Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Next Issue
Volume 15, October-1
Previous Issue
Volume 15, September-1
 
 
polymers-logo

Journal Browser

Journal Browser

Polymers, Volume 15, Issue 18 (September-2 2023) – 200 articles

Cover Story (view full-size image): We study biofouling, the accumulation of marine organisms on submerged surfaces. We assessed the effectiveness of phosphonium ion gels, including phosphonium monomers and free ionic liquid. Variations in a CuO biocide and the docusate anion were also examined for their hydrophobic characteristics. The results showed that formulations with higher hydrophobicity, reduced free ionic liquid content, and longer alkyl chain substituents exhibited superior anti-fouling performance. This study underscores the potential of phosphonium ion gels as effective combinations of anti-fouling and fouling-release properties. The cover image represents anti-fouling over time and the logo of our funder—the New Zealand Product Accelerator. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
11 pages, 1708 KiB  
Article
Synthesis, Optical Properties and Cellular Toxicity of Water-Soluble near Infrared-II Fluorescent Assemblies Based on Pillar[5]arene
by Qiuxia Wu, Xinran Sun, Zhenming Yang, Pengfei Shi, Huacheng Zhang and Jie Han
Polymers 2023, 15(18), 3853; https://doi.org/10.3390/polym15183853 - 21 Sep 2023
Viewed by 1333
Abstract
The main challenges in second near-infrared region molecular fluorophores are poor water solubility and unknown long-term toxicity at present. Herein, new NIR-II molecular fluorophores have been designed and employed to integrate biocompatible pillar[5]arene with 10 outer triethylene oxide groups for the synthesis of [...] Read more.
The main challenges in second near-infrared region molecular fluorophores are poor water solubility and unknown long-term toxicity at present. Herein, new NIR-II molecular fluorophores have been designed and employed to integrate biocompatible pillar[5]arene with 10 outer triethylene oxide groups for the synthesis of rotaxane IRCR. In addition, PEGylated pillar[5]arenes have been combined for the self-assembly of two supramolecular vesicular systems, i.e., PP5-IR1 and PP5-IR2, affording aqueous solubility and lowered cellular toxicity. In aqueous solution, all these fluorophores displayed room-temperature emission with λmax at 986–1013 nm and quantum yields of 0.54–1.45%. They also exhibited good chemical stability and reasonable self-assembled sizes, which may find potential applications in NIR-II imaging. In addition, PP5-IR1 can be used as a fluorescent chemosensor for selective recognition of glutathione through the cleavage of dinitrophenyl ether and release the fluorescent dye. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

13 pages, 1375 KiB  
Article
Stretchable Gold Nanomembrane Electrode with Ionic Hydrogel Skin-Adhesive Properties
by Hyelim Lee, Jaepyo Jang, Jaebeom Lee, Mikyung Shin, Jung Seung Lee and Donghee Son
Polymers 2023, 15(18), 3852; https://doi.org/10.3390/polym15183852 - 21 Sep 2023
Cited by 3 | Viewed by 1832
Abstract
Skin has a dynamic surface and offers essential information through biological signals originating from internal organs, blood vessels, and muscles. Soft and stretchable bioelectronics can be used in wearable machines for long-term stability and to continuously obtain distinct bio-signals in conjunction with repeated [...] Read more.
Skin has a dynamic surface and offers essential information through biological signals originating from internal organs, blood vessels, and muscles. Soft and stretchable bioelectronics can be used in wearable machines for long-term stability and to continuously obtain distinct bio-signals in conjunction with repeated expansion and contraction with physical activities. While monitoring bio-signals, the electrode and skin must be firmly attached for high signal quality. Furthermore, the signal-to-noise ratio (SNR) should be high enough, and accordingly, the ionic conductivity of an adhesive hydrogel needs to be improved. Here, we used a chitosan-alginate-chitosan (CAC) triple hydrogel layer as an interface between the electrodes and the skin to enhance ionic conductivity and skin adhesiveness and to minimize the mechanical mismatch. For development, thermoplastic elastomer Styrene-Ethylene-Butylene-Styrene (SEBS) dissolved in toluene was used as a substrate, and gold nanomembranes were thermally evaporated on SEBS. Subsequently, CAC triple layers were drop-casted onto the gold surface one by one and dried successively. Lastly, to demonstrate the performance of our electrodes, a human electrocardiogram signal was monitored. The electrodes coupled with our CAC triple hydrogel layer showed high SNR with clear PQRST peaks. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

16 pages, 7191 KiB  
Article
Finite Element Simulation and Experimental Assessment of Laser Cutting Unidirectional CFRP at Cutting Angles of 45° and 90°
by Jan Keuntje, Selim Mrzljak, Lars Gerdes, Verena Wippo, Stefan Kaierle, Frank Walther and Peter Jaeschke
Polymers 2023, 15(18), 3851; https://doi.org/10.3390/polym15183851 - 21 Sep 2023
Cited by 1 | Viewed by 1292
Abstract
Laser cutting of carbon fibre-reinforced plastics (CFRP) is a promising alternative to traditional manufacturing methods due to its non-contact nature and high automation potential. To establish the process for an industrial application, it is necessary to predict the temperature fields arising as a [...] Read more.
Laser cutting of carbon fibre-reinforced plastics (CFRP) is a promising alternative to traditional manufacturing methods due to its non-contact nature and high automation potential. To establish the process for an industrial application, it is necessary to predict the temperature fields arising as a result of the laser energy input. Elevated temperatures during the cutting process can lead to damage in the composite’s matrix material, resulting in local changes in the structural properties and reduced material strength. To address this, a three-dimensional finite element model is developed to predict the temporal and spatial temperature evolution during laser cutting. Experimental values are compared with simulated temperatures, and the cutting kerf geometry is examined. Experiments are conducted at 45° and 90° cutting angles relative to the main fibre orientation using a 1.1 mm thick epoxy-based laminate. The simulation accurately captures the overall temperature field expansion caused by multiple laser beam passes over the workpiece. The influence of fibre orientation is evident, with deviations in specific temperature data indicating differences between the estimated and real material properties. The model tends to overestimate the ablation rate in the kerf geometry, attributed to mesh resolution limitations. Within the parameters investigated, hardly any expansion of a heat affected zone (HAZ) is visible, which is confirmed by the simulation results. Full article
(This article belongs to the Special Issue Manufacturing of Polymer-Matrix Composites)
Show Figures

Figure 1

25 pages, 8425 KiB  
Article
Sustainable Nanomagnetism: Investigating the Influence of Green Synthesis and pH on Iron Oxide Nanoparticles for Enhanced Biomedical Applications
by Johar Amin Ahmed Abdullah, Álvaro Díaz-García, Jia Yan Law, Alberto Romero, Victorino Franco and Antonio Guerrero
Polymers 2023, 15(18), 3850; https://doi.org/10.3390/polym15183850 - 21 Sep 2023
Cited by 12 | Viewed by 2026
Abstract
This study comprehensively analyzed green nanomagnetic iron oxide particles (GNMIOPs) synthesized using a green method, investigating their size, shape, crystallinity, aggregation, phase portions, stability, and magnetism. The influence of pH and washing solvents on the magnetic properties of the nanoparticles and their incorporation [...] Read more.
This study comprehensively analyzed green nanomagnetic iron oxide particles (GNMIOPs) synthesized using a green method, investigating their size, shape, crystallinity, aggregation, phase portions, stability, and magnetism. The influence of pH and washing solvents on the magnetic properties of the nanoparticles and their incorporation into PCL membranes was examined for biomedical applications. Polyphenols were utilized at different pH values (1.2, 7.5, and 12.5), with washing being performed using either ethanol or water. Characterization techniques, including XRD, SEM, TEM, FTIR, and VSM, were employed, along with evaluations of stability, magnetic properties, and antioxidant activity. The findings indicate that both pH levels and the washing process exert a substantial influence on several properties of NMIOPs. The particle sizes ranged from 6.6 to 23.5 nm, with the smallest size being observed for GNMIOPs prepared at pH 12.5. Higher pH values led to increased crystallinity, cubic Fe3O4 fractions, and reduced crystalline anisotropy. SEM and TEM analyses showed pH-dependent morphological variations, with increased aggregation being observed at lower pH values. GNMIOPs displayed exceptional magnetic behavior, with the highest saturation magnetization being observed in GNMIOPs prepared at pH 7.5 and 12.5 and subsequently washed with ethanol. The zeta potential measurements indicated a stability range for GNMIOPs spanning from −31.8 to −41.6 mV, while GNMIOPs synthesized under high-pH conditions demonstrated noteworthy antioxidant activity. Furthermore, it was explored how pH and washing solvent affected the morphology, roughness, and magnetic properties of GNMIOP-infused nanofiber membranes. SEM showed irregularities and roughness due to GNMIOPs, varying with pH and washing solvent. TEM confirmed better dispersion with ethanol washing. The magnetic response was stronger with ethanol-washed GNMIOPs, highlighting the influence of pH and washing solvent on membrane characteristics. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials II)
Show Figures

Graphical abstract

28 pages, 4110 KiB  
Review
Advancements in Chitosan-Based Nanoparticles for Pulmonary Drug Delivery
by Thiago Medeiros Zacaron, Mariana Leite Simões e Silva, Mirsiane Pascoal Costa, Dominique Mesquita e Silva, Allana Carvalho Silva, Ana Carolina Morais Apolônio, Rodrigo Luiz Fabri, Frederico Pittella, Helvécio Vinícius Antunes Rocha and Guilherme Diniz Tavares
Polymers 2023, 15(18), 3849; https://doi.org/10.3390/polym15183849 - 21 Sep 2023
Cited by 10 | Viewed by 3571
Abstract
The evolution of respiratory diseases represents a considerable public health challenge, as they are among the leading causes of death worldwide. In this sense, in addition to the high prevalence of diseases such as asthma, chronic obstructive pulmonary disease, pneumonia, cystic fibrosis, and [...] Read more.
The evolution of respiratory diseases represents a considerable public health challenge, as they are among the leading causes of death worldwide. In this sense, in addition to the high prevalence of diseases such as asthma, chronic obstructive pulmonary disease, pneumonia, cystic fibrosis, and lung cancer, emerging respiratory diseases, particularly those caused by members of the coronavirus family, have contributed to a significant number of deaths on a global scale over the last two decades. Therefore, several studies have been conducted to optimize the efficacy of treatments against these diseases, focusing on pulmonary drug delivery using nanomedicine. Thus, the development of nanocarriers has emerged as a promising alternative to overcome the limitations of conventional therapy, by increasing drug bioavailability at the target site and reducing unwanted side effects. In this context, nanoparticles composed of chitosan (CS) show advantages over other nanocarriers because chitosan possesses intrinsic biological properties, such as anti-inflammatory, antimicrobial, and mucoadhesive capacity. Moreover, CS nanoparticles have the potential to enhance drug stability, prolong the duration of action, improve drug targeting, control drug release, optimize dissolution of poorly soluble drugs, and increase cell membrane permeability of hydrophobic drugs. These properties could optimize the performance of the drug after its pulmonary administration. Therefore, this review aims to discuss the potential of chitosan nanoparticles for pulmonary drug delivery, highlighting how their biological properties can improve the treatment of pulmonary diseases, including their synergistic action with the encapsulated drug. Full article
(This article belongs to the Special Issue Study in Chitosan and Crosslinked Chitosan Nanoparticles)
Show Figures

Graphical abstract

11 pages, 3003 KiB  
Article
Application of a Metal Cobalt Based on 4,6-Bis(imidazol-1-yl)isophthalicacid Metal-Organic -Framework Materials in Photocatalytic CO2 Reduction, Antibacterial, and Dye Adsorption
by Yue Han, Lun Zhao, Hongwei Jing, Guanying Song, Ziyun Wang, Jiayu Li and Yi Yang
Polymers 2023, 15(18), 3848; https://doi.org/10.3390/polym15183848 - 21 Sep 2023
Cited by 2 | Viewed by 1221
Abstract
In this paper, the reported MOF ([Co(bimip)(H2O)0.5]·0.5H2O) was employed in photocatalytic CO2 reduction, antibacterial, and dye adsorption experiments. The photocatalytic activity of the MOF for CO2 reduction was systematically investigated. The high average CO generation [...] Read more.
In this paper, the reported MOF ([Co(bimip)(H2O)0.5]·0.5H2O) was employed in photocatalytic CO2 reduction, antibacterial, and dye adsorption experiments. The photocatalytic activity of the MOF for CO2 reduction was systematically investigated. The high average CO generation rate of 3421.59 μmol·g−1·h−1 after 12 h confirms the efficient photocatalytic CO2 reduction ability of the MOF. At the same time, the MOF can completely inhibit the growth of S. aureus and C. albicans within 24 h when its concentration reaches 400 μg/mL and 500 μg/mL, respectively. The MOF has an adsorption capacity for CR. The adsorption rate was 83.42% at 60 min, and the adsorption capacity of the MOF for CR reached 500.00 mg·g−1. Full article
(This article belongs to the Special Issue Multifunctional Materials Based on Coordination Polymers)
Show Figures

Figure 1

25 pages, 6649 KiB  
Article
Design of a New Phthalocyanine-Based Ion-Imprinted Polymer for Selective Lithium Recovery from Desalination Plant Reverse Osmosis Waste
by Bassem Jamoussi, Radhouane Chakroun, Bandar A. Al-Mur, Riyadh F. Halawani, Fahed A. Aloufi, Anis Chaabani and Naif S. Aljohani
Polymers 2023, 15(18), 3847; https://doi.org/10.3390/polym15183847 - 21 Sep 2023
Viewed by 1636
Abstract
In this study, a novel technique is introduced that involves the combination of an ion-imprinted polymer and solid-phase extraction to selectively adsorb lithium ions from reverse osmosis brine. In the process of synthesizing ion-imprinted polymers, phthalocyanine acrylate acted as the functional monomer responsible [...] Read more.
In this study, a novel technique is introduced that involves the combination of an ion-imprinted polymer and solid-phase extraction to selectively adsorb lithium ions from reverse osmosis brine. In the process of synthesizing ion-imprinted polymers, phthalocyanine acrylate acted as the functional monomer responsible for lithium chelation. The structural and morphological characteristics of the molecularly imprinted polymers and non-imprinted polymers were assessed using Fourier transform infrared spectroscopy and scanning electron microscopy. The adsorption data for Li on an ion-imprinted polymer showed an excellent fit to the Langmuir isotherm, with a maximum adsorption capacity (Qm) of 3.2 mg·g−1. Comprehensive chemical analyses revealed a significant Li concentration with a higher value of 45.36 mg/L. Through the implementation of a central composite design approach, the adsorption and desorption procedures were systematically optimized by varying the pH, temperature, sorbent mass, and elution volume. This systematic approach allowed the identification of the most efficient operating conditions for extracting lithium from seawater reverse osmosis brine using ion-imprinted polymer–solid-phase extraction. The optimum operating conditions for the highest efficiency of adsorbing Li+ were determined to be a pH of 8.49 and a temperature of 45.5 °C. The efficiency of ion-imprinted polymer regeneration was evaluated through a cycle of the adsorption–desorption process, which resulted in Li recoveries of up to 80%. The recovery of Li from the spiked brine sample obtained from the desalination plant reverse osmosis waste through the ion-imprinted polymer ranged from 62.8% to 71.53%. Full article
Show Figures

Figure 1

22 pages, 6837 KiB  
Article
Viscoelastic Properties of Polypropylene during Crystallization and Melting: Experimental and Phenomenological Modeling
by Noëlle Billon, Romain Castellani, Jean-Luc Bouvard and Guilhem Rival
Polymers 2023, 15(18), 3846; https://doi.org/10.3390/polym15183846 - 21 Sep 2023
Cited by 3 | Viewed by 1322
Abstract
This paper deals with the viscoelastic behavior during crystallization and melting of semicrystalline polymers, with the aim of later modeling the residual stresses after processing in cases where crystallization occurs in quasi-static conditions (in additive manufacturing for example). Despite an abundant literature on [...] Read more.
This paper deals with the viscoelastic behavior during crystallization and melting of semicrystalline polymers, with the aim of later modeling the residual stresses after processing in cases where crystallization occurs in quasi-static conditions (in additive manufacturing for example). Despite an abundant literature on polymer crystallization, the current state of scientific knowledge does not yet allow ab initio modeling. Therefore, an alternative and pragmatic way has been explored to propose a first approximation of the impact of crystallization and melting on the storage and loss moduli during crystallization–melting–crystallization cycles. An experimental approach, combining DSC, optical microscopy and oscillatory shear rheology, was used to define macroscopic parameters related to the microstructure. These parameters have been integrated into a phenomenological model. Isothermal measurements were used to describe the general framework, and crystallization at a constant cooling rate was used to evaluate the feasibility of a general approach. It can be concluded that relying solely on the crystalline fraction is inadequate to model the rheology. Instead, accounting for the microstructure at the spherulitic level could be more useful. Additionally, the results obtained from the experiments help to enhance our understanding of the correlations between crystallization kinetics and its mechanical effects. Full article
Show Figures

Graphical abstract

20 pages, 6135 KiB  
Article
Influence of Catalyst Content and Epoxy/Carboxylate Ratio on Isothermal Creep of Epoxy Vitrimers
by Barbara Palmieri, Fabrizia Cilento, Eugenio Amendola, Teodoro Valente, Stefania Dello Iacono, Michele Giordano and Alfonso Martone
Polymers 2023, 15(18), 3845; https://doi.org/10.3390/polym15183845 - 21 Sep 2023
Cited by 3 | Viewed by 1847
Abstract
In the present work, a commercial epoxy based on epoxy anhydride and tertiary amine was modified by a metallic catalyst (Zn2+) to induce vitrimeric behavior by promoting the transesterification reaction. The effect of two different epoxy/acid ratios (1 and 0.6) at [...] Read more.
In the present work, a commercial epoxy based on epoxy anhydride and tertiary amine was modified by a metallic catalyst (Zn2+) to induce vitrimeric behavior by promoting the transesterification reaction. The effect of two different epoxy/acid ratios (1 and 0.6) at two different zinc acetate amounts (Zn(Ac)2) on the thermomechanical and viscoelastic performances of the epoxy vitrimers were investigated. Creep experiments showed an increase in molecular mobility above the critical “Vitrimeric” temperature (Tv) of 170 °C proportionally to the amount of Zn(Ac)2. A procedure based on Burger’s model was set up to investigate the effect of catalyst content on the vitrimer ability to flow as the effect of the dynamic exchange reaction. The analysis showed that in the case of a balanced epoxy/acid formulation, the amount of catalyst needed for promoting molecular mobility is 5%. This system showed a value of elastic modulus and dynamic viscosity at 170 °C of 9.50 MPa and 2.23 GPas, respectively. The material was easily thermoformed in compression molding, paving the way for the recyclability and weldability of the thermoset system. Full article
(This article belongs to the Special Issue Polymeric Self-Healing Materials II)
Show Figures

Figure 1

14 pages, 7502 KiB  
Article
Electrospun Poly(L-Lactic Acid)/Gelatin Hybrid Polymer as a Barrier to Periodontal Tissue Regeneration
by Youngchae Cho, Heeseok Jeong, Baeyeon Kim, Juwoong Jang, Yo-Seung Song and Deuk Yong Lee
Polymers 2023, 15(18), 3844; https://doi.org/10.3390/polym15183844 - 21 Sep 2023
Cited by 5 | Viewed by 1391
Abstract
Poly(L-lactic acid) (PLLA) and PLLA/gelatin polymers were prepared via electrospinning to evaluate the effect of PLLA and gelatin content on the mechanical properties, water uptake capacity (WUC), water contact angle (WCA), degradation rate, cytotoxicity and cell proliferation of membranes. As the PLLA concentration [...] Read more.
Poly(L-lactic acid) (PLLA) and PLLA/gelatin polymers were prepared via electrospinning to evaluate the effect of PLLA and gelatin content on the mechanical properties, water uptake capacity (WUC), water contact angle (WCA), degradation rate, cytotoxicity and cell proliferation of membranes. As the PLLA concentration increased from 1 wt% to 3 wt%, the tensile strength increased from 5.8 MPa to 9.1 MPa but decreased to 7.0 MPa with 4 wt% PLLA doping. The WUC decreased rapidly from 594% to 236% as the PLLA content increased from 1 to 4 wt% due to the increased hydrophobicity of PLLA. As the gelatin content was increased to 3 wt% PLLA, the strength, WUC and WCA of the PLLA/gelatin membrane changed from 9.1 ± 0.9 MPa to 13.3 ± 2.3 MPa, from 329% to 1248% and from 127 ± 1.2° to 0°, respectively, with increasing gelatin content from 0 to 40 wt%. However, the failure strain decreased from 3.0 to 0.5. The biodegradability of the PLLA/gelatin blend increased from 3 to 38% as the gelatin content increased to 40 wt%. The viability of L-929 and MG-63 cells in the PLLA/gelatin blend was over 95%, and the excellent cell proliferation and mechanical properties suggested that the tunable PLLA/gelatin barrier membrane was well suited for absorbable periodontal tissue regeneration. Full article
(This article belongs to the Collection Electrospun Nanofibers)
Show Figures

Figure 1

19 pages, 9430 KiB  
Article
Rheological and Mechanical Properties of an Acrylic PSA
by Beatriz D. Simões, Eduardo A. S. Marques, Ricardo J. C. Carbas, Steven Maul, P. Stihler, Philipp Weißgraeber and Lucas F. M. da Silva
Polymers 2023, 15(18), 3843; https://doi.org/10.3390/polym15183843 - 21 Sep 2023
Cited by 4 | Viewed by 2583
Abstract
The adhesion of pressure-sensitive adhesives (PSAs) is a complex phenomenon that can be understood through the characterization of different properties, including viscoelastic, mechanical, and fracture properties. The aim of the present paper is to determine the viscoelastic behaviour of an acrylic PSA and [...] Read more.
The adhesion of pressure-sensitive adhesives (PSAs) is a complex phenomenon that can be understood through the characterization of different properties, including viscoelastic, mechanical, and fracture properties. The aim of the present paper is to determine the viscoelastic behaviour of an acrylic PSA and place it in the viscoelastic window, as well as to determine the tensile strength of the material. Additionally, different numbers of stacked adhesive layers and two crosshead speeds were applied to characterize the tensile strength of the adhesive in the different conditions. Adding a new interface between layers showed a negative influence in the tensile strength, while a higher crosshead speed implied a considerable increase in the same value. Finally, double cantilever beam (DCB) fracture tests were performed, and the J-integral approach was used to evaluate the fracture energy throughout the tests. The substrate roughness, the number of stacked layers, and the thickness of the PSA proved to decrease the performance of the PSA in fracture tests. While tensile bulk tests in viscoelastic materials are not easily found in the literature, as well as DCB tests, for fracture characterization, the obtained results allowed for the characterization of those properties in an acrylic PSA. Full article
Show Figures

Figure 1

13 pages, 2077 KiB  
Article
Enhancing Sustainability: Jute Fiber-Reinforced Bio-Based Sandwich Composites for Use in Battery Boxes
by Mina Arya, Else-Marie Malmek, Thomas Koch Ecoist, Jocke Pettersson, Mikael Skrifvars and Pooria Khalili
Polymers 2023, 15(18), 3842; https://doi.org/10.3390/polym15183842 - 21 Sep 2023
Cited by 4 | Viewed by 1920
Abstract
The rising industrial demand for environmentally friendly and sustainable materials has shifted the attention from synthetic to natural fibers. Natural fibers provide advantages like affordability, lightweight nature, and renewability. Jute fibers’ substantial production potential and cost-efficiency have propelled current research in this field. [...] Read more.
The rising industrial demand for environmentally friendly and sustainable materials has shifted the attention from synthetic to natural fibers. Natural fibers provide advantages like affordability, lightweight nature, and renewability. Jute fibers’ substantial production potential and cost-efficiency have propelled current research in this field. In this study, the mechanical behavior (tensile, flexural, and interlaminar shear properties) of plasma-treated jute composite laminates and the flexural behavior of jute fabric-reinforced sandwich composites were investigated. Non-woven mat fiber (MFC), jute fiber (JFC), dried jute fiber (DJFC), and plasma-treated jute fiber (TJFC) composite laminates, as well as sandwich composites consisting of jute fabric bio-based unsaturated polyester (UPE) composite as facing material and polyethylene terephthalate (PET70 and PET100) and polyvinyl chloride (PVC) as core materials were fabricated to compare their functional properties. Plasma treatment of jute composite laminate had a positive effect on some of the mechanical properties, which led to an improvement in Young’s modulus (7.17 GPa) and tensile strength (53.61 MPa) of 14% and 8.5%, respectively, as well as, in flexural strength (93.71 MPa) and flexural modulus (5.20 GPa) of 24% and 35%, respectively, compared to those of JFC. In addition, the results demonstrated that the flexural properties of jute sandwich composites can be significantly enhanced by incorporating PET100 foams as core materials. Full article
Show Figures

Figure 1

13 pages, 2932 KiB  
Article
Zein as a Basis of Recyclable Injection Moulded Materials: Effect of Formulation and Processing Conditions
by Fahimeh Alsadat-Seyedbokaei, Manuel Felix and Carlos Bengoechea
Polymers 2023, 15(18), 3841; https://doi.org/10.3390/polym15183841 - 21 Sep 2023
Cited by 2 | Viewed by 1260
Abstract
The growing concern about reducing carbon footprint has led to the progressive replacement of traditional polymeric materials by natural-based biodegradable materials. However, materials from natural sources (i.e., plants) typically possess poorer mechanical properties when compared to conventional plastics. To counterbalance this, they need [...] Read more.
The growing concern about reducing carbon footprint has led to the progressive replacement of traditional polymeric materials by natural-based biodegradable materials. However, materials from natural sources (i.e., plants) typically possess poorer mechanical properties when compared to conventional plastics. To counterbalance this, they need to be adequately formulated and processed to eventually meet the standards for certain applications. Zein is the major storage protein from corn and can be obtained as a by-product from the corn-oil industry. It is an excellent candidate for producing green materials due to its stability, biodegradability, renewability, and suitable mechanical and technical-functional properties. In the present work, zein was blended with a plasticizer (i.e., glycerol) at three different zein/glycerol ratios (75/25, 70/30, and 65/25) and then injection moulded at three different processing temperatures (120, 150, and 190 °C). The properties of both blends and bioplastics were evaluated using dynamic mechanical analysis (DMA), tensile tests, and water absorption capacity (WUC). The properties–structure interrelation was assessed through a scanning electron microscope. Generally, a higher zein content and processing temperature led to a certain reinforcement of the samples. Moreover, all bioplastics displayed a thermoplastic behaviour finally melting at temperatures around 80 °C. The lack of massive crosslinking enabled this melting, which finally could be used to confirm the ability of zein based materials to be recycled, while maintaining their properties. The recyclability of thermoplastic zein materials widens the scope of their application, especially considering its biodegradability. Full article
(This article belongs to the Collection Progress in Recycling of (Bio)Polymers and Composites)
Show Figures

Figure 1

13 pages, 2439 KiB  
Article
Hybrid Polyelectrolyte Capsules Loaded with Gadolinium-Doped Cerium Oxide Nanoparticles as a Biocompatible MRI Agent for Theranostic Applications
by Danil D. Kolmanovich, Nikita N. Chukavin, Irina V. Savintseva, Elena A. Mysina, Nelli R. Popova, Alexander E. Baranchikov, Madina M. Sozarukova, Vladimir K. Ivanov and Anton L. Popov
Polymers 2023, 15(18), 3840; https://doi.org/10.3390/polym15183840 - 21 Sep 2023
Cited by 2 | Viewed by 1458
Abstract
Layer-by-layer (LbL) self-assembled polyelectrolyte capsules have demonstrated their unique advantages and capability in drug delivery applications. These ordered micro/nanostructures are also promising candidates as imaging contrast agents for diagnostic and theranostic applications. Magnetic resonance imaging (MRI), one of the most powerful clinical imaging [...] Read more.
Layer-by-layer (LbL) self-assembled polyelectrolyte capsules have demonstrated their unique advantages and capability in drug delivery applications. These ordered micro/nanostructures are also promising candidates as imaging contrast agents for diagnostic and theranostic applications. Magnetic resonance imaging (MRI), one of the most powerful clinical imaging modalities, is moving forward to the molecular imaging field and requires advanced imaging probes. This paper reports on a new design of MRI-visible LbL capsules, loaded with redox-active gadolinium-doped cerium oxide nanoparticles (CeGdO2−x NPs). CeGdO2−x NPs possess an ultrasmall size, high colloidal stability, and pronounced antioxidant properties. A comprehensive analysis of LbL capsules by TEM, SEM, LCSM, and EDX techniques was carried out. The research demonstrated a high level of biocompatibility and cellular uptake efficiency of CeGdO2−x-loaded capsules by cancer (human osteosarcoma and adenocarcinoma) cells and normal (human mesenchymal stem) cells. The LbL-based delivery platform can also be used for other imaging modalities and theranostic applications. Full article
(This article belongs to the Special Issue Biopolymer Composites for Biomedicine Applications)
Show Figures

Figure 1

16 pages, 3930 KiB  
Article
Joining of Aluminum and CFRP via Laser Powder Bed Fusion: Influence of Experimental Set-Up and Laser Processing on Microstructure and Mechanical Properties
by Sara Nester, Dieter Meinhard, Jochen Schanz, Markus Rettenberger, Iman Taha, Harald Riegel and Volker Knoblauch
Polymers 2023, 15(18), 3839; https://doi.org/10.3390/polym15183839 - 21 Sep 2023
Cited by 1 | Viewed by 1699
Abstract
Additive-manufacturing-based joining methods enable tailored or even functionalized joints and allow for hybridization at small scales. The current study explored an innovative joining method for aluminum cast alloys (AlSi12) with thermoset carbon-fiber-reinforced polymers (CFRPs) via laser powder bed fusion (LPBF). The direct build-up [...] Read more.
Additive-manufacturing-based joining methods enable tailored or even functionalized joints and allow for hybridization at small scales. The current study explored an innovative joining method for aluminum cast alloys (AlSi12) with thermoset carbon-fiber-reinforced polymers (CFRPs) via laser powder bed fusion (LPBF). The direct build-up of AlSi12 on a CFRP substrate proved to be challenging due to the dissimilar thermal properties of the considered materials, which led to substrate damage and low joint adhesion. These effects could be overcome by introducing an AlSi12 foil as an interlayer between the two joining partners, acting as a thermal barrier and further improving the AlSi12 melt wettability of the substrate. Within LPBF, the energy input in the form of volumetric laser energy density influenced both the porosity of the fused layers and the formation of thermally induced stresses due to the high cooling rates and different thermal expansion properties of the materials. While the AlSi12 volume density increased with a higher laser energy input, simultaneously increasing thermal stresses caused the debonding and deformation of the AlSi12 foil. However, within a narrow processing window of laser parameters, the samples achieved remarkably high shear strengths of τ > 20 MPa, comparable to those of conventional joining methods. Full article
Show Figures

Figure 1

41 pages, 10644 KiB  
Article
Colorless Polyimides Derived from 5,5′-bis(2,3-norbornanedicarboxylic anhydride): Strategies to Reduce the Linear Coefficients of Thermal Expansion and Improve the Film Toughness
by Masatoshi Hasegawa, Takuya Miyama, Junichi Ishii, Daisuke Watanabe and Akira Uchida
Polymers 2023, 15(18), 3838; https://doi.org/10.3390/polym15183838 - 20 Sep 2023
Cited by 1 | Viewed by 1589
Abstract
In this paper, novel colorless polyimides (PIs) derived from 5,5′-bis(2,3-norbornanedicarboxylic anhydride) (BNBDA) were presented. The results of single-crystal X-ray structural analysis using a BNBDA-based model compound suggested that it had a unique steric structure with high structural linearity. Therefore, BNBDA is expected to [...] Read more.
In this paper, novel colorless polyimides (PIs) derived from 5,5′-bis(2,3-norbornanedicarboxylic anhydride) (BNBDA) were presented. The results of single-crystal X-ray structural analysis using a BNBDA-based model compound suggested that it had a unique steric structure with high structural linearity. Therefore, BNBDA is expected to afford new colorless PI films with an extremely high glass transition temperature (Tg) and a low linear coefficient of thermal expansion (CTE) when combined with aromatic diamines with rigid and linear structures (typically, 2,2′-bis(trifluoromethyl)benzidine (TFMB)). However, the polyaddition of BNBDA and TFMB did not form a PI precursor with a sufficiently high molecular weight; consequently, the formation of a flexible, free-standing PI film via the two-step process was inhibited because of its brittleness. One-pot polycondensation was also unsuccessful in this system because of precipitation during the reaction, probably owing to the poor solubility of the initially yielded BNBDA/TFMB imide oligomers. The combinations of (1) the structural modification of the BNBDA/TFMB system, (2) the application of a modified one-pot process, in which the conditions of the temperature-rising profile, solvents, azeotropic agent, catalysts, and reactor were refined, and (3) the optimization of the film preparation conditions overcame the trade-off between low CTE and high film toughness and afforded unprecedented PI films with well-balanced properties, simultaneously achieving excellent optical transparency, extremely high Tg, sufficiently high thermal stability, low CTE, high toughness, relatively low water uptake, and excellent solution processability. Full article
(This article belongs to the Special Issue Emerging Smart Applications of Functional Polymeric Materials)
Show Figures

Figure 1

36 pages, 9536 KiB  
Review
Electrospun PVA Fibers for Drug Delivery: A Review
by Fatima T. Zahra, Quincy Quick and Richard Mu
Polymers 2023, 15(18), 3837; https://doi.org/10.3390/polym15183837 - 20 Sep 2023
Cited by 16 | Viewed by 3411
Abstract
Innovation in biomedical science is always a field of interest for researchers. Drug delivery, being one of the key areas of biomedical science, has gained considerable significance. The utilization of simple yet effective techniques such as electrospinning has undergone significant development in the [...] Read more.
Innovation in biomedical science is always a field of interest for researchers. Drug delivery, being one of the key areas of biomedical science, has gained considerable significance. The utilization of simple yet effective techniques such as electrospinning has undergone significant development in the field of drug delivery. Various polymers such as PEG (polyethylene glycol), PLGA (Poly(lactic-co-glycolic acid)), PLA(Polylactic acid), and PCA (poly(methacrylate citric acid)) have been utilized to prepare electrospinning-based drug delivery systems (DDSs). Polyvinyl alcohol (PVA) has recently gained attention because of its biocompatibility, biodegradability, non-toxicity, and ideal mechanical properties as these are the key factors in developing DDSs. Moreover, it has shown promising results in developing DDSs individually and when combined with natural and synthetic polymers such as chitosan and polycaprolactone (PCL). Considering the outstanding properties of PVA, the aim of this review paper was therefore to summarize these recent advances by highlighting the potential of electrospun PVA for drug delivery systems. Full article
(This article belongs to the Special Issue Recent Advances in Polymer-Based Drug Delivery Systems)
Show Figures

Figure 1

13 pages, 4542 KiB  
Article
Facile Synthesis of Self-Adhesion and Ion-Conducting 2-Acrylamido-2-Methylpropane Sulfonic Acid/Tannic Acid Hydrogels Using Electron Beam Irradiation
by Hee-Woong Park, Nam-Gyu Jang, Hyun-Su Seo, Kiok Kwon and Seunghan Shin
Polymers 2023, 15(18), 3836; https://doi.org/10.3390/polym15183836 - 20 Sep 2023
Cited by 2 | Viewed by 1219
Abstract
Tannic acid (TA) can be used as an additive to improve the properties of hydrogels, but it acts as a radical scavenger, which hinders radical polymerization. In this study, we successfully and easily synthesized a TA-incorporated 2-acrylamido-2-methylpropanesulfonic acid (AMPS) hydrogel using an electron [...] Read more.
Tannic acid (TA) can be used as an additive to improve the properties of hydrogels, but it acts as a radical scavenger, which hinders radical polymerization. In this study, we successfully and easily synthesized a TA-incorporated 2-acrylamido-2-methylpropanesulfonic acid (AMPS) hydrogel using an electron beam (E-beam) in a one-pot process at room temperature. TA successfully grafted onto AMPS polymer chains under E-beam irradiation, but higher TA content reduced grafting efficiency and prevented hydrogel formation. Peel strength of the AMPS hydrogel increased proportionally with TA, but cohesive failure and substrate residue occurred above 1.25 phm (parts per 100 g of AMPS) TA. Tensile strength peaked at 0.25 phm TA but decreased below the control value at 1.25 phm. Tensile elongation exceeded 2000% with TA addition. Peel strength varied significantly with substrate type. The wood substrate had the highest peel strength value of 150 N/m, while pork skin had a low value of 11.5 N/m. However, the addition of TA increased the peel strength by over 300%. The ionic conductivity of the AMPS/TA hydrogel increased from 0.9 S/m to 1.52 S/m with TA content, while the swelling ratio decreased by 50% upon TA addition and increased slightly thereafter. Full article
(This article belongs to the Special Issue Polymer Hydrogels: Synthesis, Characterization and Applications)
Show Figures

Graphical abstract

14 pages, 2957 KiB  
Review
A Practical Primer: Raman Spectroscopy for Monitoring of Photopolymerization Systems
by Julie L. P. Jessop
Polymers 2023, 15(18), 3835; https://doi.org/10.3390/polym15183835 - 20 Sep 2023
Cited by 2 | Viewed by 2251
Abstract
Photopolymerization systems provide compelling advantages for industrial applications due to their fast reaction kinetics, wide selection of monomers for physical property development, and energy-efficient initiation via illumination. These same advantages can present challenges when attempting to monitor these reactions or characterize their resulting [...] Read more.
Photopolymerization systems provide compelling advantages for industrial applications due to their fast reaction kinetics, wide selection of monomers for physical property development, and energy-efficient initiation via illumination. These same advantages can present challenges when attempting to monitor these reactions or characterize their resulting polymers; however, Raman spectroscopy can provide the flexibility and resolution needed. In this overview, Raman spectroscopy is compared to common characterization techniques, such as photo-differential scanning calorimetry and infrared spectroscopy, highlighting advantages of Raman spectroscopy. Examples are provided of how Raman spectroscopy has been used to monitor photopolymerizations and to provide insight on the impact of monomer chemistry and processing conditions, as well as paired with other techniques to elucidate physical properties. Finally, practical tips are provided for applying Raman spectroscopy and microscopy in photopolymerization systems. Full article
(This article belongs to the Collection Reviews on Progress in Polymer Analysis and Characterization)
Show Figures

Figure 1

25 pages, 5193 KiB  
Article
Holmium-Containing Metal-Organic Frameworks as Modifiers for PEBA-Based Membranes
by Anna Kuzminova, Mariia Dmitrenko, Kirill Salomatin, Olga Vezo, Sergey Kirichenko, Semyon Egorov, Marina Bezrukova, Anna Karyakina, Alexey Eremin, Ekaterina Popova, Anastasia Penkova and Artem Selyutin
Polymers 2023, 15(18), 3834; https://doi.org/10.3390/polym15183834 - 20 Sep 2023
Viewed by 1620
Abstract
Recently, there has been an active search for new modifiers to create hybrid polymeric materials for various applications, in particular, membrane technology. One of the topical modifiers is metal-organic frameworks (MOFs), which can significantly alter the characteristics of obtained mixed matrix membranes (MMMs). [...] Read more.
Recently, there has been an active search for new modifiers to create hybrid polymeric materials for various applications, in particular, membrane technology. One of the topical modifiers is metal-organic frameworks (MOFs), which can significantly alter the characteristics of obtained mixed matrix membranes (MMMs). In this work, new holmium-based MOFs (Ho-MOFs) were synthesized for polyether block amide (PEBA) modification to develop novel MMMs with improved properties. The study of Ho-MOFs, polymers and membranes was carried out by methods of X-ray phase analysis, scanning electron and atomic force microscopies, Fourier transform infrared spectroscopy, low-temperature nitrogen adsorption, dynamic and kinematic viscosity, static and dynamic light scattering, gel permeation chromatography, thermogravimetric analysis and contact angle measurements. Synthesized Ho-MOFs had different X-ray structures, particle forms and sizes depending on the ligand used. To study the effect of Ho-MOF modifier on membrane transport properties, PEBA/Ho-MOFs membrane retention capacity was evaluated in vacuum fourth-stage filtration for dye removal (Congo Red, Fuchsin, Glycine thymol blue, Methylene blue, Eriochrome Black T). Modified membranes demonstrated improved flux and rejection coefficients for dyes containing amino groups: Congo Red, Fuchsin (PEBA/Ho-1,3,5-H3btc membrane possessed optimal properties: 81% and 68% rejection coefficients for Congo Red and Fuchsin filtration, respectively, and 0.7 L/(m2s) flux). Full article
(This article belongs to the Special Issue MOFs-Polymer Hybrid Materials)
Show Figures

Figure 1

18 pages, 8508 KiB  
Article
On the Analysis of Cryogels and Xerogels Using Cellulose Nanofibers and Graphene Oxide
by Bianca Cristina Moggio, Rosangela Bergamasco, Cid Marcos Gonçalves Andrade and Linnyer Beatrys Ruiz Aylon
Polymers 2023, 15(18), 3833; https://doi.org/10.3390/polym15183833 - 20 Sep 2023
Cited by 1 | Viewed by 1255
Abstract
Aerogels are highly porous and ultralight three-dimensional materials with great potential for various applications. To obtain highly porous and structurally stable aerogels, a carefully designed synthesis process is required. These materials offer flexibility in manipulating their properties, allowing the incorporation of modifying agents [...] Read more.
Aerogels are highly porous and ultralight three-dimensional materials with great potential for various applications. To obtain highly porous and structurally stable aerogels, a carefully designed synthesis process is required. These materials offer flexibility in manipulating their properties, allowing the incorporation of modifying agents according to specific needs. In this study, compounds were synthesized using graphene oxide (GO) and nanocellulose fibers (NFC) through the hydrothermal reduction methodology. Two drying techniques were employed: lyophilization and oven evaporation, resulting in materials called cryogel and xerogel, respectively. Various parameters that can interfere with the properties of these nanomaterials were evaluated. The results indicated that the cryogel dried by lyophilization provided the best applicability due to its structural flexibility after compressions, whereas the xerogel obtained through the oven evaporation process resulted in a compound with high rigidity and disintegration. Structural characterizations demonstrated the successful development of the precursors and promising characteristics in the synthesized nanomaterials. With its flexibility, approximately 98% porosity, low shrinkage rate, light weight, and electrical conductivity, the developed cryogel showed high potential in various applications, such as pressure sensors, electromagnetic shielding, and other research and development fields. Full article
Show Figures

Graphical abstract

21 pages, 5822 KiB  
Article
Development of Biodegradable Thermosetting Plastic Using Dialdehyde Pineapple Stem Starch
by Wasan Tessanan, Pranee Phinyocheep and Taweechai Amornsakchai
Polymers 2023, 15(18), 3832; https://doi.org/10.3390/polym15183832 - 20 Sep 2023
Cited by 2 | Viewed by 2650
Abstract
Starch extracted from pineapple stem waste underwent an environmentally friendly modification process characterized by low-energy consumption. This process resulted in the creation of dialdehyde pineapple stem starch featuring varying aldehyde contents ranging from 10% to 90%. Leveraging these dialdehyde starches, thermosetting plastics were [...] Read more.
Starch extracted from pineapple stem waste underwent an environmentally friendly modification process characterized by low-energy consumption. This process resulted in the creation of dialdehyde pineapple stem starch featuring varying aldehyde contents ranging from 10% to 90%. Leveraging these dialdehyde starches, thermosetting plastics were meticulously developed by incorporating glycerol as a plasticizer. Concurrently, unmodified pineapple stem starch was employed as a control to produce thermoplastic material under identical conditions. The objective of streamlining the processing steps was pursued by adopting a direct hot compression molding technique. This enabled the transformation of starch powders into plastic sheets without the need for water-based gelatinization. Consequently, the dialdehyde starch-based thermosetting plastics exhibited exceptional mechanical properties, boasting a modulus within the range of 1862 MPa to 2000 MPa and a strength of 15 MPa to 42 MPa. Notably, their stretchability remained relatively modest, spanning from 0.8% to 2.4%. Comparatively, these properties significantly outperformed the thermoplastic counterpart derived from unmodified starch. Tailoring the mechanical performance of the thermosetting plastics was achieved by manipulating the glycerol content, ranging from 30% to 50%. Phase morphologies of the thermoset starch unveiled a uniformly distributed microstructure without any observable starch particles. This stood in contrast to the heterogeneous structure exhibited by the thermoplastic derived from unmodified starch. X-ray diffraction patterns indicated the absence of a crystalline structure within the thermosets, likely attributed to the establishment of a crosslinked structure. The resultant network formation in the thermosets directly correlated with enhanced water resistance. Remarkably, the thermosetting starch originating from pineapple stem starch demonstrated continued biodegradability following a soil burial test, albeit at a notably slower rate when compared to its thermoplastic counterpart. These findings hold the potential to pave the way for the utilization of starch-based products, thereby replacing non-biodegradable petroleum-based materials and contributing to the creation of more enduring and sustainable commodities. Full article
(This article belongs to the Special Issue Bio-Based Polymer: Design, Property, and Application)
Show Figures

Graphical abstract

20 pages, 2013 KiB  
Article
Screening of Oligomeric (Meth)acrylate Vaccine Adjuvants Synthesized via Catalytic Chain Transfer Polymerization
by Cordula S. Hege, Amy Stimpson, Joseph Sefton, James Summers, Helena Henke, Adam A. Dundas, Tony Phan, Robert Kinsey, Jeffrey A. Guderian, Sandra J. Sivananthan, Raodoh Mohamath, William R. Lykins, Gabi Ramer-Denisoff, Susan Lin, Christopher B. Fox and Derek J. Irvine
Polymers 2023, 15(18), 3831; https://doi.org/10.3390/polym15183831 - 20 Sep 2023
Viewed by 2353
Abstract
This report details the first systematic screening of free-radical-produced methacrylate oligomer reaction mixtures as alternative vaccine adjuvant components to replace the current benchmark compound squalene, which is unsustainably sourced from shark livers. Homo-/co-oligomer mixtures of methyl, butyl, lauryl, and stearyl methacrylate were successfully [...] Read more.
This report details the first systematic screening of free-radical-produced methacrylate oligomer reaction mixtures as alternative vaccine adjuvant components to replace the current benchmark compound squalene, which is unsustainably sourced from shark livers. Homo-/co-oligomer mixtures of methyl, butyl, lauryl, and stearyl methacrylate were successfully synthesized using catalytic chain transfer control, where the use of microwave heating was shown to promote propagation over chain transfer. Controlling the mixture material properties allowed the correct viscosity to be achieved, enabling the mixtures to be effectively used in vaccine formulations. Emulsions of selected oligomers stimulated comparable cytokine levels to squalene emulsion when incubated with human whole blood and elicited an antigen-specific cellular immune response when administered with an inactivated influenza vaccine, indicating the potential utility of the compounds as vaccine adjuvant components. Furthermore, the oligomers’ molecular sizes were demonstrated to be large enough to enable greater emulsion stability than squalene, especially at high temperatures, but are predicted to be small enough to allow for rapid clearance from the body. Full article
Show Figures

Figure 1

14 pages, 1645 KiB  
Article
Investigation on the Influence of Process Parameters on the Mechanical Properties of Extruded Bio-Based and Biodegradable Continuous Fiber-Reinforced Thermoplastic Sheets
by Maximilian Lang, Benedikt Neitzel, Shiva MohammadKarimi and Florian Puch
Polymers 2023, 15(18), 3830; https://doi.org/10.3390/polym15183830 - 20 Sep 2023
Cited by 1 | Viewed by 1333
Abstract
The use of bio-based and biodegradable matrix materials in fiber-reinforced polymers (FRPs) is an approach to reduce the consumption of fossil resources and the amount of polymer waste. This study aims to assess the influence of the process parameters on the resulting mechanical [...] Read more.
The use of bio-based and biodegradable matrix materials in fiber-reinforced polymers (FRPs) is an approach to reduce the consumption of fossil resources and the amount of polymer waste. This study aims to assess the influence of the process parameters on the resulting mechanical properties of extruded bio-based and biodegradable continuous fiber-reinforced thermoplastics (CFRTPs) in the form of sheets. Therefore, the impregnation temperature during the production of PLA/flax fiber composites is varied between 220 °C and 280 °C, and the consolidation pressure, between 50 bar and 90 bar. A design of experiments approach is used. Fiber contents of 28.8% to 34.8% and void contents of 6.8% to 15.5% are determined for the composites by optical measurements. To assess the mechanical properties, tensile tests are performed. Using the evaluation software Minitab, a strong negative influence of the consolidation pressure on the tensile modulus and the tensile strength is observed. Increasing the pressure from 50 bar to 90 bar results in a reduction in the tensile modulus of 50.7% and a reduction in the tensile strength of 54.8%, respectively. It is assumed that this is due to fibers being damaged by the external force exerted onto the materials during the consolidation process in the calender. The influence of the impregnation temperature on the mechanical properties cannot be verified. Full article
Show Figures

Figure 1

13 pages, 2680 KiB  
Article
The Durable Chitosan Functionalization of Cellulosic Fabrics
by Sandra Flinčec Grgac, Tea-Dora Biruš, Anita Tarbuk, Tihana Dekanić and Ana Palčić
Polymers 2023, 15(18), 3829; https://doi.org/10.3390/polym15183829 - 20 Sep 2023
Cited by 2 | Viewed by 1346
Abstract
In this work, the durability of chitosan functionalization of cellulosic textile substrates, cotton and cotton/polyester blended fabrics, was studied. Chitosan is a naturally occurring biopolymer that can be produced inexpensively. It should be dissolved in an acidic solution to activate its antimicrobial and [...] Read more.
In this work, the durability of chitosan functionalization of cellulosic textile substrates, cotton and cotton/polyester blended fabrics, was studied. Chitosan is a naturally occurring biopolymer that can be produced inexpensively. It should be dissolved in an acidic solution to activate its antimicrobial and other properties, i.e., good biocompatibility, bioabsorbability, wound healing, hemostatic, anti-infective, antibacterial, non-toxic, and adsorptive properties. The application of chitosan to textile products has been researched to achieve antimicrobial properties, but the durability, after several maintenance cycles, has not. Chitosan functionalization was carried out using maleic acid (MA) and 1,2,3,4-butanetetracarboxylic acid (BTCA) as crosslinking and chitosan-activating agents and sodium hypophosphite monohydrate as a catalyst. To determine durability, the fabrics were subjected to 10 maintenance cycles according to ISO 6330:2012 using Reference detergent 3 and drying according to Procedure F. The properties were monitored after the 3rd and 10th cycles. The crosslinking ability of chitosan with cellulosic fabrics was monitored by Fourier infrared spectrometry using the ATR technique (FTIR-ATR). Changes in mechanical properties, whiteness and yellowing, and antimicrobial properties were determined using standard methods. Compared to maleic acid, BTCA proved to be a better crosslinking agent for chitosan. Full article
(This article belongs to the Special Issue Cellulose Fiber Polymer Composites)
Show Figures

Figure 1

15 pages, 4346 KiB  
Article
Lotus-Flower- and Lotus-Seedpod-Derived Polysaccharide: Structural Characterization and Biological Activity
by Zhiqiang Zhang, Li Wang, Dai Zeng, Xia Ma and Hui Wang
Polymers 2023, 15(18), 3828; https://doi.org/10.3390/polym15183828 - 20 Sep 2023
Viewed by 1564
Abstract
Lotus flower polysaccharide (LFP) and lotus seedpod polysaccharide (LSP) were separated by water extract–alcohol precipitation, and their structures and biological activities were investigated. The results of monosaccharide composition showed that LFP and LSP were composed of nine monosaccharides, fucose, rhamnose, arabinose, glucose, galactose, [...] Read more.
Lotus flower polysaccharide (LFP) and lotus seedpod polysaccharide (LSP) were separated by water extract–alcohol precipitation, and their structures and biological activities were investigated. The results of monosaccharide composition showed that LFP and LSP were composed of nine monosaccharides, fucose, rhamnose, arabinose, glucose, galactose, mannose, fructose, galacturonic acid, and glucuronic acid, with the molar percentages of 0.18: 0.43: 2.26: 45.22: 32.14: 4.28: 8.20: 6.28: 1.01 and 2.70: 1.02: 8.15: 45.63: 20.63: 1.44: 2.59: 16.45. LSP and LFP exhibited molecular weights of 9.37 × 104 Da and 1.24 × 106 Da, respectively. SEM showed that LFP and LSP have similar structures; XRD analysis showed that both polysaccharides had crystalline structure and amorphous structure. The results of ABTS+, DPPH, hydroxyl radical scavenging experiment, and a reducing power experiment showed that LFP and LSP had good antioxidant capacity. Cell viability findings showed that polysaccharide concentrations of lotus flower and lotus seedpod could enhance cellular proliferation ranging from 25 to 400 μg/mL without cytotoxicity. By inducing the production of crucial proteins in the TLR4/NF-κB pathway, LFP and LSP were able to induce autophagy in RAW264.7, according to the results of the RT-PCR and Western blotting assays. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

29 pages, 10693 KiB  
Article
Influence of Three-Dimensional Printing Parameters on Compressive Properties and Surface Smoothness of Polylactic Acid Specimens
by Hamed Bakhtiari, Mostafa Nikzad and Majid Tolouei-Rad
Polymers 2023, 15(18), 3827; https://doi.org/10.3390/polym15183827 - 19 Sep 2023
Cited by 12 | Viewed by 1652
Abstract
While the mechanical performance of fused filament fabrication (FFF) parts has been extensively studied in terms of the tensile and bending strength, limited research accounts for their compressive performance. This study investigates the effect of four process parameters (layer height, extrusion width, nozzle [...] Read more.
While the mechanical performance of fused filament fabrication (FFF) parts has been extensively studied in terms of the tensile and bending strength, limited research accounts for their compressive performance. This study investigates the effect of four process parameters (layer height, extrusion width, nozzle temperature, and printing speed) on the compressive properties and surface smoothness of FFF parts made of Polylactic Acid (PLA). The orthogonal Taguchi method was employed for designing the experiments. The surface roughness and compressive properties of the specimens were then measured and optimized using the analysis of variance (ANOVA). A microscopic analysis was also performed to identify the failure mechanism under static compression. The results indicated that the layer height had the most significant influence on all studied properties, followed by the print speed in the case of compressive modulus, hysteresis loss, and residual strain; extrusion width in the case of compressive strength and specific strength; and nozzle temperature in the case of toughness and failure strain. The optimal design for both high compressive properties and surface smoothness were determined as a 0.05 mm layer height, 0.65 mm extrusion width, 205 °C nozzle temperature, and 70 mm/s print speed. The main failure mechanism observed by SEM analysis was delamination between layers, occurring at highly stressed points near the stitch line of the PLA prints. Full article
(This article belongs to the Special Issue Polymeric Materials and Their Application in 3D Printing)
Show Figures

Figure 1

30 pages, 7907 KiB  
Review
Mechanical Properties and Durability of Textile Reinforced Concrete (TRC)—A Review
by Chao Wu, Yang Pan and Libo Yan
Polymers 2023, 15(18), 3826; https://doi.org/10.3390/polym15183826 - 19 Sep 2023
Cited by 4 | Viewed by 5375
Abstract
Textile reinforced concrete (TRC) is an innovative structure type of reinforced concrete in which the conventional steel reinforcement is replaced with fibre textile materials. The thin, cost-effective and lightweight nature enable TRC to be used to create different types of structural components for [...] Read more.
Textile reinforced concrete (TRC) is an innovative structure type of reinforced concrete in which the conventional steel reinforcement is replaced with fibre textile materials. The thin, cost-effective and lightweight nature enable TRC to be used to create different types of structural components for architectural and civil engineering applications. This paper presents a review of recent developments of TRC. In this review, firstly, the concept and the composition of TRC are discussed. Next, interfacial bond behaviour between fibre textile (dry and/saturated with polymer) and concrete was analysed considering the effects of polymer saturation, geometry and additives in polymer of the textile. Then, the mechanical properties (including static and dynamic properties) of TRC were reviewed. For static properties, the mechanical properties including compression, tension, flexural, shear and bond properties are discussed. For dynamic properties, the impact, seismic and cyclic properties were investigated. Furthermore, the durability of TRC under different environmental conditions, i.e., temperature/fire, humidity and wet–dry cycles, freeze–thaw, chemical and fatigue were discussed. Finally, typical engineering applications of TRC were presented. The research gaps which need to be addressed in the future for TRC research were identified as well. This review aims to present the recent advancement of TRC and inspire future research of this advanced material. Full article
Show Figures

Figure 1

19 pages, 12315 KiB  
Article
Design and Modification of a Material Extrusion 3D Printer to Manufacture Functional Gradient PEEK Components
by Tobias Ritter, Eric McNiffe, Tom Higgins, Omid Sam-Daliri, Tomas Flanagan, Michael Walls, Pouyan Ghabezi, William Finnegan, Sinéad Mitchell and Noel M. Harrison
Polymers 2023, 15(18), 3825; https://doi.org/10.3390/polym15183825 - 19 Sep 2023
Cited by 23 | Viewed by 2909
Abstract
In recent years, the creative use of polymers has been expanded as the range of achievable material properties and options for manufacturing and post-processing continually grows. The main goal of this research was to design and develop a fully-functioning material extrusion additive manufacturing [...] Read more.
In recent years, the creative use of polymers has been expanded as the range of achievable material properties and options for manufacturing and post-processing continually grows. The main goal of this research was to design and develop a fully-functioning material extrusion additive manufacturing device with the capability to produce functionally graded high-temperature thermoplastic PEEK (polyether ether ketone) materials through the manipulation of microstructure during manufacturing. Five different strategies to control the chamber temperature and crystallinity were investigated, and concepts of thermal control were introduced to govern the crystallisation and cooling mechanics during the extrusion process. The interaction of individually deposited beads of material during the printing process was investigated using scanning electron microscopy to observe and quantify the porosity levels and interlayer bonding strength, which affect the quality of the final part. Functional testing of the printed parts was carried out to identify crystallinity, boundary layer adhesion, and mechanical behaviour. Furnace cooling and annealing were found to be the most effective methods, resulting in the highest crystallinity of the part. Finally, a functionally graded material cylindrical part was printed successfully, incorporating both low and high crystalline regions. Full article
(This article belongs to the Special Issue Advances in Rheology and Polymer Processing)
Show Figures

Figure 1

14 pages, 3154 KiB  
Article
Thermal Behavior and Pyrolysis Kinetics of Mushroom Residue with the Introduction of Waste Plastics
by Jiale Li, Tao Pu, Zhanghong Wang and Taoze Liu
Polymers 2023, 15(18), 3824; https://doi.org/10.3390/polym15183824 - 19 Sep 2023
Cited by 3 | Viewed by 1140
Abstract
Co-pyrolysis is considered a very promising technology for the treatment of solid wastes as it can rapidly realize the volume reduction of raw materials and obtain high value-added products. To realize the resource utilization of newly emerging solid wastes in relation to edible [...] Read more.
Co-pyrolysis is considered a very promising technology for the treatment of solid wastes as it can rapidly realize the volume reduction of raw materials and obtain high value-added products. To realize the resource utilization of newly emerging solid wastes in relation to edible fungi residue and waste plastics, mushroom residue (MR), a representative of edible fungi residue, was co-pyrolyzed with waste plastic bags (PE), waste plastic lunch boxes (PP), and waste plastic bottles (PET). The thermal behavior and pyrolysis kinetics of the mixtures were investigated. It was found that the softening of the plastics in the mixtures led to an increase in the initial pyrolysis temperature of MR by 2–27 °C, while the pyrolytic intermediates of MR could greatly promote the decomposition of the plastics, resulting in a decrease in the initial pyrolysis temperatures of PE, PP, and PET in the mixtures by 25, 8, and 16 °C, respectively. The mixture of MR and PE (MR/PE) under different mixture ratios showed good synergies, causing the pyrolysis peaks attributed to MR and PE to both move towards the lower temperature region relative to those of individual samples. The increase in heating rate led to enhanced thermal hysteresis of the reaction between MR and PE. The strength of the interaction between plastics and MR based on mass variation was subject to the order PE > PP > PET. The pyrolysis activation energies of MR, PE, PP, and PET calculated from kinetic analysis were 6.18, 119.05, 84.30, and 74.38 kJ/mol, respectively. The activation energies assigned to MR and plastics were both reduced as plastics were introduced to co-pyrolyze with MR, indicating that MR and plastics have a good interaction in the co-pyrolysis process. This study provides theoretical and experimental guidance for the resource utilization of agricultural solid wastes via thermochemical conversion. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

Previous Issue
Back to TopTop