales, B.C. Effects of Oxygen and Strontium Vacancies on the Superconductivity of Single Crystals of Bi2Sr2−xCuOy. Phys. Rev. B 1989, 40, 6872–6877. [Google Scholar] [CrossRef]
- Tanaka, I.; Kojima, H. Superconducting Single Crystals. Nature 1989, 337, 21–22. [Google Scholar] [CrossRef]
- Takekawa, S.; Nozaki, H.; Umezono, A.; Kosuda, K.; Kobayashi, M. Single Crystal Growth of the Superconductor Bi2.0(Bi0.2Sr1.8Ca1.0)Cu2.0O8. J. Cryst. Growth 1988, 92, 687–690. [Google Scholar] [CrossRef]
- Matsumoto, M.; Shirafuji, J.; Kitahama, K.; Kawai, S.; Shigaki, I.; Kawate, Y. Preparation of Bi2Sr2CuO6 Single Crystals by the Traveling Solvent Floating Zone Method. Phys. C Supercond. 1991, 185–189, 455–456. [Google Scholar] [CrossRef]
- Oka, K.; Yamaguchi, H.; Ito, T. Crystal Growth of the Quasi-One-Dimensional Compound Ca2+xY2−xCu5O10. Phys. B Condens. Matter 2000, 284–288, 1390–1391. [Google Scholar] [CrossRef]
- Wang, N.L.; Buschinger, B.; Geibel, C.; Steglich, F. Crystal Growth and Anisotropic Resistivity of Bi2Sr2−xLaxCuOy. Phys. Rev. B 1996, 54, 7449–7454. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.B.; Lin, C.T. Growth and Accurate Characterization of Bi2Sr2−xLaxCuO6+δ Single Crystals. J. Supercond. Nov. Magn. 2010, 23, 591–596. [Google Scholar] [CrossRef]
- Torrance, J.B.; Tokura, Y.; LaPlaca, S.J.; Huang, T.C.; Savoy, R.J.; Nazzal, A.I. New Class of High Tc Structures: Intergrowth of Multiple Copper Oxide Perovskite-like Layers with Double Sheets of BiO. Solid State Commun. 1988, 66, 703–706. [Google Scholar] [CrossRef]
- Mironov, A.V.; Petříček, V.; Khasanova, N.R.; Antipov, E.V. New Insight on Bismuth Cuprates with Incommensurate Modulated Structures. Acta Cryst. B 2016, 72, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Vojta, M. Lattice Symmetry Breaking in Cuprate Superconductors: Stripes, Nematics, and Superconductivity. Adv. Phys. 2009, 58, 699–820. [Google Scholar] [CrossRef]
- Torardi, C.C.; Subramanian, M.A.; Calabrese, J.C.; Gopalakrishnan, J.; McCarron, E.M.; Morrissey, K.J.; Askew, T.R.; Flippen, R.B.; Chowdhry, U.; Sleight, A.W. Structures of the Superconducting Oxides Tl2Ba2CuO6 and Bi2Sr2CuO6. Phys. Rev. B 1988, 38, 225–231. [Google Scholar] [CrossRef]
- Leligny, H.; Durčok, S.; Labbe, P.; Ledesert, M.; Raveau, B. X-ray Investigation of the Incommensurate Modulated Structure of Bi2.08Sr1.84CuO6−δ. Acta Cryst. B 1992, 48, 407–418. [Google Scholar] [CrossRef]
- Ito, Y.; Vlaicu, A.-M.; Mukoyama, T.; Sato, S.; Yoshikado, S.; Julien, C.; Chong, I.; Ikeda, Y.; Takano, M.; Sherman, E.Y. Detailed Structure of a Pb-Doped Bi2Sr2CuO6 Superconductor. Phys. Rev. B 1998, 58, 2851–2858. [Google Scholar] [CrossRef]
- Tarascon, J.M.; LePage, Y.; McKinnon, W.R.; Ramesh, R.; Eibschutz, M.; Tselepis, E.; Wang, E.; Hull, G.W. New Non-Superconducting Modulation-Free BiPbSr2MOy Phases (M = Co, Mn, Fe) Isotypic with the 10 K Bi2Sr2CuOy Superconductor. Phys. C Supercond. 1990, 167, 20–34. [Google Scholar] [CrossRef]
- Gao, Y.; Lee, P.; Graafsma, H.; Yeh, J.; Bush, P.; Petricek, V.; Coppens, P. Incommensurate Modulations in the Lead-Doped Bismuth Strontium Calcium Copper Oxide 221 Superconducting Phase: A Five-Dimensional Superspace Description. Chem. Mater. 1990, 2, 323–328. [Google Scholar] [CrossRef]
- Darriet, J.; Weill, F.; Darriet, B.; Zhang, X.F.; Etourneau, J. Crystal Structure of Bi2Sr2CuO6: A Structure Based on Periodic Crystallographic Shear Planes in the “2201” Structure. Solid State Commun. 1993, 86, 227–230. [Google Scholar] [CrossRef]
- Roth, R.S.; Rawn, C.J.; Bendersky, L.A. Crystal Chemistry of the Compound Sr2Bi2CuO6. J. Mater. Res. 1990, 5, 46–52. [Google Scholar] [CrossRef]
- Khasanova, N.R.; Antipov, E.V. Bi-2201 Phases Synthesis, Structures and Superconducting Properties. Phys. C Supercond. 1995, 246, 241–252. [Google Scholar] [CrossRef]
- Gao, Y.; Lee, P.; Ye, J.; Bush, P.; Petricek, V.; Coppens, P. The Incommensurate Modulation in the Bi2Sr2−xCaxCuO6 Superconductor, and Its Relation to the Modulation in Bi2Sr2−xCaxCu2O8. Phys. C Supercond. 1989, 160, 431–438. [Google Scholar] [CrossRef]
- Walker, M.B.; Que, W. Structural Model for the Incommensurate Bismuth High-Tc Superconductors. Phys. Rev. B 1992, 45, 8085–8090. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, A.; Takayama-Muromachi, E.; Izumi, F.; Ishigaki, T.; Asano, H. Rietveld Analysis of the Composite Crystal in Superconducting Bi2+xSr2−xCuO6+y. Phys. C Supercond. 1992, 201, 137–144. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, W.-T.; Liu, H.-Y.; Meng, J.-Q.; Liu, G.-D.; Lu, W.; Dong, X.-L.; Zhou, X.-J. High-Quality Large-Sized Single Crystals of Pb-Doped Bi2Sr2CuO6+δ High-Tc Superconductors Grown with Traveling Solvent Floating Zone Method. Chin. Phys. Lett. 2010, 27, 087401. [Google Scholar] [CrossRef]
- Amano, T.; Tange, M.; Yokoshima, M.; Kizuka, T.; Nishizaki, S.; Yoshizaki, R. Co-Doping Effects of Pb and La in (Bi,Pb)2(Sr,La)2CuOy. Phys. C Supercond. 2004, 412–414, 230–234. [Google Scholar] [CrossRef]
- Ikeda, Y.; Hiroi, Z.; Ito, H.; Shimomura, S.; Takano, M.; Bando, Y. Bi, Pb-Sr-Cu-O System Including a Modulation-Free Superconductor. Phys. C Supercond. 1990, 165, 189–198. [Google Scholar] [CrossRef]
- APEX3, SAINT-Plus and SADABS; Bruker AXS Inc.: Madison, WI, USA, 2016.
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of Silver and Molybdenum Microfocus X-ray Sources for Single-Crystal Structure Determination. J. Appl. Cryst. 2015, 48, 3–10. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Cryst. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A Short History of SHELX. Acta Cryst. A 2008, 64, 112–122. [Google Scholar] [CrossRef]
- Gao, Y.; Lee, P.; Coppens, P.; Subramania, M.A.; Sleight, A.W. The Incommensurate Modulation of the 2212 Bi-Sr-Ca-Cu-O Superconductor. Science 1988, 241, 954–956. [Google Scholar] [CrossRef]
- Imai, K.; Nakai, I.; Kawashima, T.; Sueno, S.; Ono, A. Single Crystal X-Ray Structure Analysis of Bi2(Sr, Ca)2CuOx and Bi2(Sr, Ca)3Cu2Ox Superconductors. Jpn. J. Appl. Phys. 1988, 27, L1661. [Google Scholar] [CrossRef]
- Tarascon, J.M.; McKinnon, W.R.; LePage, Y.; Remschig, K.; Ramesh, R.; Jones, R.; Pleizier, G.; Hull, G.W. Superconductivity at 27 K in Modulation-Free Bi2−xPbxSr2−yLayCuO6 Phases with X ≅ y + 0.2. Phys. C Supercond. 1990, 172, 13–22. [Google Scholar] [CrossRef]
Sample Composition | Annealing Temperature | Annealing Time/Atmosphere | Superconducting Temperature 1 | Stability in Air |
---|---|---|---|---|
Bi1.6Pb0.4Sr2.05CuOy | As-grown | - | 3 K | Yes |
Bi1.6Pb0.4Sr2.05CuOy | 723 K | 7 days/O2 | Non-superconducting | Yes |
Bi1.6Pb0.4Sr2.05CuOy | 723 K | 10 days/Ar | 13 K | Yes |
Bi1.6Pb0.4Sr2.05CuOy | 723 K | 7 days/vacuum | 17 K | Yes |
Bi1.6Pb0.4Sr2.05CuOy | 823 K | 5 days/vacuum | 23 K | No |
Bi1.6Pb0.4Sr2.05CuOy | 923 K | 3 days/vacuum | No measurement | Decomposed |
Present Study | Ito et al. [34] | Imai et al. [51] | Gao et al. [40] | Gao et al. [36] | Tarascon et al. [52] | |
---|---|---|---|---|---|---|
Composition | (Bi,Pb)1.902Sr CuO5.885 | Bi1.82Pb0.32Sr1.84 CuO6 | Bi2Sr1.60Ca0.40 CuO6 | Bi2.28(Sr,Ca)1.72 CuO6 | Bi2.14Pb0.19Sr1.11Ca0.43 CuO6 | Bi1.2Pb0.8Sr1.5La0.5 CuO6 |
Space group | Ccc2 | Cccm | Bbmb (Cccm) | A2/a | A2aa (Ccc2) | Pnan |
a, Å | 5.3947(6) | 5.392(3) | 5.3826(8) | 5.362(2) | 5.3312(6) | 5.328(1) |
b, Å | 24.605(3) | 24.603(5) | 5.376(1) | 5.362(1) | 5.3686(4) | 5.415(1) |
c, Å | 5.2786(6) | 5.300(3) | 24.387(7) | 24.30(1) | 24.365(6) | 24.383(1) |
R | 0.0478 | 0.048 | 0.109 | 0.104 | 0.105 | 0.10 |
Rw | 0.112 | 0.077 | 0.108 | 0.111 | 0.117 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roslova, M.; Büchner, B.; Maljuk, A. Floating Zone Growth of Pure and Pb-Doped Bi-2201 Crystals. Crystals 2024, 14, 270. https://doi.org/10.3390/cryst14030270
Roslova M, Büchner B, Maljuk A. Floating Zone Growth of Pure and Pb-Doped Bi-2201 Crystals. Crystals. 2024; 14(3):270. https://doi.org/10.3390/cryst14030270
Chicago/Turabian StyleRoslova, Maria, Bernd Büchner, and Andrey Maljuk. 2024. "Floating Zone Growth of Pure and Pb-Doped Bi-2201 Crystals" Crystals 14, no. 3: 270. https://doi.org/10.3390/cryst14030270
APA StyleRoslova, M., Büchner, B., & Maljuk, A. (2024). Floating Zone Growth of Pure and Pb-Doped Bi-2201 Crystals. Crystals, 14(3), 270. https://doi.org/10.3390/cryst14030270