A Critical Review on Recent Advancements in Aluminium-Based Metal Matrix Composites
Abstract
:1. Introduction
- Increased strength;
- Enhanced stiffness;
- Decreased density (weight);
- Enhanced properties at high temperatures;
- Regulated thermal expansion coefficient;
- Thermal and heat management;
- Superior and customized electrical characteristics;
- Better abrasion and wear resistance;
- Mass control (particularly in reciprocating applications);
- Enhanced damping properties.
2. Classification of AMCs
2.1. Particle Reinforced Aluminium Matrix Composites
2.2. Whisker- or Short-Fibre-Reinforced AMCs
2.3. Continuous-Fibre-Reinforced AMCs
2.4. Monofilament-Reinforced AMCs
3. Major AMC Manufacturing Techniques
3.1. Solid-State-Based Techniques
3.1.1. Powder Blending and Consolidation (P/M Processing)
3.1.2. Diffusion Bonding
3.1.3. Friction Stir Processing
3.2. Additive Based Techniques
3.2.1. Physical Vapor Deposition
3.2.2. Selective Laser Melting
3.2.3. Direct Energy Deposition
3.2.4. Cold Spraying
3.3. Liquid-State-Based Techniques
3.3.1. Stir Castings
3.3.2. Infiltration Process
3.3.3. Spontaneous Infiltration Process
3.3.4. Forced Infiltration
Pressure Die Infiltration Process
Squeeze Casting Infiltration Process
Gas Pressure Infiltration Process
Vacuum Infiltration Process
Lorentz Force Infiltration Process
Ultrasonic Infiltration Process
Centrifugal Infiltration Process
3.3.5. In Situ Processing
4. Influence of Process Parameter of Properties
4.1. Type of Reinforcement
- i
- Ceramic reinforcement: Ceramic reinforcements enhance the wear resistance and thermal stability of AMCs
- Silicon Carbide (SiC): SiC is an extensively adopted carbide-based reinforcement in AMCs due to its high elastic modulus, technical maturity, and cost-effectiveness [114]. It improves the stiffness and wear resistance of AMCs, rendering them suitable for high-performance tasks.
- Alumina (Al2O3): Alumina reinforcements provide enhanced thermal conductivity and corrosion resistance to AMCs. They are commonly used in applications requiring elevated temperature performance and chemical stability.
- Boron Carbide (B4C): B4C reinforcements offer exceptional hardness and low density, making them well-suited for lightweight and high-strength AMCs used in aerospace and defense applications.
- ii
- Metal reinforcement: metal reinforcements enhance their fatigue resistance and electrical conductivity.
- Titanium (Ti) Particles: Ti particles enhance the strength and toughness of AMCs while reducing their density. They improve the fatigue resistance and load-bearing capacity of AMCs, making them suitable for structural applications.
- Copper (Cu) Particles: Cu reinforcements improve the electrical conductivity and thermal stability of AMCs. They have been commonly used in electronic packaging and heat sink applications.
- Magnesium (Mg) Particles: Mg reinforcements contribute to the lightweight nature of AMCs while providing good corrosion resistance. They are used in automotive and aerospace applications where weight reduction is critical.
- iii
- Carbonaceous reinforcement: Carbonaceous reinforcements offer exceptional strength-to-weight ratio and stiffness, making AMCs suitable for lightweight structural applications.
- Carbon Fibers: Carbon fibers offer a high strength-to-weight ratio and excellent fatigue resistance. They enhance the stiffness and tensile strength of AMCs, making them suitable for lightweight structural components in aerospace and automotive industries [115].
- Graphene: Graphene reinforcements impart superior mechanical and electrical properties to AMCs. They improve the wear resistance and thermal conductivity of AMCs, enabling their use in advanced engineering applications.
4.2. Size and Distribution of Reinforcement
4.3. Matrix Material
- I.
- Dislocation strengthening: Dislocation strengthening occurs when dislocations and their interactions generate internal stress fields, requiring additional force to move a dislocation through these fields. This strengthening effect arises from an increase in dislocation density, often resulting from processes like cold working. In polycrystalline metals, the shear stress needed to move dislocations can be calculated using the following formula,
- II.
- Grain boundary strengthening: Grain boundary strengthening is significant at moderate temperatures, where grain boundaries serve as effective sources of strengthening. The Hall–Petch equation describes this phenomenon as follows:
- III.
- Precipitation strengthening: Precipitation strengthening involves the presence of precipitates, solute atoms, or dispersoids that hinder dislocation movement, thereby strengthening the matrix. This mechanism is crucial for alloys such as aluminum, nickel, and steel. Precipitation strengthening requires careful control to enhance strength, such as increasing hardness in aluminum-copper alloys through mechanisms like the clustering of Cu atoms on (100) planes of Al.
4.4. Processing Temperature
5. Application of AMCs
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kok, M. Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites. J. Mater. Process. Technol. 2005, 161, 381–387. [Google Scholar] [CrossRef]
- Lee, H.S.; Yeo, J.S.; Hong, S.H.; Yoon, D.J.; Na, K.H. The fabrication process and mechanical properties of SiCp/Al–Si metal matrix composites for automobile air-conditioner compressor pistons. J. Mater. Process. Technol. 2001, 113, 202–208. [Google Scholar] [CrossRef]
- Rohatgi, P.K.; Asthana, R.; Das, S. Solidification, structures, and properties of cast metal-ceramic particle composites. Int. Met. Rev. 1986, 31, 115–139. [Google Scholar] [CrossRef]
- Kumar, S.; Adarsh, D.; Kailas, S.V. Fabrication and tribo characteristics of in-situ polymer-derived nano-ceramic composites of Al-Mg-Si alloy. Tribol. Int. 2023, 180, 108272. [Google Scholar] [CrossRef]
- Yanming, Q.; Zehua, Z. Tool wear and its mechanism for cutting SiC particle-reinforced aluminium matrix composites. J. Mater. Process. Technol. 2000, 100, 194–199. [Google Scholar] [CrossRef]
- Surappa, M.K. Aluminium matrix composites: Challenges and opportunities. Sadhana-Acad. Proc. Eng. Sci. 2003, 28, 319–334. [Google Scholar]
- Olszówka-Myalska, A.; Szala, J.; Cwajna, J. Characterization of reinforcement distribution in Al/(Al2O3)p composites obtained from composite powder. Mater. Charact. 2001, 46, 189–195. [Google Scholar] [CrossRef]
- Bains, P.S.; Sidhu, S.S.; Payal, H.S. Fabrication and Machining of Metal Matrix Composites: A Review. Mater. Manuf. Process. 2016, 31, 553–573. [Google Scholar] [CrossRef]
- Schwartz, M. Composite Materials: Processing, fabrication. Prentice Hall 1997, 2. [Google Scholar]
- Vani, V.V.; Chak, S.K. The effect of process parameters in Aluminum Metal Matrix Composites with Powder Metallurgy. Manuf. Rev. 2018, 5, 7. [Google Scholar] [CrossRef]
- Miracle, D.B. Metal matrix composites—From science to technological significance. Compos. Sci. Technol. 2005, 65, 2526–2540. [Google Scholar] [CrossRef]
- Rajmohan, T.; Palanikumar, K.; Arumugam, S. Synthesis and characterization of sintered hybrid aluminium matrix composites reinforced with nanocopper oxide particles and microsilicon carbide particles. Compos. Part B Eng. 2014, 59, 43–49. [Google Scholar] [CrossRef]
- Slipenyuk, A.; Kuprin, V.; Milman, Y.; Spowart, J.E.; Miracle, D.B. The effect of matrix to reinforcement particle size ratio (PSR) on the microstructure and mechanical properties of a P/M processed AlCuMn/SiCp MMC. Mater. Sci. Eng. A 2004, 381, 165–170. [Google Scholar] [CrossRef]
- Kumar, S.; Kar, A. A Review of Solid-State Additive Manufacturing Processes. Trans. Indian Natl. Acad. Eng. 2021, 6, 955–973. [Google Scholar] [CrossRef]
- Casati, R.; Vedani, M. Metal matrix composites reinforced by nano-particles—A review. Metals 2014, 4, 65–83. [Google Scholar] [CrossRef]
- Garg, P.; Jamwal, A.; Kumar, D.; Sadasivuni, K.K.; Hussain, C.M.; Gupta, P. Advance Research Progresses in Aluminium Matrix Composites: Manufacturing & Applications. J. Mater. Res. Technol. 2019, 8, 4924–4939. [Google Scholar] [CrossRef]
- Khedr, M.; Hamada, A.; Järvenpää, A.; Elkatatny, S.; Abd-Elaziem, W. Review on the Solid-State Welding of Steels: Diffusion Bonding and Friction Stir Welding Processes. Metals 2023, 13, 54. [Google Scholar] [CrossRef]
- Zhang, X.P.; Ye, L.; Mai, Y.W.; Quan, G.F.; Wei, W. Investigation on diffusion bonding characteristics of SiC particulate reinforced aluminium metal matrix composites (Al/SiCp-MMC). Compos. Part A Appl. Sci. Manuf. 1999, 30, 1415–1421. [Google Scholar] [CrossRef]
- Abubaker, H.M.; Merah, N.; Al-badour, F.A.; Albinmousa, J.; Sorour, A.A. Influence of Friction Stir Processing on Mechanical Behavior of 2507 SDSS. Metals 2020, 10, 369. [Google Scholar] [CrossRef]
- Mironov, S.; Sato, Y.S.; Kokawa, H. Microstructural evolution during friction stir-processing of pure iron. Acta Mater. 2008, 56, 2602–2614. [Google Scholar] [CrossRef]
- McNelley, T.R.; Swaminathan, S.; Su, J.Q. Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scr. Mater. 2008, 58, 349–354. [Google Scholar] [CrossRef]
- Mirjavadi, S.S.; Alipour, M.; Emamian, S.; Kord, S.; Hamouda, A.M.S.; Koppad, P.G.; Keshavamurthy, R. Influence of TiO2 nanoparticles incorporation to friction stir welded 5083 aluminum alloy on the microstructure, mechanical properties and wear resistance. J. Alloys Compd. 2017, 712, 795–803. [Google Scholar] [CrossRef]
- Kumar, S.; Wu, C.S.; Sun, Z.; Ding, W. Effect of ultrasonic vibration on welding load, macrostructure, and mechanical properties of Al/Mg alloy joints fabricated by friction stir lap welding. Int. J. Adv. Manuf. Technol. 2019, 100, 1787–1799. [Google Scholar] [CrossRef]
- Kumar, S.; Ding, W.; Sun, Z.; Wu, C.S. Analysis of the dynamic performance of a complex ultrasonic horn for application in friction stir welding. Int. J. Adv. Manuf. Technol. 2018, 97, 1269–1284. [Google Scholar] [CrossRef]
- Kumar, S.; Wu, C.S. A novel technique to join Al and Mg alloys: Ultrasonic vibration assisted linear friction stir welding. Mater. Today Proc. 2018, 5, 18142–18151. [Google Scholar] [CrossRef]
- Akramifard, H.R.; Shamanian, M.; Sabbaghian, M.; Esmailzadeh, M. Microstructure and mechanical properties of Cu/SiC metal matrix composite fabricated via friction stir processing. Mater. Des. 2014, 54, 838–844. [Google Scholar] [CrossRef]
- Lim, D.K.; Shibayanagi, T.; Gerlich, A.P. Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir processing. Mater. Sci. Eng. A 2009, 507, 194–199. [Google Scholar] [CrossRef]
- Azarsa, E.; Mostafapour, A. On the feasibility of producing polymer-metal composites via novel variant of friction stir processing. J. Manuf. Process. 2013, 15, 682–688. [Google Scholar] [CrossRef]
- Ajay Kumar, P.; Raj, R.; Kailas, S.V. A novel in-situ polymer derived nano ceramic MMC by friction stir processing. Mater. Des. 2015, 85, 626–634. [Google Scholar] [CrossRef]
- Cao, X.; Shi, Q.; Liu, D.; Feng, Z.; Liu, Q.; Chen, G. Fabrication of in situ carbon fiber/aluminum composites via friction stir processing: Evaluation of microstructural, mechanical and tribological behaviors. Compos. Part B Eng. 2018, 139, 97–105. [Google Scholar] [CrossRef]
- Iijima, K.; Terashima, T.; Yamamoto, K.; Hirata, K.; Bando, Y. Preparation of ferroelectric BaTiO3 thin films by activated reactive evaporation. Appl. Phys. Lett. 1990, 56, 527–529. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, W.; Wang, B.; Zheng, Y. Ultrathin Ferroelectric Films: Growth, Characterization, Physics and Applications. Materials 2014, 7, 6377–6485. [Google Scholar] [CrossRef] [PubMed]
- Rabe, K.; Ahn, C.; Triscone, J. Physics of Ferroelectrics: A Modern Perspective; Springer: Berlin/Heidelberg, Germany, 2007; Volume 105, p. 388. [Google Scholar]
- Dadbakhsh, S.; Mertens, R.; Hao, L.; Van Humbeeck, J.; Kruth, J.P. Selective Laser Melting to Manufacture “In Situ” Metal Matrix Composites: A Review. Adv. Eng. Mater. 2019, 21, 1801244. [Google Scholar] [CrossRef]
- Wang, P.; Eckert, J.; Prashanth, K.-G.; Wu, M.-W.; Kaban, I.; Xi, L.-X.; Scudino, S. A review of particulate-reinforced aluminum matrix composites fabricated by selective laser melting. Trans. Nonferrous Met. Soc. China 2020, 30, 2001–2034. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, B.; Tan, C.C.; Raghavan, S.; Lim, Y.F.; Sun, C.N.; Wei, J.; Chi, D. Microstructural characteristics and mechanical properties of carbon nanotube reinforced Inconel 625 parts fabricated by selective laser melting. Mater. Des. 2016, 112, 290–299. [Google Scholar] [CrossRef]
- Yuan, P.; Gu, D.; Dai, D. Particulate migration behavior and its mechanism during selective laser melting of TiC reinforced Al matrix nanocomposites. Mater. Des. 2015, 82, 46–55. [Google Scholar] [CrossRef]
- Gu, D.; Wang, H.; Dai, D.; Yuan, P.; Meiners, W.; Poprawe, R. Rapid fabrication of Al-based bulk-form nanocomposites with novel reinforcement and enhanced performance by selective laser melting. Scr. Mater. 2015, 96, 25–28. [Google Scholar] [CrossRef]
- Simchi, A.; Godlinski, D. Effect of SiC particles on the laser sintering of Al–7Si–0.3Mg alloy. Scr. Mater. 2008, 59, 199–202. [Google Scholar] [CrossRef]
- Liao, H.; Zhu, H.; Xue, G.; Zeng, X. Alumina loss mechanism of Al2O3-AlSi10 Mg composites during selective laser melting. J. Alloys Compd. 2019, 785, 286–295. [Google Scholar] [CrossRef]
- What is Directed Energy Deposition (DED)?—TWI. Available online: https://www.twi-global.com/technical-knowledge/faqs/directed-energy-deposition (accessed on 21 March 2024).
- Hu, Y.; Cong, W. A review on laser deposition-additive manufacturing of ceramics and ceramic reinforced metal matrix composites. Ceram. Int. 2018, 44, 20599–20612. [Google Scholar] [CrossRef]
- Balla, V.K.; Bose, S.; Bandyopadhyay, A. Processing of Bulk Alumina Ceramics Using Laser Engineered Net Shaping. Int. J. Appl. Ceram. Technol. 2008, 5, 234–242. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Y.; Cong, W.; Zhi, L.; Guo, Z. Additive manufacturing of alumina using laser engineered net shaping: Effects of deposition variables. Ceram. Int. 2017, 43, 7768–7775. [Google Scholar] [CrossRef]
- Wu, D.; Sun, B.; Niu, F.; Ma, G.; Zhang, Y.; Jin, Z. Microstructure and crack in color Al2O3 samples by laser engineered net shaping. Kuei Suan Jen Hsueh Pao/J. Chin. Ceram. Soc. 2013, 41, 1621–1626. [Google Scholar]
- Niu, F.; Wu, D.; Zhou, S.; Ma, G. Power prediction for laser engineered net shaping of Al2O3 ceramic parts. J. Eur. Ceram. Soc. 2014, 34, 3811–3817. [Google Scholar] [CrossRef]
- Niu, F.; Wu, D.; Ma, G.; Wang, J.; Guo, M.; Zhang, B. Nanosized microstructure of Al2O3–ZrO2 (Y2O3) eutectics fabricated by laser engineered net shaping. Scr. Mater. 2015, 95, 39–41. [Google Scholar] [CrossRef]
- Yan, S.; Wu, D.; Niu, F.; Ma, G.; Kang, R. Al2O3-ZrO2 eutectic ceramic via ultrasonic-assisted laser engineered net shaping. Ceram. Int. 2017, 43, 15905–15910. [Google Scholar] [CrossRef]
- Hu, Y.; Ning, F.; Cong, W.; Li, Y.; Wang, X.; Wang, H. Ultrasonic vibration-assisted laser engineering net shaping of ZrO2-Al2O3 bulk parts: Effects on crack suppression, microstructure, and mechanical properties. Ceram. Int. 2018, 44, 2752–2760. [Google Scholar] [CrossRef]
- Champagne, V.; Helfritch, D. The unique abilities of cold spray deposition. Int. Mater. Rev. 2016, 61, 437–455. [Google Scholar] [CrossRef]
- Vilardell, A.M.; Cinca, N.; Concustell, A.; Dosta, S.; Cano, I.G.; Guilemany, J.M. Cold spray as an emerging technology for biocompatible and antibacterial coatings: State of art. J. Mater. Sci. 2015, 50, 4441–4462. [Google Scholar] [CrossRef]
- Champagne, V.K.; Helfritch, D.J. Mainstreaming cold spray—Push for applications. Surf. Eng. 2014, 30, 396–403. [Google Scholar] [CrossRef]
- Kar, A.; Kumar, S.; Kailas, S.V. Developing multi-layered 3D printed homogenized structure using solid state deposition method. Mater. Charact. 2023, 199, 112770. [Google Scholar] [CrossRef]
- Yin, S.; Aldwell, B.; Lupoi, R. Cold spray additive manufacture and component restoration. In Cold-Spray Coatings: Recent Trends and Future Perspectives; Springer International Publishing: Cham, Switzerland, 2017; pp. 195–224. [Google Scholar] [CrossRef]
- Raoelison, R.N.; Xie, Y.; Sapanathan, T.; Planche, M.P.; Kromer, R.; Costil, S.; Langlade, C. Cold gas dynamic spray technology: A comprehensive review of processing conditions for various technological developments till to date. Addit. Manuf. 2018, 19, 134–159. [Google Scholar] [CrossRef]
- Yin, S.; Cavaliere, P.; Aldwell, B.; Jenkins, R.; Liao, H.; Li, W.; Lupoi, R. Cold spray additive manufacturing and repair: Fundamentals and applications. Addit. Manuf. 2018, 21, 628–650. [Google Scholar] [CrossRef]
- Li, W.; Yang, K.; Yin, S.; Yang, X.; Xu, Y.; Lupoi, R. Solid-state additive manufacturing and repairing by cold spraying: A review. J. Mater. Sci. Technol. 2018, 34, 440–457. [Google Scholar] [CrossRef]
- Wang, X.; Feng, F.; Klecka, M.A.; Mordasky, M.D.; Garofano, J.K.; El-Wardany, T.; Nardi, A.; Champagne, V.K. Characterization and modeling of the bonding process in cold spray additive manufacturing. Addit. Manuf. 2015, 8, 149–162. [Google Scholar] [CrossRef]
- Li, W.Y.; Li, C.J.; Liao, H. Significant influence of particle surface oxidation on deposition efficiency, interface microstructure and adhesive strength of cold-sprayed copper coatings. Appl. Surf. Sci. 2010, 256, 4953–4958. [Google Scholar] [CrossRef]
- Chen, C.; Xie, Y.; Yan, X.; Yin, S.; Fukanuma, H.; Huang, R.; Zhao, R.; Wang, J.; Ren, Z.; Liu, M.; et al. Effect of hot isostatic pressing (HIP) on microstructure and mechanical properties of Ti6Al4V alloy fabricated by cold spray additive manufacturing. Addit. Manuf. 2019, 27, 595–605. [Google Scholar] [CrossRef]
- Ma, W.; Xie, Y.; Chen, C.; Fukanuma, H.; Wang, J.; Ren, Z.; Huang, R. Microstructural and mechanical properties of high-performance Inconel 718 alloy by cold spraying. J. Alloys Compd. 2019, 792, 456–467. [Google Scholar] [CrossRef]
- Gärtner, F.; Stoltenhoff, T.; Voyer, J.; Kreye, H.; Riekehr, S.; Koçak, M. Mechanical properties of cold-sprayed and thermally sprayed copper coatings. Surf. Coat. Technol. 2006, 200, 6770–6782. [Google Scholar] [CrossRef]
- Binder, K.; Gottschalk, J.; Kollenda, M.; Gärtner, F.; Klassen, T. Influence of Impact Angle and Gas Temperature on Mechanical Properties of Titanium Cold Spray Deposits. J. Therm. Spray Technol. 2010, 20, 234–242. [Google Scholar] [CrossRef]
- Meydanoglu, O.; Jodoin, B.; Kayali, E.S. Microstructure, Mechanical Properties and Corrosion Performance of 7075 Al Matrix Ceramic Particle Reinforced Composite Coatings Produced by the Cold Gas Dynamic Spraying Process. Surf. Coatings Technol. 2013, 235, 108–116. [Google Scholar] [CrossRef]
- Yu, M.; Suo, X.K.; Li, W.Y.; Wang, Y.Y.; Liao, H.L. Microstructure, mechanical property and wear performance of cold sprayed Al5056/SiCp composite coatings: Effect of reinforcement content. Appl. Surf. Sci. 2014, 289, 188–196. [Google Scholar] [CrossRef]
- Qiu, X.; Tariq, N.U.H.; Wang, J.-Q.; Tang, J.-R.; Gyansah, L.; Zhao, Z.-P.; Xiong, T.-Y. Microstructure, microhardness and tribological behavior of Al2O3 reinforced A380 aluminum alloy composite coatings prepared by cold spray technique. Surf. Coat. Technol. 2018, 350, 391–400. [Google Scholar] [CrossRef]
- Yang, X.; Li, W.; Yu, S.; Xu, Y.; Hu, K.; Zhao, Y. Electrochemical characterization and microstructure of cold sprayed AA5083/Al2O3 composite coatings. J. Mater. Sci. Technol. 2020, 59, 117–128. [Google Scholar] [CrossRef]
- Tariq, N.H.; Gyansah, L.; Wang, J.Q.; Qiu, X.; Feng, B.; Siddique, M.T.; Xiong, T.Y. Cold spray additive manufacturing: A viable strategy to fabricate thick B4C/Al composite coatings for neutron shielding applications. Surf. Coat. Technol. 2018, 339, 224–236. [Google Scholar] [CrossRef]
- Kumar, S.; Reddy, S.K.; Joshi, S.V. Microstructure and performance of cold sprayed Al-SiC composite coatings with high fraction of particulates. Surf. Coat. Technol. 2017, 318, 62–71. [Google Scholar] [CrossRef]
- Xie, X.; Chen, C.; Chen, Z.; Wang, W.; Yin, S.; Ji, G.; Liao, H. Achieving Simultaneously Improved Tensile Strength and Ductility of a Nano-TiB2/AlSi10Mg Composite Produced by Cold Spray Additive Manufacturing. Compos. Part B Eng. 2020, 202, 108404. [Google Scholar] [CrossRef]
- Bourkhani, R.D.; Eivani, A.R.; Nateghi, H.R. Through-thickness inhomogeneity in microstructure and tensile properties and tribological performance of friction stir processed AA1050-Al2O3 nanocomposite. Compos. Part B Eng. 2019, 174, 107061. [Google Scholar] [CrossRef]
- Kala, H.; Mer, K.K.S.; Kumar, S. A Review on Mechanical and Tribological Behaviors of Stir Cast Aluminum Matrix Composites. Procedia Mater. Sci. 2014, 6, 1951–1960. [Google Scholar] [CrossRef]
- Prasad, M.G.A.; Bandekar, N.; Prasad, M.G.A.; Bandekar, N. Study of Microstructure and Mechanical Behavior of Aluminum/Garnet/Carbon Hybrid Metal Matrix Composites (HMMCs) Fabricated by Chill Casting Method. J. Mater. Sci. Chem. Eng. 2015, 3, 1–8. [Google Scholar] [CrossRef]
- Moona, G.; Walia, R.S.; Rastogi, V.; Sharma, R. Aluminium Metal Matrix Composites: A Retrospective Investigation. Indian J. Pure Appl. Phys. 2018, 56, 164–175. [Google Scholar]
- Su, H.; Gao, W.; Feng, Z.; Lu, Z. Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites. Mater. Des. 2012, 36, 590–596. [Google Scholar] [CrossRef]
- Contreras, A.; López, V.H.; Bedolla, E. Mg/TiC composites manufactured by pressureless melt infiltration. Scr. Mater. 2004, 51, 249–253. [Google Scholar] [CrossRef]
- Batchelor, G. An Introduction to Fluid Dynamics; Cambridge University Press: Cambridge, UK, 1967. [Google Scholar]
- Khanafer, K.; Vafai, K. A Critical Synthesis of Thermophysical Characteristics of Nanofluids. In Nanotechnology and Energy; Jenny Stanford Publishing: Singapore, 2017; pp. 279–332. [Google Scholar] [CrossRef]
- Lin, Y.; Kang, K.; Chen, F.; Zhang, L.; Lavernia, E.J. Gradient Metal Matrix Composites. Compr. Compos. Mater. II 2018, 4, 331–346. [Google Scholar] [CrossRef]
- Contreras Cuevas, A.; Bedolla Becerril, E.; Martínez, M.S.; Lemus Ruiz, J. Fabrication Processes for Metal Matrix Composites. Met. Matrix Compos. 2018, 83–114. [Google Scholar] [CrossRef] [PubMed]
- Amosov, A.P.; Latukhin, E.I.; Umerov, E.R. Applying Infiltration Processes and Self-Propagating High-Temperature Synthesis for Manufacturing Cermets: A Review. Russ. J. Non-Ferr. Met. 2022, 63, 81–100. [Google Scholar] [CrossRef]
- Etemadi, R.; Wang, B.; Pillai, K.M.; Niroumand, B.; Omrani, E.; Rohatgi, P. Pressure infiltration processes to synthesize metal matrix composites—A review of metal matrix composites, the technology and process simulation. Mater. Manuf. Process. 2018, 33, 1261–1290. [Google Scholar] [CrossRef]
- Long, S.; Beffort, O.; Uzwil, G.M.; Thevoz, P. Processing of Al-based MMCs by indirect squeeze infiltration of ceramic preforms on a shot-control high pressure die casting machin. Aluminium 2000, 76, 82–89. [Google Scholar]
- Amosov, A.P.; Fedotov, A.F.; Latukhin, E.I.; Novikov, V.A. TiC–Al interpenetrating composites by SHS pressing. Int. J. Self-Propagating High-Temp. Synth. 2015, 24, 187–191. [Google Scholar]
- Fedotov, A.F.; Amosov, A.P.; Latukhin, E.I.; Novikov, V.A. Fabrication of aluminum–ceramic skeleton composites based on the Ti2AlC MAX phase by SHS compaction. Russ. J. Non-Ferrous Met. 2016, 57, 33–40. [Google Scholar]
- Amosov, A.P.; Latukhin, E.I.; Ryabov, A.M.; Umerov, E.R.; Novikov, V.A. Application of SHS process for fabrication of copper-titanium silicon carbide composite (Cu-Ti3SiC2). J. Phys. Conf. Ser. 2018, 1115, 042003. [Google Scholar] [CrossRef]
- Amosov, A.P.; Latukhin, E.I.; Ryabov, A.M. Applying SHS for the Fabrication of the Ti3SiC2–Ni Composite. Russ. J. Non-Ferr. Met. 2019, 60, 555–565. [Google Scholar]
- Chadwick, G.A. Squeeze casting of metal matrix composites using short fibre performs. Mater. Sci. Eng. A 1991, 135, 23–28. [Google Scholar] [CrossRef]
- Zantout, B.; Das, A.; Franklin, J. Squeeze-Cast Aluminum-Matrix Composite: Strength. In Proceedings of the Metallurgy of Light Alloys: Spring Residential Conference, Loughborough, UK, March 1983. [Google Scholar]
- Yue, T.M.; Dai, Y.; Lau, W.S. An Examination of Wire Electrical Discharge Machining (WEDM) of Al2O3 Particulate Reinforced Aluminum Based Composites. Mater. Manuf. Process 1996, 11, 341–350. [Google Scholar] [CrossRef]
- Schultz, B.F.; Ferguson, J.B.; Rohatgi, P.K. Microstructure and hardness of Al2O3 nanoparticle reinforced Al–Mg composites fabricated by reactive wetting and stir mixing. Mater. Sci. Eng. A 2011, 530, 87–97. [Google Scholar] [CrossRef]
- Kainer, K.U. Metal Matrix Composites: Custom-Made Materials for Automotive and Aerospace Engineering; Wiley: Hoboken, NJ, USA, 2006; pp. 1–314. [Google Scholar] [CrossRef]
- Metal, V.I.O.A.L. Casting particulate and fibrous metal-matrix composites. In Composites, Corrosion/Coating of Advanced Materials; Ikebukuro: Tokyo, Japan, 1989; p. 35. [Google Scholar]
- Michaud, V. Liquid-State Processing (of Metal Matrix Composites). In Fundamentals of Metal-Matrix Composites; Butterworth-Heinemann: Stoneham, MA, USA, 1993; pp. 3–22. [Google Scholar]
- ASM. ASM Handbook: Alloy Phase Diagrams; ASM International: Detroit, MI, USA, 1992. [Google Scholar]
- Hajjari, E.; Divandari, M.; Arabi, H. Effect of Applied Pressure and Nickel Coating on Microstructural Development in Continuous Carbon Fiber-Reinforced Aluminum Composites Fabricated by Squeeze Casting. Mater. Manuf. Process. 2011, 26, 599–603. [Google Scholar] [CrossRef]
- Chung, W.S.; Lin, S.J. Ni-coated SiCp reinforced aluminum composites processed by vacuum infiltration. Mater. Res. Bull. 1996, 31, 1437–1447. [Google Scholar] [CrossRef]
- Sree Manu, K.M.; Ajay Raag, L.; Rajan, T.P.D.; Gupta, M.; Pai, B.C. Liquid Metal Infiltration Processing of Metallic Composites: A Critical Review. Metall. Mater. Trans. B 2016, 47, 2799–2819. [Google Scholar] [CrossRef]
- Andrews, R.M.; Mortensen, A. Lorentz force infiltration of fibrous preforms. Metall. Trans. A 1991, 22, 2903–2915. [Google Scholar]
- Saberi, Y.; Zebarjad, S.M.; Akbari, G.H. On the role of nano-size SiC on lattice strain and grain size of Al/SiC nanocomposite. J. Alloys Compd. 2009, 484, 637–640. [Google Scholar] [CrossRef]
- Wannasin, J.; Flemings, M.C. Fabrication of metal matrix composites by a high-pressure centrifugal infiltration process. J. Mater. Process. Technol. 2005, 169, 143–149. [Google Scholar] [CrossRef]
- Nishida, Y.; Izawa, N.; Kuramasu, Y. Recycling of aluminum matrix composites. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 1999, 30, 839–844. [Google Scholar]
- Sahin, Y.; Acilar, M. Production and properties of SiCp-reinforced aluminium alloy composites. Compos. Part A Appl. Sci. Manuf. 2003, 34, 709–718. [Google Scholar] [CrossRef]
- Terry, B.; Jones, G. Metal Matrix Composites: Current Developments and Future Trends in Industrial Research and Applications. Available online: https://cir.nii.ac.jp/crid/1130282270262518272 (accessed on 19 March 2024).
- Kumar, S.; Chakraborty, M.; Subramanya Sarma, V.; Murty, B.S. Tensile and wear behaviour of in situ Al–7Si/TiB2 particulate composites. Wear 2008, 265, 134–142. [Google Scholar] [CrossRef]
- Mandal, A.; Chakraborty, M.; Murty, B.S. Ageing behaviour of A356 alloy reinforced with in-situ formed TiB2 particles. Mater. Sci. Eng. A 2008, 489, 220–226. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, N.; Wang, H.; Le, Y.; Li, X. Damping capacity of in situ TiB2 particulates reinforced aluminium composites with Ti addition. Mater. Des. 2007, 28, 628–632. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, N.; Wang, H. Effect of particulate/Al interface on the damping behavior of in situ TiB2 reinforced aluminium composite. Mater. Lett. 2007, 61, 3273–3275. [Google Scholar] [CrossRef]
- Pramod, S.L.; Bakshi, S.R.; Murty, B.S. Aluminum-Based Cast In Situ Composites: A Review. J. Mater. Eng. Perform. 2015, 24, 2185–2207. [Google Scholar]
- Niranjan, K.; Lakshminarayanan, P.R. Dry sliding wear behaviour of in situ Al–TiB2 composites. Mater. Des. 2013, 47, 167–173. [Google Scholar] [CrossRef]
- Murty, B.S.; Maiti, R.; Chakraborty, M. Development of in-situ AI-TiB2 Metal Matrix Composites. J. Metall. Mater. Sci. 2001, 43, 93–101. [Google Scholar]
- Yang, B.; Wang, Y.Q.; Zhou, B.L. The mechanism of formation of TiB2 participates prepared by in situ reaction in molten aluminum. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 1998, 29, 635–640. [Google Scholar]
- Tee, K.L.; Lu, L.; Lai, M.O. In situ processing of Al–TiB2 composite by the stir-casting technique. J. Mater. Process. Technol. 1999, 89–90, 513–519. [Google Scholar] [CrossRef]
- Patel, N.S.; Patel, A.D. Studies on Properties of Composite Material (Al-Sic MMC) for Valve Development of Light Vehicle Petrol Engine—A Technical Research. GRD J.-Glob. Res. Dev. J. Eng. 2017, 2. [Google Scholar]
- Amosov, A.P.; Luts, A.R.; Rybakov, A.D.; Latukhin, E.I. Using Different Powdered Carbon Forms for Reinforcing Aluminum Composite Materials with Carbon and Titanium Carbide: A Review. Russ. J. Non-Ferr. Met. 2020, 61, 500–516. [Google Scholar] [PubMed]
- Song, S.G.; Shi, N.; Gray, G.T.; Roberts, J.A. Reinforcement shape effects on the fracture behavior and ductility of particulate-reinforced 6061-Al matrix composites. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 1996, 27, 3739–3746. [Google Scholar]
- Yang, Z.; Fan, J.; Liu, Y.; Nie, J.; Yang, Z.; Kang, Y. Effect of the Particle Size and Matrix Strength on Strengthening and Damage Process of the Particle Reinforced Metal Matrix Composites. Materials 2021, 14, 675. [Google Scholar] [CrossRef] [PubMed]
- El-Kady, O.; Fathy, A. Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites. Mater. Des. 2014, 54, 348–353. [Google Scholar] [CrossRef]
- Li, Y.; Ramesh, K.T. Influence of particle volume fraction, shape, and aspect ratio on the behavior of particle-reinforced metal–matrix composites at high rates of strain. Acta Mater. 1998, 46, 5633–5646. [Google Scholar] [CrossRef]
- Lewis, C.A.; Withers, P.J. Weibull modelling of particle cracking in metal matrix composites. Acta Metall. Mater. 1995, 43, 3685–3699. [Google Scholar] [CrossRef]
- Chawla, K.K. Metal Matrix Composites. Compos. Mater. 1998, 164–211. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Curtin, W.A.; Peters, P.W.M. Multiscale modeling of failure in metal matrix composites. Acta Mater. 2001, 49, 273–287. [Google Scholar] [CrossRef]
- Weissenbek, E.; Böhm, H.J.; Rammerstorfer, F.G. Micromechanical investigations of arrangement effects in particle reinforced metal matrix composites. Comput. Mater. Sci. 1994, 3, 263–278. [Google Scholar] [CrossRef]
- Christman, T.; Needleman, A.; Nutt, S.; Suresh, S. On microstructural evolution and micromechanical modelling of deformation of a whisker-reinforced metal-matrix composite. Mater. Sci. Eng. A 1989, 107, 49–61. [Google Scholar] [CrossRef]
- Tvergaard, V. Analysis of tensile properties for a whisker-reinforced metal-matrix composite. Acta Metall. Mater. 1990, 38, 185–194. [Google Scholar] [CrossRef]
- Lloyd, D.J. Particle reinforced aluminium and magnesium matrix composites. Int. Mater. Rev. 2013, 39, 1–23. [Google Scholar] [CrossRef]
- Hunt, W.H.; Osman, T.M.; Lewandowski, J.J. Micro- and macrostructural factors in DRA fracture resistance. JOM 1993, 45, 30–35. [Google Scholar]
- Bauri, R.; Yadav, D. Metal Matrix Composites by Friction Stir Processing. Available online: https://books.google.co.in/books?hl=en&lr=&id=AMkpDwAAQBAJ&oi=fnd&pg=PP1&dq=Introduction+to+Metal+Matrix+Composites%2BR.+Bauri&ots=9SADEZbBVy&sig=Hzr52zh_qiC51qS77fP3G6gndqg&redir_esc=y#v=onepage&q=Introduction to Metal Matrix Composites%2BR. Bauri&f=false (accessed on 27 March 2024).
- Hunt, W.H.; Miracle, D.B. Automotive Applications of Metal-Matrix Composites. In Composites; ASM International: Detroit, MI, USA, 2001; pp. 1029–1032. [Google Scholar] [CrossRef]
- Miracle, D.B. Aeronautical Applications of Metal-Matrix Composites. In Composites; ASM International: Detroit, MI, USA, 2001; pp. 1043–1049. [Google Scholar] [CrossRef]
- Miracle, D.B.; Donaldson, S.L.; Henry, S.D.; Moosbrugger, C.; Anton, G.J.; Sanders, B.R.; Hrivnak, N.; Terman, C.; Kinson, J.; Muldoon, K.; et al. ASM Handbook; ASM International: Materials Park, OH, USA, 2001; ISBN 9780871707031. [Google Scholar]
Composite Type/Process | Examples (Reinforcement/Matrix) | Main Features |
---|---|---|
Solid-state processing | ||
In situ forming-internal oxidation | Al2O3/SiO2 BeO particulate in Cu or Ag | Good electrical conductivity, modest strength increase |
Powder forming | ||
Sintered aluminum powder | Al2O3 particulate/Al matrix | Moderate strength and stiffness around 300 °C, Low density |
Long or short fibers or particulates incorporated by powder metallurgy | Good stiffness/strength to modest particulate incorporated temperatures, Low density, Low thermal expansion | |
Mechanical alloying | Oxide particles in super alloy matrix | High-performance alloy, High strength at high temperatures |
Diffusion bonding | ||
Long fibers in intermetallic | SiC fibers in Ti3Al, etc. | Some problems over oxidation at high temperatures |
Liquid state processing | ||
Molten metal mix processing | SiC or Al2O3/Light alloy matrices | Modest improvements in properties |
Infiltration of preforms | SiC whiskers, Al2O3 fibers/Al alloys C/Al and Mg alloys SiC/Ti alloys B/Al alloys | Good stiffness and strength to 200 °C, Low density, Low thermal conductivity |
Dispersion semi solidus processing | Various ceramic dispersoids into the melt Si in Al | Some problems in controlling the microstructure, Modest strength |
Spraying | Particulate/short or long fibers in alloy matrices, for example, Sic or Al2O/in Al alloys | Good wear characteristics, Good stiffness and strength, Low density, Low thermal expansion coefficient |
In situ processing | TiB2 particulate/Al alloy | Good strength ductility and toughness, Fatigue resistant |
Other techniques | ||
Molecular level mixing | Carbon nanotubes (CNTs) reinforced copper (Cu) matrix nano composites | No clustering of molecules Uniform dispersion |
CIP + HIP | TiCp particulate/Al alloy | Formation of oxidation constraint of high-temperature use, Microstructure modification |
Sputtering method | Titanium aluminide alloy, Ti–Al–Nb, on short length Sic fibers | Clean environment with excellent impurity control, Good repeatability/reproducibility, Homogeneity of the deposited matrix |
Route | Cost | Applications | Comments |
---|---|---|---|
Diffusion bonding | High | Used to make sheets, blades, vane shafts, structural components | Handles foils or sheets of matrix and filaments of reinforcing elements |
Powder metallurgy | Medium | Mainly used to produce small objects (especially round), bolts, valves, high-strength and heat-resistant materials | Both matrix and reinforcements used in powder form, best for particulate reinforcement. Since no melting is involved, no reaction zone is developed, showing a high-strength composite |
Liquid-metal infiltration | Low/medium | Used to produce structural shapes such as rods, tubes, and beams with maximum properties in a uniaxial direction | Filaments of reinforcement used |
Squeeze casting | Medium | Widely used in the automotive industry for producing different components such as pistons, connecting rods, rocker arms, and cylinder heads suitable for making complex objects | Generally applicable to any type of reinforcement and may be used for large-scale manufacturing |
Spray casting | Medium | Used to produce friction materials, electrical brushes and contacts, cutting and grinding tools | Particulate reinforcement used: full-density materials can be produced |
Compocasting/Rheocasting | Low | Widely used in automotive, aerospace, industrial equipment and sporting goods industries, used to manufacture bearing materials | Particulate reinforcement used: full-density materials can be produced. Suitable for discontinuous fibers especially particulate reinforcement |
Fiber Materials | Weibull Modulus, m |
---|---|
Glass | <5 |
Al2O3 | 5–10 |
Steel | >100 |
SiC | 5, 17 |
30% zirconia–alumina | 21.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kar, A.; Sharma, A.; Kumar, S. A Critical Review on Recent Advancements in Aluminium-Based Metal Matrix Composites. Crystals 2024, 14, 412. https://doi.org/10.3390/cryst14050412
Kar A, Sharma A, Kumar S. A Critical Review on Recent Advancements in Aluminium-Based Metal Matrix Composites. Crystals. 2024; 14(5):412. https://doi.org/10.3390/cryst14050412
Chicago/Turabian StyleKar, Amlan, Aditya Sharma, and Sachin Kumar. 2024. "A Critical Review on Recent Advancements in Aluminium-Based Metal Matrix Composites" Crystals 14, no. 5: 412. https://doi.org/10.3390/cryst14050412
APA StyleKar, A., Sharma, A., & Kumar, S. (2024). A Critical Review on Recent Advancements in Aluminium-Based Metal Matrix Composites. Crystals, 14(5), 412. https://doi.org/10.3390/cryst14050412