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Abstract: Agricultural sustainability is dependent on the ability to predict crop yield, which is vital
for farmers, consumers, and researchers. Most of the works used the amount of rainfall, average
monthly temperature, relative humidity, etc. as inputs. In this paper, an attempt was made to predict
the yield of the citrus crop (Washington Navel orange, Valencia orange, Murcott mandarin, Fremont
mandarin, and Bearss Seedless lime) using weather factors and the accumulated heat units. These
variables were used as input parameters in an artificial neural network (ANN) model. The necessary
information was gathered during the growing seasons between 2010/2011 and 2021/2022 under
Egyptian conditions. Weather factors were daily precipitation, yearly average air temperature, and
yearly average of air relative humidity. A base air temperature of 13.0 ◦C was used to determine
the accumulated heat units. The heat use efficiency (HUE) for cultivars was determined. The Bearss
Seedless lime had the lowest HUE of 9.5 kg/ha ◦C day, while the Washington Navel orange had the
highest HUE of 20.2 kg/ha ◦C day. The predictive performance of the ANN model with a structure
of 9-20-1 with the backpropagation was evaluated using standard statistical measures. The actual
and estimated yields from the ANN model were compared using a testing dataset, resulting in a
value of RMSE, MAE, and MAPE of 2.80 t/ha, 2.58 t/ha, and 5.41%, respectively. The performance
of the ANN model in the training phase was compared to multiple linear regression (MLR) models
using values of R2; for MLR models for all cultivars, R2 ranged between 0.151 and 0.844, while the
R2 value for the ANN was 0.87. Moreover, the ANN model gave the best performance criteria for
evaluation of citrus yield prediction with a high R2, low root mean squared error, and low mean
absolute error compared to the performance criteria of data mining algorithms such as K-nearest
neighbor (KNN), KStar, and support vector regression. These encouraging outcomes show how
the current ANN model can be used to estimate fruit yields, including citrus fruits and other types
of fruit. The novelty of the proposed ANN model lies in the combination of weather parameters
and accumulated heat units for accurate citrus yield prediction, specifically tailored for Egyptian
regional citrus crops. Furthermore, especially in low- to middle-income countries such as Egypt, the
findings of this study can greatly enhance the reliance on statistics when making decisions regarding
agriculture and climate change. The citrus industry can benefit greatly from these discoveries,
which can help with optimization, harvest planning, and postharvest logistics. We recommended
furthering proving the robustness and generalization ability of the results in this study by adding more
data points.

Keywords: yield; data mining; prediction; Egypt; heat use efficiency; heat units

1. Introduction

Citrus plants are extensively researched fruits in Egypt, and special attention is paid
to their cultivation, fertilization, and other aspects [1–10]. These studies were conducted
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because of the economic, social, and cultural importance of citrus production [11], as well as
the rising demand for Egyptian citrus on both the domestic and international markets [12].

Air temperature is one of the primary weather factors that affects a plant’s rate of
growth. Plant growth and development are influenced by ambient air temperature, and
each species has a specific air temperature range that is represented by a minimum, maxi-
mum, and ideal value [13]. The three primary variables that determine how long a plant
takes to mature are air temperature, planting date, and location. It is challenging to predict
how a crop will grow because the time period between planting and physiological maturity
varies from year to year and from location to location. This problem is due to the variations
in the daily minimum and maximum air temperatures [13].

Warmer climates stimulate the rate of vegetative development in citrus more than
cooler ones. Citrus species are known to have cardinal air temperatures of a minimum of
12.5–13.0 ◦C, an optimum of 23.0–34.0 ◦C, and a maximum of 37.0–39.0 ◦C [14]. Essentially,
there are three stages of growth and fruiting in citrus species during the growing season [14].
The first stage, known as fruit set, flowering, and growth, lasts from February to May. The
second stage, which includes fruit growth and development time, runs from June to
September. The third stage, which starts in October and lasts until the end of December,
moves the fruit closer to maturity and ripening [14]. Crop yield prediction has seen a
surge in the use of machine learning approaches in recent years. To train and create
prediction models, researchers have used a variety of data sources, such as historical
agricultural records, satellite images, soil information, and weather data [15]. Without the
need for explicit mathematical representations, artificial neural networks (ANNs), which
are one of the machine learning approaches, may intuitively identify complicated non-linear
relationships between input variables and target values in complex systems [15].

Forecasting citrus supply is a top concern for local marketing organizations as well
as growers. Citrus floral ontogeny, which promotes year-round flowering and fruit pro-
duction, makes meeting this criterion more difficult [16]. Yield prediction is crucial for
effective fruit management and well-planned marketing [17]. Predicting yield is of ut-
most importance in nations with limited agricultural resources. The yield is directly
impacted by several uncontrollable conditions surrounding the crop, which also make
prediction extremely challenging [4,18]. Citrus yield estimation is therefore a crucial
problem [19–21]. Furthermore, the estimation of citrus production facilitates the efficient
planning of additional operations by farmers, such as marketing, harvesting, and stock
sizes [21]. Furthermore, yield data are essential to the fruit business because they support
choices related to labor requirements, storage, transportation, and marketing in orchard
management. Furthermore, the primary determinant of the temporal variation in the
citrus water footprint is crop yield [22]. A wide range of techniques, including statisti-
cal methods and others, have been developed and implemented for agricultural yield
estimation [17]. The most popular technique for predicting agricultural output and eval-
uating the important factors influencing crop yield is multiple linear regression (MLR)
analysis [17]. However, because polynomial and interaction relations occur—which cannot
justifiably be set aside—the outcomes of the utilization of MLR were not initially encour-
aging [23]. For instance, El-Shirbeny et al. [4] obtained regression models based on the
normalized difference vegetation index and water stress index to predict the yield of the
Valencia orange grown in Egypt. However, the regression models were chosen based on
their capacity to forecast yield rather than their capacity to explain individual variables [24].

The yield of different crops can be estimated using soft computing approaches [25].
The tremendous advancements in technology have made crop models and decision tools
indispensable components of precision agriculture on a worldwide scale. These models
and technologies used to forecast crop yield include data mining, support vector machines,
expert systems, ANNs, genetic programming, adaptive neuro-fuzzy inference systems, and
linear regression techniques [25–27].

ANNs are being developed to capture non-linearity and challenging feature interac-
tions. An ANN is a self-adaptive learning technique that uses a non-linear data-driven
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method [25]. ANNs find relationships to produce a formula that may be used for pre-
dictions following the examination of a large number of input and output cases. It is
not necessary to have any prior knowledge of the inputs or results to create models us-
ing ANNs. Because ANNs deliver less inaccuracy and are more adept at identifying
the ideal variable pattern, they outperform all other linear models [28–30]. These ad-
vantages have made ANNs highly popular in many agriculture applications [31]. In
their 2005 study, Boonprasom and Bumroongitt [32] examined the use of an ANN model
to predict tangerine production while accounting for several significant variables, most
notably the weather. The outcomes showed that despite the limited amount of data pro-
vided, the ANNs had the potential and the capacity to predict tangerine yield accurately.
It was found that rainfall had a significant impact and provided valuable data to the
ANN for tangerine yield forecasts. Using non-linear ANN models and linear regression,
Matsumura et al. [33] conducted a forecasting study on the production of maize and its con-
nection to fertilizer and climate conditions. The prediction of potato crop yield was studied
by Abrougui et al. [34] using MLR and ANN models. Göçmen and Kuvvetli [30] used an
ANN model to forecast the quantities of various citrus fruits that were to be produced in the
Turkish city of Adana. Concerning several inputs, including product types, product-specific
plant areas, average yields per tree, the number of fruit trees and the number of fruitless
trees, the total number of trees, population, inflation rate, total fruit area, temperature,
and average precipitation, a feed-forward ANN was proposed. The findings obtained
indicate that the suggested method can accurately estimate the production amount based
on the input parameters, with R2 values greater than 0.98 for all the datasets. Duarte de
Souza et al. [35] used data from experimental networks for maize and public data to apply
an ANN model to forecast maize productivity. The dataset comprised agronomic traits,
soil water balance, and climate information from hybrid maize grown in an experimental
network spanning two crop years. The conclusion was that the ANN model performed
sufficiently in yield prediction. Gupta et al. [36] compared the multi-layer perceptron ANN
technique and meteorological index-based regression approach for predicting rice yield
at the West Bengal district level. Together with the time variable and the rice yield as the
output variable, the weather indices for the weather variables—minimum air temperature,
maximum air temperature, rainfall, and air relative humidity—were employed as input
variables. According to the study, the ANN method performed better in predicting agricul-
tural yield than the conventional regression method. With the exception of one district, the
ANN method regularly yielded forecast error percentages of less than 5%.

Conventional agricultural production forecasting techniques, which depend on sub-
jective evaluations such as farmers’ experiences, are often inaccurate and imprecise over
large farming regions, particularly in places with limited data. The accuracy and scope of
agricultural data have greatly improved recently due to developments in data gathering
and modern data analysis techniques. This has proved to be helpful for administrators
and politicians.

In this study, we introduced an ANN methodology for citrus yield prediction, which
showed better performance in yield prediction for other crops because ANN models
produce precise crop yield maps and show a notable advantage of neural network models
over traditional techniques [37]. This research aimed to develop a simple, accurate, and
economic model for the yield-predicting values of five commercially important citrus
fruit cultivars. The yield values were estimated using a multi-layer ANN model that
used a backpropagation training algorithm. Moreover, this study aimed to compare
the performance of an ANN model to a multiple linear regression model and to data
mining algorithms such as K-nearest neighbor (KNN), KStar, and support vector regression.
Statistical parameters, such as the coefficient of determination (R2), mean absolute error
(MAE), root mean square error (RMSE), relative error (RE), and mean absolute percentage
error (MAPE), were used to evaluate the performance of the established ANN model.
This study advances the field of precision agriculture by offering new perspectives on
efficient techniques for predicting citrus yield. By taking into account the aforementioned
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weather patterns and the required heat units, the study work that has been contributed has
produced the finest crop production results. Furthermore, the novel aspect of this study is
to link variables of climatic parameters and the accumulated heat units for the development
of a prediction model using ANN. It was also proposed to link the climatic parameters
and the accumulated heat units to assess yield for different citrus cultivars. Finally, it also
reports new outcomes on climate change and its effect on citrus yield, thus showing its
contribution to the levels of citrus production. Hence, this novel methodology serves as a
contribution to the existing literature as it gives new insight into the precise approach for
estimating citrus yield.

2. Materials and Methods
2.1. Experimental Location and Citrus Tree Descriptions

The study area was located near Al-Noubaria District, El-Beheira Governorate, Egypt.
The latitude and longitude are 30◦44′47.8′′ N; longitude 30◦09′15.2′′ E. According to
Ebaid et al. [38], El-Beheira governorate is characterized by an annual mean air temperature
of 21.0 ◦C, air relative humidity of 57.0%, and rainfall between 9.6 and 24.8 mm/month
occurring from November to February. Generally, the climate of Egypt is relatively wet
and cool in winter (October to March) and dry and hot in summer (April–September) [39].
Field investigations were implemented in private commercial orchards. The orchards have
suitable climatic conditions for growing citrus trees. The soil of the experimental area is
sandy soil with an average pH of 7.4–7.6. The irrigation systems consisted of two drip lines
with four emitters (discharge 8.0 L/h) per tree. In the cultivation of citrus in Spain, between
four and six emitters per tree are used in a 6.0 × 4.0 m tree spacing [40].

The periods of collecting data were during the eleven successive growing seasons
from 2010/2011 to 2021/2022. Five citrus cultivars, namely the Washington Navel orange
(Citrus sinensis (L.) Osbeck), Valencia orange (Citrus sinensis (L.) Osbeck), Murcott man-
darin (Citrus reticulata Blanco) × (Citrus sinensis L.), Fremont mandarin (Citrusclementina
Hort. ex Tanaka) × (Ponkan mandarin; Citrus reticulata Blanco), and Bearss Seedless lime
(Citrus latifolia Tanaka) were used to acquire the related data. The distance between every
two trees was about 5 m. The density of trees was about 400 trees/ha. The citrus cultivar
trees were healthy, uniform, and free of defects. Every citrus tree was cared for using
regular agricultural techniques, such as pest management and trimming, in accordance
with guidelines provided by Egypt’s Ministry of Agriculture. In accordance with Abdel-
Sattar et al.’s method [41], the citrus trees were fertilized using both mineral and organic
fertilizers. The economic importance or relevance of citrus production for the different re-
gions in Egypt, and the size of the area for the selected cultivars, were described by several
research papers [1–10]. The timing cycle from flowering until the harvesting periods of the
investigated five citrus cultivars grown in Egypt is shown in Table 1.

The average number of days required for flowering to harvesting for the investigated
citrus cultivars is shown in Figure 1. Each cultivar of citrus had a flowering period, which
depends mainly on the cultivar and weather conditions such as air temperature, and it
is difficult to control. In addition, agricultural practices such as irrigation, fertilization,
pruning, and pest control can have an impact on the flowering period, but they can be
controlled. Because the citrus crop in the experiment area is intended for export, the
agricultural practices are controlled to take the peak flowering corresponding to each
cultivar for each season and standardize it. In our research, we took the peak flowering
corresponding to each cultivar for each season, which varies for each cultivar, as shown in
Table 1. To benefit from the financial return on exporting, the harvest of the cultivars must
be at the closest time to the appropriate harvest, and for this reason, the date of harvesting
the cultivars in the experimental area was standardized at a specific time with the aim of
exporting to benefit from the export return.
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Table 1. The timing cycle of flowering until harvesting periods of the investigated five citrus cultivars
grown in Egypt (period from growing seasons of 2010/2011 to 2021/2022).

Period Months
Citrus Cultivars

Washington
Navel Orange

Valencia
Orange

Murcott
Mandarin

Fremont
Mandarin

Bearss Seedless
Lime

Pr
ev

io
us

se
as

on
of

ha
rv

es
ti

ng

January

February Flowering date
at 25 February

March Flowering date
at 1 March

Flowering Date
at 10 March

Flowering date
at 15 March

Flowering date
at 20 March

April

May

Jun

July

August

September

October

November

December

Se
as

on
of

ha
rv

es
ti

ng

January Harvesting date
at 30 January

Harvesting date
at 1 January

February

March Harvesting date
at 30 March

April

May Harvesting date
at 15 May

June

July Harvesting date
at 15 July

Agronomy 2024, 14, x FOR PEER REVIEW 6 of 27 

Figure 1. The average numbers of days required from flowering to harvesting for the investigated 

citrus cultivars during the period of seasons 2010/2011 to 2021/2022. 

2.2. Measurements 

2.2.1. Weather Information 

The climatic data were obtained from a weather station, which provided daily data 

on the weather parameters. The recorded weather parameters were daily air relative hu-

midity (RH2M) at 2 m, daily precipitation, daily air temperature at 2 m (T2M), daily min-

imum air temperature at 2 m (T2M_MIN), and daily maximum air temperature at 2 m 

(T2M_MAX). The meteorological data used in this study were obtained from a weather 

station located in the same area. To evaluate the climate change trends in the studied area, 

the data were collected from the year 2010 to the year 2022. For analysis purposes, the data 

were converted to yearly average values for air temperature (T2M) and air relative hu-

midity, and to a daily average for precipitation. The summarized acquired weather infor-

mation is shown in Table 2. 

Table 2. Mean yearly air relative humidity (RH2M), air temperature (T2M), minimum air tempera-

ture (T2M_MIN), and maximum air temperature (T2M_MAX), and daily mean precipitation, for the 

years 2010 to 2022. 

Year 
Precipitation RH2M T2M T2M_MAX T2M_MIN 

(mm/day) (%) (°C) (°C) (°C) 

2010 0.05 54.76 21.95 30.00 15.61 

2011 0.17 59.56 20.55 27.97 14.58 

2012 0.11 57.93 21.05 28.54 14.96 

2013 0.10 57.64 20.98 28.56 14.68 

2014 0.12 59.26 21.20 28.80 15.23 

2015 0.29 59.16 21.15 28.46 15.32 

2016 0.40 59.46 21.19 28.58 15.37 

2017 0.56 61.90 20.55 27.92 14.72 

2018 0.27 60.00 21.63 28.98 15.78 

2019 0.18 58.12 21.09 28.66 15.04 

Figure 1. The average numbers of days required from flowering to harvesting for the investigated
citrus cultivars during the period of seasons 2010/2011 to 2021/2022.



Agronomy 2024, 14, 1548 6 of 27

2.2. Measurements
2.2.1. Weather Information

The climatic data were obtained from a weather station, which provided daily data on
the weather parameters. The recorded weather parameters were daily air relative humidity
(RH2M) at 2 m, daily precipitation, daily air temperature at 2 m (T2M), daily minimum air
temperature at 2 m (T2M_MIN), and daily maximum air temperature at 2 m (T2M_MAX).
The meteorological data used in this study were obtained from a weather station located
in the same area. To evaluate the climate change trends in the studied area, the data
were collected from the year 2010 to the year 2022. For analysis purposes, the data were
converted to yearly average values for air temperature (T2M) and air relative humidity,
and to a daily average for precipitation. The summarized acquired weather information is
shown in Table 2.

Table 2. Mean yearly air relative humidity (RH2M), air temperature (T2M), minimum air temperature
(T2M_MIN), and maximum air temperature (T2M_MAX), and daily mean precipitation, for the years
2010 to 2022.

Year
Precipitation RH2M T2M T2M_MAX T2M_MIN

(mm/day) (%) (◦C) (◦C) (◦C)

2010 0.05 54.76 21.95 30.00 15.61

2011 0.17 59.56 20.55 27.97 14.58

2012 0.11 57.93 21.05 28.54 14.96

2013 0.10 57.64 20.98 28.56 14.68

2014 0.12 59.26 21.20 28.80 15.23

2015 0.29 59.16 21.15 28.46 15.32

2016 0.40 59.46 21.19 28.58 15.37

2017 0.56 61.90 20.55 27.92 14.72

2018 0.27 60.00 21.63 28.98 15.78

2019 0.18 58.12 21.09 28.66 15.04

2020 0.67 63.30 21.02 28.35 15.16

2021 0.69 60.49 21.55 29.11 15.52

2022 0.33 59.53 21.80 29.17 15.77

Overall average 0.30 59.32 21.21 28.70 15.21

Standard deviation ±0.22 ±2.07 ±0.43 ±0.54 ±0.40

Overall maximum 0.69 63.30 21.95 30.00 15.78

Overall minimum 0.05 54.76 20.55 27.92 14.58

Coefficient of variation (%) 71.95 3.49 2.02 1.90 2.65

2.2.2. Yield Determination

Every experimental tree (4 experimental trees × 4 trees per duplicate = 16 trees per
cultivar) had all of its fruits collected at harvest time each season. After that, the yield was
assessed in terms of products that can be sold, deducting large and damaged fruits. To
determine the yield per tree (kg/tree), harvested fruits from each cultivar were weighed
using a digital scale (ME1002E, Mettler Toledo, Greifensee, Switzerland) with a precision of
0.01 g, determining the yield per tree (kg/tree) and converting it to t/ha. The citrus yield
results are presented as the mean for each season.

2.2.3. How to Determine the Accumulated Heat Units

In the present study, we calculated the daily heat units (DHUs) based on the daily
minimum air temperature and the daily maximum air temperature according to Hardy
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and Khurshid [42], then the accumulated heat units were determined. However, the crop
threshold air temperature (base air temperature) for citrus was found to be 13.0 ◦C [42]. In
the method of calculating DHUs offered by Hardy and Khurshid [42], as shown in Table 3,
all DHUs below zero (negative results) were not used and all maximum air temperatures
≥ 35.1 ◦C were changed to be 35.0 ◦C, as shown in Table 3.

Table 3. Example of calculations of citrus daily heat units (DHUs) and the accumulated heat units
according to Hardy and Khurshid [42].

Date Daily Maximum Air
Temperature (◦C)

Recalculated Daily
Maximum Air

Temperature (for
Temperatures ≥ 35.0 ◦C)

Daily Minimum Air
Temperature (◦C)

Average Air
Temperature

(Maximum Air
Temperature +
Minimum Air

Temperature ÷ 2)

Daily Heat Units
(DHUs)

(Average Air
Temperature—Base

Temperature
of 13.0)

Accumulated Heat
Units (Negative

Values for DHUs
Are Not Used)

1 36.5 35.0 17.6 26.3 13.3 13.3

2 35.2 35.0 19.9 27.5 14.5 27.8

3 34.1 34.1 17.0 25.6 12.6 39.0

4 40.1 35.0 21.5 28.2 15.2 39.0

5 20.6 20.6 12.8 16.7 3.7 42.7

6 15.2 15.2 7.6 11.4 −1.6 0.0

7 33.4 33.4 17.8 25.6 12.6 55.4

8 19.2 19.2 6.6 12.9 −0.1 0.0

9 23.4 23.4 13.4 18.4 5.4 60.8

10 29.3 29.3 22.0 25.7 12.7 73.4

11 25.1 25.1 12.5 18.8 5.8 79.3

2.2.4. Heat Use Efficiency (HUE) Calculation

In order to evaluate how well various cultivars perform in relation to heat usage,
the heat use efficiency (HUE) was calculated [43]. The Equation (1) was used to calculate
HUE [44,45]:

HUE (kg/ha ◦C day) = yield (kg/ha)/AHU (◦C day) (1)

where AHUs are the accumulated heat units (◦C day).

2.3. Data Mining Techniques for Citrus Yield Prediction

The process of extracting, processing, loading, and forecasting useful information
from massive amounts of data in order to identify patterns and convert it into a compre-
hensible framework for later use is known as data mining [46]. In agriculture applications,
data mining is useful, and in recent years good performance has been confirmed for data
mining algorithms engaged in the yield prediction of different crops [46–50]. In our case,
after gathering and arranging our dataset, we decided to employ data mining algorithms
to predict the yield of citrus fruits, specifically, five cultivars. Officially, we have a re-
gression problem, as we are trying to predict citrus yield quantities. Mainly, we have a
supervised learning approach with regression tasks. Weka software version 3.8.6 [51], a
famous machine learning software, was engaged for these regression algorithms because its
visualization function was particularly helpful for identifying the patterns, dependencies,
and interactions between crop yield and other climatic parameters [46]. In this research,
we applied the KStar approach (wekaclassifierslazy.KStar [52]), K-nearest neighbor (KNN)
classifier (weka.classifiers.lazy.IBk)) as described in Aha and Kibler [53], and support vector
regression (wekaclassifiers.functionsSMOreg [54]) for predicting the yield of five citrus
cultivars. The run information from the Weka software was weka.classifiers.lazy.KStar -B
20 -M a for the KStar approach, weka.classifiers.functions.SMOreg -C 1.0 -N 0 –I for the
support vector regression approach, and weka.classifiers.lazy.IBk -K 3 -W 0 –A for the
KNN approach. There were 45 instances of training data points, 9 attributes for inputs,
1 attribute as an output, and 10 instances of testing data points. The performance criteria
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used to evaluate such algorithms were compared to the developed ANN model. The
performance criteria included mean absolute error (MAE), root mean square error (RMSE),
and coefficient of determination (R2).

2.4. A Multiple Linear Regression for Citrus Yield Prediction

A multiple linear regression (MLR) model was developed that describes the relation-
ship between the citrus yield of each cultivar (response variable) and explanatory factors:
daily precipitation, yearly average air temperature, yearly average of air relative humidity,
and the accumulated heat units using the same training dataset for the ANN model. An
MLR model with many explanatory variables can be presented [55]; however, the multiple
linear regression (MLR) model and its performance during yield prediction for each citrus
cultivar is described by Equation (2).

Yield
(

t
ha

)
= a0 + a1 × X1 + a2 × X2 + a3 × X3 + a4 × X4 (2)

where a0, a1, a2, a3 and a4 are the regression coefficients, X1 is the average daily precip-
itation (mm/day), X2 is the yearly average of air relative humidity (%), X3 is the yearly
average of air temperature (T2M, ◦C), and X4 is the accumulated heat units (◦C day). The
multiple linear regression analysis was completed using an Excel spreadsheet.

2.5. Creating an ANN Model for Citrus Yield Estimating

In order to explain the variability of crop output, the ANN provides solutions to
these intricate non-linear interactions [56]. The literature has documented a number of
effective uses of ANNs for yield prediction [16,57,58]. According to Kashaninejad et al. [57],
ANNs are flexible mathematical structures and tools that may generate non-linear map-
pings between input and output regions. ANNs model the way that neurons in the brain
process information and make decisions. ANNs have better predictive power than conven-
tional statistical methods and can comprehend complex relationships in communication
formulations; this is due to their learning capacity, which allows them to recognize and
model intricate non-linear associations between the inputs and outputs of the biological
processes [58].

In an ANN model, data can transfer across layers more quickly thanks to the weighted
connections, since the node, after absorbing the data from the layer before it, creates a
weighted total of all its net inputs as follows:

Y = f1(W2·f2(W1 · X + B1) + B2) (3)

where Y is the output value, X is the input layer matrix, and f1 and f2 are the transfer
or activation functions (sigmoid) in this work and used in the hidden and output layers.
Furthermore, the weight coefficients and biases connected to the hidden and output layers
of the ANN model are represented by the matrices and vectors W1 and B1, and W2 and B2,
respectively (Equation (3)) [59]. The ANN model can be represented using matrix notation.
The output data of the ANN model can be calculated using Equation (3) [59].

The steps of data collection and the ANN modeling methodologies used in this
investigation are shown in Figure 2. The number of neurons in a hidden layer has a
significant influence on the model’s quality; however, there is no universal guideline for
this. In order to create a balance between exploration and exploitation during the model
training process, the neural network’s parameters must be carefully chosen when using the
backpropagation algorithm. This usually entails using the trial-and-error technique [60].
Therefore, the optimal number of neurons that should be in the hidden layers was estimated
in this work using a trial-and-error approach. The ANN simulations were performed using
Qnet 2000 for Windows, which is a commercial neural network application [61].
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The Qnet backpropagation neural modeling system [61] can provide predictions for
various purposes in different fields [61]. It was necessary to use an MLP with a single
hidden layer in the ANN design. Precipitation, air temperature at two meters, air relative
humidity at two meters, and the accumulated heat units were the three nodes that made
up the input layer. The yield of citrus cultivars was the only variable that was produced.
A total of 55 data points was acquired; at a ratio of 82:18, they were randomly split into
training and testing datasets. We used field data to forecast future results. Our strategy
included setting aside some data as a fixed sample for testing purposes. The data structure
used for building the ANN model to predict citrus yield is shown in Table 4.

Table 4. Part of the data structure for building an ANN model and other data mining algorithms to
predict citrus yield.

Inputs Output

Washington
Navel

Orange

Valencia
Orange

Murcott
Mandarin

Fremont
Mandarin

Bearss
Seedless

Lime

Precipitation Air Relative
Humidity

Air
Temperature

(T2M)

Accumulated
Heat Units Yield

(mm/day) (%) (◦C) (◦C day) (t/ha)

1 0 0 0 0 0.04 54.85 21.95 3468.76 47.62

1 0 0 0 0 0.17 59.51 20.41 2951.37 52.44

0 1 0 0 0 0.28 59.35 21.00 3909.72 54.76

0 1 0 0 0 0.41 58.68 21.26 3641.37 62.02

0 0 1 0 0 0.28 59.35 21.00 3411.19 45.24
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Table 4. Cont.

Inputs Output

Washington
Navel

Orange

Valencia
Orange

Murcott
Mandarin

Fremont
Mandarin

Bearss
Seedless

Lime

Precipitation Air Relative
Humidity

Air
Temperature

(T2M)

Accumulated
Heat Units Yield

(mm/day) (%) (◦C) (◦C day) (t/ha)

0 0 1 0 0 0.41 58.68 21.26 3247.41 45.24

0 0 0 1 0 0.11 58.79 21.16 3123.99 54.76

0 0 0 1 0 0.28 59.35 21.00 3177.72 52.44

0 0 0 1 0 0.41 58.68 21.26 3143.36 53.39

0 0 0 0 1 0.18 58.08 21.05 4527.33 47.62

0 0 0 0 1 0.66 62.94 20.87 3650.88 43.57

The values of the output and input factors were normalized into the range of 0.15 to
0.85 using the Qnet 2000 software [61] and the following equation:

V =
(v − vmin)

(vmax − vmin)
× (0.7) + 0.15 (4)

Equation (4) uses v to represent the original values (measured values) of the input
and output parameters, V to represent the parameter’s normalized value, and vmax and
vmin to represent the maximum and minimum values of the input and output parameters,
respectively, in the dataset.

In the process of creating the ANN model, the hidden layer’s neuron count was fixed
at five to thirty-five for this study. The sigmoidal transfer function was assigned, and the
algorithm randomly selected the neurons’ initial weights and biases. The training dataset
contained 45 patterns, while the testing dataset contained 10 data points.

The correlation coefficient and training error values were used to assess the model’s
quality during training. The ANN model that gave the lowest training error and still had
a respectable correlation was selected at the end of the training process. After several
attempts to alter the network topology, the final network consisted of nine neurons for the
input layer, 20 neurons for the hidden layer, and 1 neuron for the output layer (Figure 3).
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2.6. ANN Model Performance Measures

The created ANN model can be assessed based on several parameters by contrasting
the model predictions with the observed values in the training and testing datasets. Relative
error (RE), mean absolute error (MAE), mean absolute percentage error (MAPE), and root
mean square error (RMSE) [62] are a few examples of these criteria [63], and they are
presented in Equations (5)–(8). The estimated and actual values of the citrus yield were
visually compared using scatter plots with the coefficient of determination (R2).

RMSE =

√
∑N

i=1(Pi − PA)
2

N
(5)

MAE =
1
N

×
∣∣∣∑N

i=1(Pi − PA)
∣∣∣ (6)

MAPE =
1
N

× ∑N
i=1

∣∣∣∣ (Pi − PA)

Pi

∣∣∣∣× 100 (7)

The relative error is found by dividing the absolute error by the measured value. The
relative error equation is:

RE = |(Pi − PA)| ×
1
Pi

× 100 (8)

where Pi and PA stand for the actual (observed) and estimated yields, respectively, and N
is the total number of observations.

2.7. Sensitivity Analysis

To define the impelling factor of the subcontractor relationship in the current practice
from the main contractor evaluation, sensitivity analysis is an efficient tool. It is applied
in a trained ANN model to routinely recognize all input constraints that affect the output.
This process is an optimal technique used to deliver the contribution percentage of inputs
to the model outputs [64]. Furthermore, in the ANN approach, the sensitivity technique
can determine the contribution percentage of each input via the result of the choice of
the input node interrogator in the software Qnet 2000. This selection is employed to
define the sensitivity by repeatedly iterating the training arrangement process with each
input and calculating the result of the network’s output. Moreover, we should recollect
the explanation of this sensitivity outcome as it is expected that the value of the input
is independent. Consequently, the result of the influencing feature of the subcontractor
relationship is determined by the sensitivity method in the neural network [65].

3. Results and Discussion
3.1. Weather Information

The current study’s meteorological data, which include air temperature and humidity,
revealed that the citrus cultivars under investigation experienced varying air temperatures
from flowering to harvesting. The overall average of air relative humidity, air temper-
ature, minimum air temperature, and maximum air temperature were 59.32 ± 2.07%,
21.21 ± 0.43 ◦C, 28.70 ± 0.54 ◦C, and 15.21 ± 0.40 ◦C, respectively (Table 2) for the inves-
tigated periods. The overall average precipitation was 0.30 ± 0.22 mm/day (Table 2). In
a previous study of Abd El-Salam et al. [66], for the El-Behera region, Egypt, the average
air temperature and the air relative humidity during the 2016 season were 23.9 ◦C and
60.6%, respectively. However, in the 2017 season, the average air temperature was increased
to 25.5 ◦C while the air relative humidity was decreased to 56.8% [66]. However, these
findings agree with our records for air temperature and air relative humidity. In this study,
the precipitation during the citrus seasons was zero in some months, and it was observed
that there were very few occasions when the precipitation was above 4.51 mm/day (data
are not included) during the investigated seasons. Additionally, Figure 4 shows the values
of yearly precipitation in the experimental area, it is clear that the highest precipitation
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of 252.91 mm/year was recorded during the season of 2021 as rainfall in Egypt occurs
only in winter. However, rainfall was between 9.6 mm/month and 24.8 mm/month for
the period from November to February in El-Behera Governorate, Egypt [36]. Moreover,
El-Beheira Governorate, Egypt, experiences moderate winters and scorching, dry sum-
mers. Rainfall is erratic and unforeseen. The annual average rainfall was 110 mm/year,
with a maximum of approximately 190 mm/year in the north and a minimum of nearly
29 mm/year in the south. El-Beheira Governorate, Egypt, experiences significantly lower
average air temperatures than the rest of Egypt, with a maximum air temperature of
32 ◦C [67]. Moreover, El-Beheira Governorate, Egypt typically receives about 1.96 mm of
precipitation and has 6.09 rainy days (1.67% of the time) annually [68]. At Al-Noubaria
District, El-Behera Governorate, Egypt, the weather was, to some extent, constant during
the two seasons 2007/2008 and 2008/2009, as the air temperature was in the range of
14.0 to 17.0 ◦C at night and 21.0 to 24.0 ◦C during the day, air relative humidity was in the
range of 48.0 to 55.0%, and rainfall was very rare in the area [69].
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3.2. The Accumulated Heat Units

The average number of days needed to progress from flowering to harvesting varied,
indicating that there was a fluctuation in the dates of flowering and harvesting for the
citrus fruits under investigation. According to Figure 1, it took 482.17 days for the Bearss
Seedless lime to reach the harvest stage, while the Fremont mandarin took only 290.00 days to
reach the harvest stage. The Bearss Seedless lime matures later than the other varieties and
requires 192.17 days longer than the Fremont mandarin to reach fruit maturity. According to
Kanzaria et al. [70], accumulated heat units directly affect the maturity of the fruit.
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The data analysis revealed that in comparison to the cultivars that bloomed on March
20 and had high accumulated heat units, those flowering on February 25 accrued moderate
accumulated heat units (Table 1). In order to reach maturity, the following orange varieties
accumulated these averages: for Washington Navel, the accumulated heat units were
3112.7 ◦C day; for Valencia, the accumulated heat units were 3628.3 ◦C day; for Murcott,
the accumulated heat units were 3221.9 ◦C day; for Fremont, the accumulated heat units
were 3027.69 ◦C day; and for Bearss Seedless lime, accumulated heat units were 4398.4 ◦C
day under Egyptian conditions (Figure 5). This outcome could be explained by the fact
that the Washington Navel orange and Fremont mandarin, two early flowering and early
maturing cultivars, required fewer DHUs to reach maturity than the other cultivars. The
different maturity periods of the different cultivars were the cause of the large difference in
accumulated heat units (Figure 5). The results of Singh et al. [71] show that every genotype
requires a specific quantity of heat unit accumulation to complete the several phenophases,
resulting in variations in the maturity period; these results are fully consistent with the
observations. Different researchers have identified the average number of days from
flowering to maturity as a maturity criterion in various fruit cultivars, such as mangos [72].
On the other hand, Ananthanaryanan and Pillai [73] pointed out that other factors influence
fruit maturation in fruits such as mangos, including heat, air relative humidity, and rainfall.
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season 2010/2011 to season 2020/2021.

The Bearss Seedless lime’s delayed blooming date resulted in an increase of up to
4398.4 ◦C days in the accumulated heat units needed to achieve physiological maturity.
This resulted from a minimum air temperature that supported a lower buildup of necessary
accumulated heat units; consequently, it took longer for the plant to achieve physiological
growth and development. When the flowering dates for the Washington Navel orange
began on 25 February and there were 3112.7 ◦C days (Figure 5), or when the Fremont
mandarins were harvested early on 1 January, fewer accumulated heat units of 3027.6 ◦C
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days were needed to reach physiological maturity. As a result, the minor phenophasic days
accumulated a smaller quantity of DHUs. The many cultivars under study can be divided
into three maturation groups according to the date of maturity: early maturing, which
occurred between 1 January and 30 January; medium maturing, which occurred between
30 March and 15 May; and extremely late maturing, which occurred on 15 July. In light
of this, it is possible to classify some cultivars as early maturing, such as the Washington
Navel orange and Fremont mandarin, and some as very late maturing, such as the Bearss
Seedless lime (Table 1). However, the various cultivars can also be separated into two
categories according to the amount of accumulated heat units required for fruit maturity:
those that require a minimum amount of accumulated heat units of 3027.6–3628.3 ◦C days
and those that require more than 4000.0 ◦C days. This indicates that the cultivars of the
Washington Navel orange, Valencia orange, Murcott mandarin, and Fremont mandarin
require the fewest accumulated heat units to reach fruit maturity, while the cultivar of the
Bearss Seedless lime requires the greatest accumulated heat units (Figure 5). According to
Martín and Jerez [74], this behavior is explained by one fundamental element that affects
the rate of development, especially the development from emergence to flowering and
maturity. As many species have evolved to thrive in specific temperature ranges, when
the ambient air temperature drops, so too do the development rates of those species. The
development ultimately ceases when the air temperature reaches its limit, as extreme air
temperature variation has effects on plant development and growth [75]. According to
Singh et al. [71], different genotypes require distinct amounts of heat units to complete
different phenophases, which results in variations in maturity periods. However, the base
air temperature is the upper limit of this temperature. On the other hand, the development
rates rise in response to air temperature until they reach an optimum, after which they fall
and eventually come to a stop at their maximum development air temperature.

3.3. Fruit Yield

The fruit yields of all the citrus cultivars in the different seasons are given in Figure 6 as
minimum, maximum, and average ± standard deviation values for all seasons. In the seasons,
the Valencia orange cultivar achieved the highest average yield of 59.04 ± 5.73 t/ha, indicating
that the weather conditions were more conducive to the growth and development of the crop
(citrus species are known to have cardinal air temperatures of a minimum of 12.5–13.0 ◦C, an
optimum of 23.0–34.0 ◦C, and a maximum of 37.0–39.0 ◦C [14]; the nature of the cultivar was
also a factor.

Agronomy 2024, 14, x FOR PEER REVIEW 14 of 27 
 

 

days accumulated a smaller quantity of DHUs. The many cultivars under study can be 

divided into three maturation groups according to the date of maturity: early maturing, 

which occurred between 1 January and 30 January; medium maturing, which occurred 

between 30 March and 15 May; and extremely late maturing, which occurred on 15 July. 

In light of this, it is possible to classify some cultivars as early maturing, such as the Wash-

ington Navel orange and Fremont mandarin, and some as very late maturing, such as the 

Bearss Seedless lime (Table 1). However, the various cultivars can also be separated into 

two categories according to the amount of accumulated heat units required for fruit ma-

turity: those that require a minimum amount of accumulated heat units of 3027.6–3628.3 

°C days and those that require more than 4000.0 °C days. This indicates that the cultivars 

of the Washington Navel orange, Valencia orange, Murcott mandarin, and Fremont man-

darin require the fewest accumulated heat units to reach fruit maturity, while the cultivar 

of the Bearss Seedless lime requires the greatest accumulated heat units (Figure 5). Ac-

cording to Martín and Jerez [74], this behavior is explained by one fundamental element 

that affects the rate of development, especially the development from emergence to flow-

ering and maturity. As many species have evolved to thrive in specific temperature 

ranges, when the ambient air temperature drops, so too do the development rates of those 

species. The development ultimately ceases when the air temperature reaches its limit, as 

extreme air temperature variation has effects on plant development and growth [75]. Ac-

cording to Singh et al. [71], different genotypes require distinct amounts of heat units to 

complete different phenophases, which results in variations in maturity periods. How-

ever, the base air temperature is the upper limit of this temperature. On the other hand, 

the development rates rise in response to air temperature until they reach an optimum, 

after which they fall and eventually come to a stop at their maximum development air 

temperature. 

3.3. Fruit Yield 

The fruit yields of all the citrus cultivars in the different seasons are given in Figure 

6 as minimum, maximum, and average ± standard deviation values for all seasons. In the 

seasons, the Valencia orange cultivar achieved the highest average yield of 59.04 ± 5.73 

t/ha, indicating that the weather conditions were more conducive to the growth and de-

velopment of the crop (citrus species are known to have cardinal air temperatures of a 

minimum of 12.5–13.0 °C, an optimum of 23.0–34.0 °C, and a maximum of 37.0–39.0 °C 

[14]; the nature of the cultivar was also a factor. 

 Figure 6. The fruit yields of all the citrus cultivars in the different seasons for minimum, maximum,
and average ± SD (SD means standard deviation).



Agronomy 2024, 14, 1548 15 of 27

3.4. Relationship between Accumulated Heat Units and Fruit Yield

The accumulated heat units are a measurement of daily temperature accumulation for
predicting yield and when a growth stage will occur, such as flowering and maturation [76].
Figure 5 shows the average of the accumulated heat units and the fruit yields of the
investigated citrus cultivars. However, the amount of the accumulated heat units that a
citrus crop accumulates throughout its growth determines how much citrus is produced.
The yield was recorded at varying accumulated heat units, as shown in Figure 5, with the
Washington Navel orange at average of 51.68 t/ha at accumulated heat units of 3112.7 ◦C
days, Valencia orange at average of 59.04 t/ha at accumulated heat units of 3628.3 ◦C days,
Murcott mandarin at average of 44.81 t/ha at accumulated heat units of 3205.4 ◦C days,
Fremont mandarin at average of 51.44 t/ha at 3027.6 ◦C days, and Bearss Seedless lime at
average of 46.28 t/ha at accumulated heat units of 4398.4.2 ◦C days.

The regression analysis (y = a + bx) showed clearly that the values of the yield (y)
take the direction of a straight reverse line which varies in the values of the slope (b) for
Washington Navel orange, Valencia orange, Murcott mandarin, and Bearss Seedless lime,
but not for Fremont mandarin (Table 5). Fremont mandarin has a higher tendency of 0.001.
This means that Fremont mandarin will be increased when the accumulated heat units
increase in comparison with the rest of the citrus cultivars. It is also clear that the values
of the correlation coefficient are very low (−0.051 to 0.044), as shown in Table 5; however,
R2 is not a suitable indicator in this case as the model is constructed to minimize the error
rate [77].

Table 5. The slope and intercept values of a simple linear regression (y = a + bx) of the relationship
between the accumulated heat units (x) and fruit yields (y) of the investigated citrus cultivars.

Citrus Cultivars Slope (b) Intercept (a) Correlation Coefficient

Washington Navel orange −0.013 91.358 −0.228

Valencia orange −0.002 67.251 −0.051

Murcott mandarin −0.007 66.632 −0.328

Fremont mandarin 0.001 48.266 0.044

Bearss Seedless lime −0.011 96.920 −0.376

As shown in Table 5, the regression coefficients of slope (b) and intercept (a) are expected
to vary with the cultivars; this finding agrees with the data of Døving [78].
Hemalatha et al. [79] corroborated this finding by stating that a higher heat unit accumulation
in maize increased the yield; conversely, the Bearss Seedless lime and Valencia orange were
used as examples of cultivars where higher heat unit accumulation boosted output. Further-
more, according to Naveen et al. [80], the yield in green grams rose with a higher buildup
of heat units and vice versa. Devi et al. [81] (R2 = 0.66) and Srivastava et al. [82] (R2 = 0.67)
observed a substantial positive connection between the accumulated heat units and grain
yield. In every year, there was a strong positive correlation between the production of fruit
and the amount of heat units needed. The regression equation’s R2 values could account for
63–87% of the variation in okra fruit output overall [83]. A robust relationship between heat
units and cotton yield was reported by Masasi et al. [84]. Ram et al. [85] showed a relationship
between the accumulated heat units and the yield of irrigated wheat. A crop’s grain yield was
determined by the amount of accumulated heat units during growth. The variance in pea
yield cultivars in different conditions was explained by the accumulated heat units in 66.1%
of cases [81].

3.5. Heat Use Efficiency (HUE)

The HUE was computed for the flowering and harvesting times of five citrus varieties
under Egyptian conditions. The lowest, highest, and average ± standard deviation HUE
values for the cultivars under investigation are shown in Figure 7.
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The ability of citrus cultivars to use the temperature regime to create an economically
viable yield is measured by their HUE. The Fremont mandarin cultivar (average HUE was
17.0 ± 2.7 kg/ha ◦C day) was found to be the most effective at utilizing the thermal regime
for its yield; it was followed by the cultivars of the Valencia orange (average HUE was
16.3 ±5.7 kg/ha ◦C day) and Washington Navel orange (average HUE was 16.1 ± 7.8 kg/ha
◦C day). However, it was determined that the Murcott mandarin and Bearss Seedless
lime cultivars had lower average HUE in using heat units with values of 13.9 ± 2.7 and
10.5 ± 2.5, respectively. It was interesting to see that despite the fact that all of the tested
cultivars had a thermal environment from flowering to harvesting which, on average, took
fewer days, of 290.0, as Figure 1 illustrates, the conversion efficiency from thermal regime
to yield formation was higher. Furthermore, not every cultivar with a longer flowering time
followed this pattern. As shown in a previous study, the greatest HUE value for the snap
melon crop was 6.1 kg/ha ◦C day [43]. Meshram et al. [86] reported that the HUE of ten
pomegranate varieties ranged from 3.2 to 4.0 kg/ha ◦C day. The highest yield may be related
to the higher HUE, because the air temperature was at its ideal level for the entire growing
season, and the crop used the heat more effectively and had higher biological activity, which
produced a larger yield. Thavaprakash et al. [87] reported a similar relationship.

According to the study’s findings, citrus cultivars can significantly increase HUE
in Egypt’s shifting climate. Figure 8 shows the association between the citrus cultivars’
average number of days from flowering to harvesting and their HUE. It is evident that
citrus cultivars’ decreased HUE was revealed by an increase in the average number of days
needed from flowering to harvesting.
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3.6. Predicting Citrus Yield Using ANN Model

The MLP (multi-layer perceptron) topology network, which was used to construct the
ANN model using the field data from 2010 to 2022, is commonly employed when making
predictions. The main advantage of ANN models is their ability to predict the proper
output of the input parameters by varying their weights, which allows them to handle
complicated problems with fewer inputs [88]. However, specific assumptions regarding
the models and the underlying probability distributions or connections are not necessary
when using ANNs [89]. Notwithstanding the benefits they have indicated, ANNs have
a few significant drawbacks. To figure out the best ANN architecture and understand
intricate relationships, they need a sizable volume of data [90]. However, the ANN can
acquire the interaction patterns (if any) during the training stage, as when given input and
output data, ANNs are typically regarded as black box models that can detect underlying
correlations [91]. In this research, five qualitative variables (Washington Navel orange,
Valencia orange, Murcott mandarin, Fremont mandarin, and Bearss Seedless lime) were
among the independent variables that comprised the ANN model input vector, which had
nine inputs. The process of validating the ANN model that was generated to estimate the
citrus yields involved assessing the estimation quality using three metrics: RMSE, MAE,
and MAPE. Table 6 displays the three metrics’ values for the developed ANN model that
was generated. MAPE is the indicator that is most often employed to calculate the forecast
error [62]; however, in the resulting work, the MAPE error rate was supposed to be up to
7%. This indicates that due to its lower MAPE of 4.17% when using the training dataset,
the created ANN model could attain the expected yield.

Table 6. Error criterion values for ANN model (9-20-1) to predict citrus yield.

Error Criterion Training Dataset Testing Dataset

RMSE (t/ha) 2.60 2.80

MAE (t/ha) 2.09 2.58

MAPE (%) 4.17 5.41
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For further clarification, Figures 9 and 10 demonstrate the progression of R2 values
through the training and testing stages, respectively. This assessment aims to find the
alterations in the R2 values in each dataset. As shown in Figures 9 and 10, a notably high
R2 of 0.87 and 0.83 in the training and testing stages, respectively, was observed, leading
to the relatively high accuracy of the applied ANN model. Based on the value of R2, the
proposed ANN model explained 87.0% of the oscillation of the citrus yield in the studied
region. One of the most often used statistics in non-linear model fitting is the value of R2.
However, a number of observations of the fitted model and components cannot account for
the effect of its value; some of them are more strongly related to the data gathering process
than to the process of reducing this fraction from one [92].
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Figure 9. Actual vs. predicted yields using the developed ANN model using the training dataset for
citrus prediction.

The ANN model, based on precipitation, air relative humidity, air temperature, and
the accumulated heat units, found that the relationship between yield and such parameters
was non-linear and had an effect on the fruit setting phase. However, most of the past
studies focused on fruit yield forecasts using meteorological information at the regional
scale [93]. Moreover, meteorological conditions, including the daily high and low air
temperatures, as well as the heat units from the day before, affect the possibility of fruit
growth [92]. Furthermore, the amount of growth attained during the season should be
expressed in terms of heat units, which are a measurement of the temperature range in
which plant growth occurs (an appropriate growth air temperature is a serious factor in
positive citrus production, with optimal growth settings between 13.0 and 32.0 ◦C) [94].

A comparison of the actual and predicted yields of the investigated citrus cultivars in
the testing dataset is shown in Table 7. The obtained relative errors (REs) in the range of
2.07% to 11.61% between the actual and predicted yields of the Washington Navel orange,
Valencia orange, Murcott mandarin, Fremont mandarin, and Bearss Seedless lime for the
respective data subsets are almost acceptable. According to the relative error values, the
Murcott mandarin had the lowest relative error value of 2.07% (Table 7).
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Figure 10. Actual vs. predicted yields using the developed ANN model using the testing dataset for
citrus prediction.

Table 7. Comparison of the actual and predicted yield of the investigated citrus cultivars in the testing
dataset using the developed ANN model.

Washington
Navel

Orange

Valencia
Orange

Murcott
Mandarin

Fremont
Mandarin

Bearss
Seedless

Lime

Actual Yield Predicted
Yield

Relative
Error (RE)

(t/ha) (t/ha) (%)

1 0 0 0 0 45.71 44.13 3.46

1 0 0 0 0 47.62 50.59 6.23

0 0 1 0 0 47.74 46.01 3.62

0 0 1 0 0 39.82 35.20 11.61

0 0 0 1 0 54.05 51.47 4.77

0 1 0 0 0 62.02 59.77 3.63

0 0 0 0 1 47.62 50.25 5.52

0 0 0 1 0 54.76 50.58 7.63

0 0 1 0 0 44.17 43.26 2.07

0 0 0 0 1 42.86 45.25 5.58

An essential component of an intelligent system, ANNs offer a variety of solutions
for challenging issues in agricultural research [95]. The fruit and crop industries are
using artificial intelligence technology to comply with global sustainability standards.
However, intelligent technologies that employ machine learning and artificial intelligence
are improving citrus output much as they are improving other crops [96]. ANNs can
address a wide range of problems that linear systems cannot [95]. Although ANNs come in
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a variety of forms, this study focused solely on the feed-forward back propagation network,
which is the most widely used kind [95].

Accurate and appropriate prediction of fruit production plays an important part in
the agriculture industry. However, the prediction of citrus output is an important topic
that has attracted a lot of attention from researchers recently [29,31,97,98]. This is because
citrus yield forecasting aids in the management of citrus groves as a whole, enabling
efficient farming methods and guaranteeing long-term production [94]. To our knowledge,
different studies have employed ANN modeling in the field of prediction of citrus fruit
production [29,31]. Overall, the authors report that good accuracy of the experiment was
obtained. One issue is the ANN models’ dependency on data for training. During the
model’s training phase, the internal representation of the model is modified to achieve a
specific task [99]. Moreover, it modifies the firing rules of individual neurons, the weights of
the linkages, and the connecting links by adding or removing links to modify the network
architecture [100]. Finally, the crop prediction methodology senses different soil parameters
as well as atmospheric parameters to anticipate the best crop [95].

3.7. Comparison of the Performance Criteria for Evaluation of Data Mining Algorithm, ANN
Model, and MLR Model for Citrus Yield Prediction

The statistical description of the criteria from MLR analysis for different cultivars,
which was described by Equation (2), is shown in Table 8. The performance of the ANN
model in the training phase was compared to the multiple linear regression (MLR) method
using the values of R2. For the MLR models, for all citrus cultivars, R2 ranged between
0.151 to 0.844, and for ANN, the R2 value was 0.87. These encouraging outcomes show how
the current ANN method can be used to estimate fruit yields, including of citrus fruits and
other types of fruit. Furthermore, Table 9 shows R2, mean absolute error, root mean squared
error, and the total number of instances for the performance criteria for the evaluation of
data mining algorithms using the testing dataset compared to the performance criteria
obtained using the developed ANN model. It is clear from Table 9 that the ANN gave
the best performance criteria for the evaluation of citrus yield prediction, with high R2,
low root mean squared error, and low mean absolute error compared to the performance
criteria of the data mining algorithms. As a result, the study’s use of an ANN is justified by
its ability to perform prediction tasks well.

Table 8. Statistical description of criteria from MLR analysis for different cultivars as obtained from
Excel (using the training dataset).

Statistical Criteria Washington Navel orange Valencia Orange Murcott Mandarin Fremont Mandarin Bearss Seedless Lime

Multiple R 0.389 0.602 0.919 0.752 0.785

R Square 0.151 0.362 0.844 0.565 0.616

Adjusted R Square −0.697 −0.148 0.635 0.131 0.232

Standard error 11.083 6.376 1.453 2.400 2.110

Observations 9 10 8 9 9

Table 9. R2, mean absolute error, root mean squared error, and total number of instances for
performance criteria for evaluation of data mining algorithms using testing dataset compared to the
performance criteria obtained using the developed ANN model.

Statistical Performance Criteria KStar Support Vector Regression KNN The Developed ANN Model

R2 0.196 0.474 0.481 0.83

Mean absolute error (t/ha) 4.2101 4.1542 3.7347 2.58

Root mean squared error (t/ha) 4.210 4.154 3.735 2.80

Total number of instances 10 10 10 10
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3.8. Sensitivity Analysis Results

In terms of contribution percentages, the variables ranked from high to low with
respect to the air relative humidity, precipitation, accumulated heat units, and air temper-
ature, as shown in Figure 11. However, citrus trees’ irrigation requirements are closely
related to the climate. The two most important factors in estimating water demand are
air temperature and air relative humidity [101]. Furthermore, as Figure 11 illustrates, it is
clear that qualitative data of citrus cultivars dominated the prediction of the citrus output.
However, the Valencia orange confirmed that this was a very important cultivar.
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3.9. Applying Biases and Weights of the Developed ANN Model for Citrus Yield Prediction

The weights and biases of the developed ANN model for citrus yield prediction
(applying Equation (3)) are shown in Tables 10 and 11). From the biases and weights, a
mathematical model can be created to predict the citrus yield (t/ha) of the investigated
citrus cultivars. The results provided in this study are based on data collected from different
years from 2010 to 2022. However, complete analyses over a similar time period can be
conducted in the future to validate another prediction technique to predict citrus yield.

Table 10. The weights (W1) between inputs and the hidden layer of the established ANN model for
citrus yield prediction (applying Equation (3)).

Hidden-
Layer

Neurons

W1 = Weight between Inputs and Hidden Layer

Washington
Navel

Orange

Valencia
Orange

Murcott
Mandarin

Fremont
Mandarin

Bearss
Seedless

Lime
Precipitation Air Relative

Humidity
Air

Temperature
Accumulated
Heat Units

(−) (−) (−) (−) (−) (mm/day) (%) (◦C) (◦C day)

1 0.02706 0.22408 −0.19353 −0.11105 −0.20066 0.20048 0.00278 0.15329 0.16340

2 0.28227 −0.14844 0.27830 0.22618 0.21042 0.21018 0.21475 0.00381 0.15014

3 −0.07232 0.11441 0.36355 0.18868 −0.21503 −0.18590 −0.81221 −0.12274 0.10510

4 −0.27945 −0.38290 0.71432 0.21528 0.31424 0.25154 0.96701 0.06732 −0.31144

5 −0.26332 −0.36614 0.13500 −0.11270 −0.09157 0.11206 −0.23306 −0.09903 0.12708

6 −0.08161 −0.09767 0.08355 0.14777 0.15837 −0.03501 −0.11089 0.23679 0.08912
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Table 10. Cont.

Hidden-
Layer

Neurons

W1 = Weight between Inputs and Hidden Layer

Washington
Navel

Orange

Valencia
Orange

Murcott
Mandarin

Fremont
Mandarin

Bearss
Seedless

Lime
Precipitation Air Relative

Humidity
Air

Temperature
Accumulated
Heat Units

(−) (−) (−) (−) (−) (mm/day) (%) (◦C) (◦C day)

7 −0.45998 −0.26918 0.40005 −0.32375 −0.12214 0.22730 1.01914 0.15166 −0.10975

8 0.94677 −0.77103 0.81968 0.35768 0.34135 −3.54611 −2.46647 −1.01025 0.92721

9 0.08207 0.08019 0.05564 −0.25251 0.12015 −0.29556 −0.01824 0.08736 0.11538

10 −0.04099 0.28062 0.25125 −0.12841 −0.08456 −0.42819 −0.52102 −0.19645 0.25919

11 0.05239 0.00071 0.19055 0.19843 0.02235 −0.33817 −0.79544 −0.02883 0.33441

12 0.28484 −0.19937 −0.24565 −0.21862 0.10723 −0.16196 0.11796 −0.13195 0.22028

13 −0.34234 −0.10479 0.32410 −0.02516 −0.21373 0.33522 0.90099 0.18882 −0.17925

14 −0.14330 0.05131 0.18515 0.33553 0.02950 −0.21632 −0.59631 −0.21839 0.15359

15 −0.14092 −0.08120 −0.27642 −0.18628 −0.03294 −0.27182 0.09972 −0.04396 −0.19754

16 0.19962 0.26327 0.07834 −0.09171 −0.24753 −0.49542 −0.54730 −0.45608 0.21690

17 0.04893 0.10915 0.30190 0.14554 −0.08297 −0.09957 0.16219 0.27333 0.24444

18 0.00806 0.15966 −0.20215 0.27380 0.09650 0.41072 0.22583 −0.14316 0.16863

19 0.04272 1.21867 −1.66854 −0.43737 −1.12445 −0.32190 −1.25240 0.07940 −0.51814

20 0.47787 −0.07041 −0.22739 0.33783 0.02179 −0.29617 −0.97773 −0.50066 0.23493

Table 11. The hidden layer biases (B1), weight between output and the hidden layer (W2), and output
layer biases (B2) of the established ANN model for citrus yield prediction (applying Equation (3)).

Hidden-Layer Neurons B1 = Hidden-Layer Biases W2 = Weight between Output and Hidden Layer B2 = Output-Layer Biases

1 −0.20217 −0.12134

−0.09119

2 0.06348 −0.18729

3 0.34437 1.01165

4 0.28102 −1.18529

5 −0.22902 0.21718

6 −0.17880 0.07926

7 0.21729 −1.13711

8 0.60097 −3.40222

9 −0.00136 0.22969

10 0.01510 1.00440

11 0.19488 1.01497

12 −0.10589 0.04920

13 −0.11755 −1.03328

14 0.25557 0.83525

15 0.17895 0.08788

16 0.07469 1.10082

17 0.19315 −0.03648

18 −0.20713 −0.34745

19 −0.53929 2.14854

20 0.14833 1.34962

4. Conclusions

Based on both quantitative and qualitative data, the current study’s results clearly
show that an artificial neural network (ANN) model based on citrus production prediction
might be used in practice. When training was accomplished using backpropagation and the
sigmoid transfer functions were employed, the ANN model with an architecture of 9–20–1
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appeared to achieve the maximum accuracy (R2 = 0.87 and 0.83 in the training and testing
stages, respectively) when predicting the fruit yield response to regressors. Furthermore,
the biggest influence on citrus yield was found to be the air relative humidity, with a
contribution percentage of 19.27%, as indicated by a neural network sensitivity analysis.
Furthermore, it is clear that the qualitative data had a significant influence on the citrus yield
prediction. For the relevant data subsets, the obtained relative errors between the actual and
predicted yields of Bearss Seedless lime, Murcott mandarin, Valencia orange, Washington
Navel orange, and Fremont mandarin were almost acceptable. The relative errors between
predicted and actual yields were in the range from 2.07% to 11.61%. The results confirmed
the capability of the ANN-based model to predict the citrus yield by using the known or
forecast climatic data. By implementing the right calculation tool based on the weights
and the basis that we acquired from the ANN training phase, and understanding how to
analyze and measure the data accurately, we will be able to make the kind of decisions
that will drive the prediction tool for citrus yield. The case studies and the obtainability of
the data were the two primary research limitations. According to the findings, the created
ANN model could be used in precision agriculture as a crucial component of decision-
making systems. Furthermore, using a limited number of predictors, the generated ANN
model enabled the assessment or determination of the yield of other citrus cultivars. The
innovation and superiority of this study compared with existing research can be utilized to
support the agricultural sector by sharing our ANN model for citrus yield prediction. For
other academics and practitioners interested in ANN approaches for crop yield prediction,
our paper is a useful resource and source of inspiration.
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