Impact of Buffer Layer on Electrical Properties of Bow-Tie Microwave Diodes on the Base of MBE-Grown Modulation-Doped Semiconductor Structure
Abstract
:1. Introduction
2. Samples and Methods
- The structure with a thick, unintentionally doped i-GaAs buffer layer between the substrate and the active semiconductor layer, hereafter referred to as the structure with a simple buffer layer (SSB).
- The same modulation-doped structure with the buffer layer, including i-GaAs layer and a 30-period GaAs/AlGaAs super-lattice, hereafter referred to as the structure with a super-lattice buffer layer (SSLB).
3. Results and Discussion
3.1. Photoluminescence of the SSB and SSLB Modulation-Doped Semiconductor Structures
3.2. Voltage Sensitivity of the Bow-Tie Diodes
3.3. Low-Field Electrical Resistance of the Bow-Tie Diodes
3.4. Asymmetry of I–V Characteristic of the Bow-Tie Diodes
3.5. Nonlinearity Coefficient of the I–V Characteristic of the Bow-Tie Diodes
4. Conclusions
- Photoluminescence study of the modulation-doped structures shows better quality of the semiconductor structure with a super-lattice.
- The buffer layer of the modulation-doped semiconductor structure has no influence on the voltage sensitivity of symmetrical bow-tie diodes, both in the dark and under white light illumination, and the voltage sensitivity is several times higher when the buffer layer of the asymmetric bow-tie diodes incorporates a super-lattice.
- A smaller difference between the experimental and theoretical resistance values is observed in the case of the bow-tie diodes based on a modulation-doped structure with a super-lattice.
- Large variability in the experimental values of the asymmetry of I–V characteristics and weak correlations with the experimental voltage sensitivity values suggest that additional factors are responsible for the electrical characteristics of the bow-tie diodes.
- The stronger dependence of the I–V characteristic asymmetry in bow-tie diodes, based on semiconductor structures without a super-lattice, on the diode’s shape and geometric dimensions can be attributed to the higher density of trapping centers in these diodes.
- Higher density of trapping centers in the modulation-doped structures without a super-lattice leads to stronger dependence on the illumination of the bow-tie diodes based on these structures.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Structure | Diode | Illumination | Number of Measured Diodes | Smean, V/W | Smedian, V/W | StD, V/W | RStD, % |
---|---|---|---|---|---|---|---|
SSLB | SD3 | ill. | 11 | 0.39 | 0.42 | 0.10 | 27 |
drk. | 11 | 0.30 | 0.32 | 0.08 | 27 | ||
SD2 | ill. | 10 | 0.47 | 0.53 | 0.17 | 37 | |
drk. | 10 | 0.31 | 0.33 | 0.12 | 40 | ||
SD1 | ill. | 10 | 0.66 | 0.66 | 0.22 | 34 | |
drk. | 10 | 0.40 | 0.38 | 0.18 | 46 | ||
AD3 | ill. | 11 | 0.71 | 0.74 | 0.15 | 20 | |
drk. | 11 | 0.52 | 0.53 | 0.13 | 25 | ||
AD2 | ill. | 11 | 0.80 | 0.74 | 0.26 | 32 | |
drk. | 11 | 0.51 | 0.44 | 0.32 | 62 | ||
AD1 | ill. | 11 | 1.40 | 1.40 | 0.42 | 30 | |
drk. | 11 | 0.75 | 0.57 | 0.37 | 49 | ||
SSB | SD3 | ill. | 14 | 0.36 | 0.38 | 0.16 | 45 |
drk. | 14 | 0.24 | 0.25 | 0.14 | 58 | ||
SD2 | ill. | 14 | 0.54 | 0.46 | 0.33 | 61 | |
drk. | 14 | 0.33 | 0.26 | 0.23 | 69 | ||
SD1 | ill. | 14 | 0.68 | 0.80 | 0.54 | 79 | |
drk. | 14 | 0.47 | 0.51 | 0.34 | 73 | ||
AD3 | ill. | 14 | 0.43 | 0.47 | 0.21 | 48 | |
drk. | 14 | 0.23 | 0.21 | 0.26 | 113 | ||
AD2 | ill. | 14 | 0.43 | 0.44 | 0.33 | 76 | |
drk. | 14 | 0.19 | 0.19 | 0.28 | 150 | ||
AD1 | ill. | 13 | 0.45 | 0.53 | 0.71 | 158 | |
drk. | 13 | 0.14 | 0.17 | 0.56 | 388 |
Structure | Diode | Illumination | Number of Measured Diodes | R(0)mean, kΩ | R(0)median, kΩ | StD, kΩ | StD/R(0)mean, % | Calculated R(0) kΩ | (R(0)mean- R(0)calc.)/R(0) calc., % |
---|---|---|---|---|---|---|---|---|---|
SSLB | SD3 | ill. | 10 | 8.41 | 8.39 | 0.16 | 1.9 | 8.42 | −0 |
drk. | 10 | 10.41 | 10.61 | 0.45 | 4.3 | 9.09 | 15 | ||
SD2 | ill. | 9 | 9.58 | 9.59 | 0.14 | 1.5 | 9.36 | 2 | |
drk. | 9 | 12.00 | 12.00 | 0.32 | 2.7 | 10.10 | 19 | ||
SD1 | ill. | 11 | 11.80 | 11.87 | 0.54 | 4.6 | 11.35 | 4 | |
drk. | 11 | 14.84 | 15.25 | 1.16 | 7.8 | 12.24 | 21 | ||
AD3 | ill. | 11 | 3.10 | 3.11 | 0.05 | 1.6 | 2.32 | 34 | |
drk. | 11 | 3.80 | 3.82 | 0.1 | 2.6 | 2.52 | 51 | ||
AD2 | ill. | 11 | 3.50 | 3.50 | 0.1 | 2.9 | 2.58 | 36 | |
drk. | 11 | 4.30 | 4.34 | 0.18 | 4.2 | 2.80 | 54 | ||
AD1 | ill. | 10 | 4.42 | 4.43 | 0.14 | 3.2 | 3.10 | 43 | |
drk. | 10 | 5.48 | 5.49 | 0.26 | 4.7 | 3.34 | 64 | ||
SSB | SD3 | ill. | 14 | 9.9 | 10.30 | 1.26 | 12.7 | 10.92 | −9 |
drk. | 14 | 15.7 | 16.55 | 2.2 | 14.0 | 11.80 | 33 | ||
SD2 | ill. | 14 | 11.90 | 11.80 | 0.85 | 7.1 | 12.12 | −2 | |
drk. | 14 | 19.1 | 19.65 | 1.93 | 10.1 | 13.15 | 45 | ||
SD1 | ill. | 14 | 13.9 | 14.40 | 1.2 | 8.6 | 14.67 | −5 | |
drk. | 14 | 22.8 | 23.70 | 2.6 | 11.4 | 16.03 | 42 | ||
AD3 | ill. | 14 | 3.60 | 3.61 | 0.22 | 6.1 | 3.08 | 17 | |
drk. | 14 | 5.50 | 5.69 | 0.4 | 7.3 | 3.60 | 53 | ||
AD2 | ill. | 14 | 3.85 | 3.99 | 0.39 | 10.1 | 3.41 | 13 | |
drk. | 14 | 5.72 | 6.09 | 0.86 | 15.0 | 4.03 | 42 | ||
AD1 | ill. | 13 | 4.96 | 4.95 | 0.82 | 16.5 | 3.96 | 25 | |
drk. | 13 | 7.2 | 7.45 | 1.1 | 15.3 | 4.54 | 59 |
Structure | Diode | Illumination | Number of Measured Diodes | I–Vasym-mean, arb. u. | I–Vasym-median, arb. u. | StD, arb.u. | StD/I–Vasym-mean, % |
---|---|---|---|---|---|---|---|
SSLB | SD3 | ill. | 10 | −30 | −20 | 35 | 117 |
drk. | 10 | −100 | −80 | 55 | 55 | ||
SD2 | ill. | 9 | 15 | 20 | 30 | 200 | |
drk. | 9 | −80 | −60 | 35 | 44 | ||
SD1 | ill. | 11 | 40 | 60 | 30 | 75 | |
drk. | 11 | −60 | −60 | 20 | 33 | ||
AD3 | ill. | 11 | 50 | 50 | 13 | 26 | |
drk. | 11 | 2 | 2 | 3 | 150 | ||
AD2 | ill. | 11 | 60 | 60 | 10 | 17 | |
drk. | 11 | −20 | −20 | 5 | 25 | ||
AD1 | ill. | 10 | 100 | 100 | 7 | 7 | |
drk. | 10 | −20 | −20 | 14 | 70 | ||
SSB | SD3 | ill. | 13 | 60 | 60 | 10 | 70 |
drk. | 14 | −190 | −170 | 80 | 17 | ||
SD2 | ill. | 14 | 70 | 70 | 20 | −2 | |
drk. | 14 | −230 | −200 | 100 | 29 | ||
SD1 | ill. | 14 | 70 | 70 | 40 | 43 | |
drk. | 14 | −350 | −310 | 120 | 57 | ||
AD3 | ill. | 14 | 70 | 70 | 5 | −4 | |
drk. | 14 | 30 | 30 | 3 | 7 | ||
AD2 | ill. | 14 | 60 | 60 | 5 | 10 | |
drk. | 14 | −2 | −3 | 4 | 8 | ||
AD1 | ill. | 13 | 60 | 60 | 15 | 200 | |
drk. | 12 | −110 | −100 | 30 | 25 |
Structure | Diode | Illumination | Number of Measured Diodes | β × 1012, m2/V2 | StD × 1012, m2/V2 | StD/β, % |
---|---|---|---|---|---|---|
SSLB | SD3 | ill. | 10 | 10.5 | 0.31 | 3 |
drk. | 10 | 9.4 | 0.81 | 9 | ||
SD2 | ill. | 9 | 6.9 | 0.28 | 4 | |
drk. | 9 | 5.72 | 0.38 | 7 | ||
SD1 | ill. | 11 | 2.3 | 0.12 | 5 | |
drk. | 11 | 3 | 0.16 | 5 | ||
AD3 | ill. | 11 | 0.83 | 0.2 | 24 | |
drk. | 11 | 0.84 | 0.03 | 4 | ||
AD2 | ill. | 11 | 0.53 | 0.1 | 19 | |
drk. | 11 | 0.5 | 0.031 | 6 | ||
AD1 | ill. | 10 | 0.25 | 0.04 | 16 | |
drk. | 10 | 0.21 | 0.01 | 5 | ||
SSB | SD3 | ill. | 13 | 12.7 | 0.53 | 4 |
drk. | 13 | 10.3 | 0.47 | 5 | ||
SD2 | ill. | 14 | 7.77 | 0.28 | 4 | |
drk. | 14 | 6.45 | 0.3 | 5 | ||
SD1 | ill. | 14 | 3.1 | 0.085 | 3 | |
drk. | 14 | 2.32 | 0.09 | 4 | ||
AD3 | ill. | 14 | 0.68 | 0.2 | 29 | |
drk. | 14 | 0.82 | 0.07 | 9 | ||
AD2 | ill. | 14 | 0.41 | 0.008 | 2 | |
drk. | 14 | 0.52 | 0.014 | 3 | ||
AD1 | ill. | 13 | 0.19 | 0.022 | 12 | |
drk. | 12 | 0.18 | 0.006 | 3 |
Appendix B
References
- Günther, K.G. Aufdampfschichten aus halbleitenden III-V-Verbindungen. Z. Für Naturforshung A 1958, 13, 1081–1089. [Google Scholar] [CrossRef]
- Davey, J.E.; Pankey, T. Epitaxial GaAs Films Deposited by Vacuum Evaporation. J. Appl. Phys. 1968, 39, 1941–1948. [Google Scholar] [CrossRef]
- Cho, A.Y.; Arthur, J.R. Molecular Beam Epitaxy. Prog. Solid-State Chem. 1975, 10, 157–191. [Google Scholar] [CrossRef]
- Kim, T.S.; Kim, C.H.; Oh, M.H. The effect of buffer layer on the structural and electrical properties of (BaSr)Ti03 thin films deposited on indium tin oxide-coated glass substrate by using a rf magnetron sputtering method. J. Appl. Phys. 1994, 76, 4316–4322. [Google Scholar] [CrossRef]
- Twigg, M.E.; Bennett, B.R.; Shanabrook, B.V. Influence of interace and buffer layer on the structure of InAs/GaSb superlattices. Appl. Phys. Lett. 1995, 67, 1609–1611. [Google Scholar] [CrossRef]
- Yuan, W.; Pei, Y.; Li, Y.; Guo, N.; Zhang, X.; Liu, X. Research on the Influence of Carbon Sources and Buffer Layers on the Homogeneous Epitaxial Growth of 4H-SiC. Micromachines 2024, 15, 600. [Google Scholar] [CrossRef] [PubMed]
- Imaizumi, M.; Hirotani, M.; Soga, T.; Umeno, M. Effect of buffer layer structure on the structural properties of GaAs epitaxial layers grown on GaP substrates. J. Cryst. Growth 2019, 507, 288–294. [Google Scholar] [CrossRef]
- Grandjean, N.; Leroux, M.; Laugt, M.; Massies, J. Gas source molecular beam epitaxy of wurtzite GaN on sapphire substrates using GaN buffer layers. Appl. Phys. Lett. 1997, 71, 240–242. [Google Scholar] [CrossRef]
- Lei, T.; Moustakas, T.D.; Graham, R.J.; He, Y.; Berkowitz, S.J. Epitaxial growth and characterization of zinc-blende gallium nitride on (001) silicon. J. Appl. Phys. 1992, 71, 4933–4943. [Google Scholar] [CrossRef]
- Riechert, H.; Averbeck, R.; Graber, A.; Schienle, M.; Strauβ, U.; Tews, H. MBE Growth of (In)GaN for LED Applications. MRS Online Proc. Libr. 1996, 449, 149–159. [Google Scholar] [CrossRef]
- Kirchner, V.; Heinke, H.; Birkle, U.; Einfeldt, S.; Hommel, D.; Selke, H.; Ryder, P.L. Ion-induced crystal damage during plasma-assisted MBE growth of GaN layers. Phys. Rev. B 1998, 58, 15749. [Google Scholar] [CrossRef]
- Kirchner, V.; Ebel, R.; Heinke, H.; Einfeldt, S.; Hommel, D.; Selke, H.H.; Ryder, P.L. Influence of buffer layers on the structural properties of molecular beam epitaxy grown GaN layers. Mater. Sci. Eng. 1999, B59, 47–51. [Google Scholar] [CrossRef]
- Sharma, N.; Tricker, D.; Keast, V.; Hooper, S.; Heffernan, J.; Barnes, J.; Kean, A.; Humphreys, C. The Effect of the Buffer Layer on the Structure, Mobility and Photoluminescence of MBE grown GaN. MRS Online Proc. Libr. 1999, 595, 334. [Google Scholar] [CrossRef]
- Zhao, J.; Suo, B.; Xu, R.; Tao, T.; Zhuang, Z.; Liu, B.; Zhang, X.; Chang, J. Effects of Buffer Layer on Structural Properties of Nonpolar (1120)-Plane GaN Film. Crystals 2023, 13, 1145. [Google Scholar] [CrossRef]
- Mulyo, A.L.; Rajpalke, M.K.; Vullum, P.E.; Weman, H.; Kishino, K.; Fimland, B.-O. The influence of AlN buffer layer on the growth of self-assembled GaN nanocolumns on graphene. Sci. Rep. 2020, 11, 853. [Google Scholar] [CrossRef]
- Umansky, V.; Heiblum, M.; Levinson, Y.; Smet, J.; Nübler, J.; Dolev, M. MBE growth of ultra-low disorder 2DEG with mobility exceeding 35×106 cm2/Vs. J. Cryst. Growth 2009, 311, 1658–1661. [Google Scholar] [CrossRef]
- Umansky, V.; Heiblum, M. MBE growth of high-mobility 2DEG. In Molecular Beam Epitaxy from Research to Mass Production; Henini, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 121–137. [Google Scholar]
- Wang, X.; Zheng, H.; Yu, T.; Laiho, R. Study on interface roughness in GaAsAlGaAs single quantum wells. Superlattices Microstruct. 1992, 12, 359–362. [Google Scholar] [CrossRef]
- Yang, B.; Cheng, Y.; Wang, Z.; Liang, J.; Liao, Q.; Lin, L.; Zhu, Z.; Xu, B.; Li, W. Interface roughness scattering in GaAs–AlGaAs modulationdoped heterostructures. Appl. Phys. Lett. 1994, 65, 3329–3331. [Google Scholar] [CrossRef]
- Sužiedėlis, A.; Ašmontas, S.; Gradauskas, J.; Čerškus, A.; Anbinderis, M. Indirect measurement of electron energy relaxation time at room temperature in two dimensional heterostructured semiconductors. Materials 2022, 15, 3224. [Google Scholar] [CrossRef] [PubMed]
- Kašalynas, I.; Venckevičius, R.; Seliuta, D.; Grigelionis, I.; Valušis, G. InGaAs-based bow-tie diode for spectroscopic terahertz imaging. J. Appl. Phys. 2011, 110, 114505. [Google Scholar] [CrossRef]
- Seliuta, D.; Vyšniauskas, J.; Ikamas, K.; Lisauskas, A.; Kašalynas, I.; Reklaitis, A.; Valušis, G. Symmetric bow-tie diode for terahertz detection based on transverse hot-carrier transport. J. Phys. D Appl. Phys. 2020, 53, 275106. [Google Scholar] [CrossRef]
- Kozič, A.; Sužiedėlis, A.; Petkun, V.; Čerškus, A.; Shtrikmann, H.; Gradauskas, J.; Kundrotas, J.; Ašmontas, S. Properties of constricted 2DEG/metal structures in microwave electric fields. Opt. Appl. 2005, 35, 465–470. [Google Scholar]
- Ašmontas, S.; Anbinderis, M.; Čerškus, A.; Gradauskas, J.; Lučun, A.; Sužiedėlis, A. Microwave Bow-Tie Diodes on Bases of 2D Semiconductor Structures. Crystals 2024, 14, 720. [Google Scholar] [CrossRef]
- Williams, R. Processing Methods, 2nd ed.; Artech Modern GaAs House: Norwood, MA, USA, 1990; 437p. [Google Scholar]
- Dienys, V.; Kancleris, Ž.; Martūnas, Z. Warm Electrons; Mokslas: Vilnius, Lithuania, 1983; 144p. (In Russian) [Google Scholar]
Structure | μ, cm2V−1s−1 | Rsh, Ω/☐ | ns, cm−2 | μ, cm2V−1s−1 | Rsh, Ω/☐ | ns, cm−2 |
---|---|---|---|---|---|---|
300 K | 77 K | |||||
SSB | 2180 | 2160 | 1.33·1012 | 25,800 | 880 | 2.75·1011 |
SSLB | 2370 | 1925 | 1.37·1012 | 65,800 | 580 | 1.63·1011 |
Structure | Rshill, Ω/☐ | Rshdrk, Ω/☐ | ρcill, Ω·mm | ρcdrk, Ω·mm |
---|---|---|---|---|
SSB | 1780 ± 45 | 1910 ± 130 | 0.2 ± 1.6 | 0.5 ± 1.2 |
SSLB | 1370 ± 50 | 1480 ± 20 | 0.21 ± 0.38 | 0.21 ± 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sužiedėlis, A.; Ašmontas, S.; Gradauskas, J.; Čerškus, A.; Šilėnas, A.; Lučun, A. Impact of Buffer Layer on Electrical Properties of Bow-Tie Microwave Diodes on the Base of MBE-Grown Modulation-Doped Semiconductor Structure. Crystals 2025, 15, 50. https://doi.org/10.3390/cryst15010050
Sužiedėlis A, Ašmontas S, Gradauskas J, Čerškus A, Šilėnas A, Lučun A. Impact of Buffer Layer on Electrical Properties of Bow-Tie Microwave Diodes on the Base of MBE-Grown Modulation-Doped Semiconductor Structure. Crystals. 2025; 15(1):50. https://doi.org/10.3390/cryst15010050
Chicago/Turabian StyleSužiedėlis, Algirdas, Steponas Ašmontas, Jonas Gradauskas, Aurimas Čerškus, Aldis Šilėnas, and Andžej Lučun. 2025. "Impact of Buffer Layer on Electrical Properties of Bow-Tie Microwave Diodes on the Base of MBE-Grown Modulation-Doped Semiconductor Structure" Crystals 15, no. 1: 50. https://doi.org/10.3390/cryst15010050
APA StyleSužiedėlis, A., Ašmontas, S., Gradauskas, J., Čerškus, A., Šilėnas, A., & Lučun, A. (2025). Impact of Buffer Layer on Electrical Properties of Bow-Tie Microwave Diodes on the Base of MBE-Grown Modulation-Doped Semiconductor Structure. Crystals, 15(1), 50. https://doi.org/10.3390/cryst15010050