Estimation of Leaf Water Content of a Fruit Tree by In Situ Vis-NIR Spectroscopy Using Multiple Machine Learning Methods in Southern Xinjiang, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Collection and Preprocessing of Spectroscopic Data
2.2.2. Measurements of Leaf Water Content
2.3. Model Development
2.4. Model Evaluation
3. Results
3.1. Detection of Outliers
3.2. Descriptive Statistical Analysis
3.3. Characteristics of Leaf Spectral Profiles
3.4. Analysis of Spectral Characteristics of Different Preprocessing
3.5. Correlation Analysis of Leaf Water Content and Spectral Characteristics
3.6. Model Prediction Analysis of Different Pretreatments
3.7. Model Retesting Using Independent Sample Sets
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ge, Y.; Bai, G.; Stoerger, V.; Schnable, J.C. Temporal Dynamics of Maize Plant Growth, Water Use, and Leaf Water Content Using Automated High Throughput RGB and Hyperspectral Imaging. Comput. Electron. Agric. 2016, 127, 625–632. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Q.; Zhang, G. Rapid Determination of Leaf Water Content Using VIS/NIR Spectroscopy Analysis with Wavelength Selection. J. Spectrosc. 2012, 27, 93–105. [Google Scholar] [CrossRef]
- Menesatti, P.; Antonucci, F.; Pallottino, F.; Roccuzzo, G.; Allegra, M.; Stagno, F.; Intrigliolo, F. Estimation of Plant Nutritional Status by Vis–NIR Spectrophotometric Analysis on Orange Leaves [Citrus sinensis (L) Osbeck Cv Tarocco]. Biosyst. Eng. 2010, 105, 448–454. [Google Scholar] [CrossRef]
- Pullanagari, R.R.; Dehghan-Shoar, M.; Yule, I.J.; Bhatia, N. Field Spectroscopy of Canopy Nitrogen Concentration in Temperate Grasslands Using a Convolutional Neural Network. Remote Sens. Environ. 2021, 257, 112353. [Google Scholar] [CrossRef]
- Palmer, K.F.; Williams, D. Optical Properties of Water in the near Infrared. J. Opt. Soc. Am. 1974, 64, 1107. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, H.; Wang, H.; Peñuelas, J.; Sardans, J.; Niinemets, Ü.; Niklas, K.J.; Li, Y.; Xie, J.; Wright, I.J. Leaf Water Content Contributes to Global Leaf Trait Relationships. Nat. Commun. 2022, 13, 5525. [Google Scholar] [CrossRef]
- Kim, G.; Hong, S.-J.; Lee, A.-Y.; Lee, Y.-E.; Im, S. Moisture Content Measurement of Broadleaf Litters Using Near-Infrared Spectroscopy Technique. Remote Sens. 2017, 9, 1212. [Google Scholar] [CrossRef]
- Huang, Z.; Zhu, T.; Li, Z.; Ni, C. Non-Destructive Testing of Moisture and Nitrogen Content in Pinus Massoniana Seedling Leaves with NIRS Based on MS-SC-CNN. Appl. Sci. 2021, 11, 2754. [Google Scholar] [CrossRef]
- Johnson, J.B. Rapid Prediction of Leaf Water Content in Eucalypt Leaves Using a Handheld NIRS Instrument. Eng 2023, 4, 1198–1209. [Google Scholar] [CrossRef]
- Ali, A.; Imran, M. Evaluating the Potential of Red Edge Position (REP) of Hyperspectral Remote Sensing Data for Real Time Estimation of LAI & Chlorophyll Content of Kinnow Mandarin (Citrus reticulata) Fruit Orchards. Sci. Hortic. 2020, 267, 109326. [Google Scholar] [CrossRef]
- Ta, N.; Chang, Q.; Zhang, Y. Estimation of Apple Tree Leaf Chlorophyll Content Based on Machine Learning Methods. Remote Sens. 2021, 13, 3902. [Google Scholar] [CrossRef]
- Zhang, J.; Han, W.; Huang, L.; Zhang, Z.; Ma, Y.; Hu, Y. Leaf Chlorophyll Content Estimation of Winter Wheat Based on Visible and Near-Infrared Sensors. Sensors 2016, 16, 437. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Li, Z.; Ning, Y.; Yan, Y.; Li, Z.; Wang, N.; Wang, H. Portable Raman Spectroscopy Coupled with PLSR Analysis for Monitoring and Predicting of the Quality of Fresh-Cut Chinese Yam at Different Storage Temperatures. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 310, 123956. [Google Scholar] [CrossRef] [PubMed]
- Dotto, A.C.; Dalmolin, R.S.D.; ten Caten, A.; Grunwald, S. A Systematic Study on the Application of Scatter-Corrective and Spectral-Derivative Preprocessing for Multivariate Prediction of Soil Organic Carbon by Vis-NIR Spectra. Geoderma 2018, 314, 262–274. [Google Scholar] [CrossRef]
- Shah, S.H.; Angel, Y.; Houborg, R.; Ali, S.; McCabe, M.F. A Random Forest Machine Learning Approach for the Retrieval of Leaf Chlorophyll Content in Wheat. Remote Sens. 2019, 11, 920. [Google Scholar] [CrossRef]
- Zhu, C.; Ding, J.; Zhang, Z.; Wang, J.; Wang, Z.; Chen, X.; Wang, J. SPAD Monitoring of Saline Vegetation Based on Gaussian Mixture Model and UAV Hyperspectral Image Feature Classification. Comput. Electron. Agric. 2022, 200, 107236. [Google Scholar] [CrossRef]
- Krishna, G.; Sahoo, R.N.; Singh, P.; Bajpai, V.; Patra, H.; Kumar, S.; Dandapani, R.; Gupta, V.K.; Viswanathan, C.; Ahmad, T.; et al. Comparison of Various Modelling Approaches for Water Deficit Stress Monitoring in Rice Crop through Hyperspectral Remote Sensing. Agric. Water Manag. 2019, 213, 231–244. [Google Scholar] [CrossRef]
- Liang, L.; Geng, D.; Yan, J.; Qiu, S.; Di, L.; Wang, S.; Xu, L.; Wang, L.; Kang, J.; Li, L. Estimating Crop LAI Using Spectral Feature Extraction and the Hybrid Inversion Method. Remote Sens. 2020, 12, 3534. [Google Scholar] [CrossRef]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Ng, W.; Minasny, B.; Montazerolghaem, M.; Padarian, J.; Ferguson, R.; Bailey, S.; McBratney, A.B. Convolutional Neural Network for Simultaneous Prediction of Several Soil Properties Using Visible/near-Infrared, Mid-Infrared, and Their Combined Spectra. Geoderma 2019, 352, 251–267. [Google Scholar] [CrossRef]
- Li, M.; Pan, T.; Bai, Y.; Chen, Q. Development of a Calibration Model for near Infrared Spectroscopy Using a Convolutional Neural Network. J. Near Infrared Spectrosc. 2022, 30, 89–96. [Google Scholar] [CrossRef]
- Rehman, T.U.; Ma, D.; Wang, L.; Zhang, L.; Jin, J. Predictive Spectral Analysis Using an End-to-End Deep Model from Hyperspectral Images for High-Throughput Plant Phenotyping. Comput. Electron. Agric. 2020, 177, 105713. [Google Scholar] [CrossRef]
- Ni, C.; Wang, D.; Tao, Y. Variable Weighted Convolutional Neural Network for the Nitrogen Content Quantization of Masson Pine Seedling Leaves with Near-Infrared Spectroscopy. Spectrochim. Acta Part A 2019, 209, 32–39. [Google Scholar] [CrossRef]
- Wendel, A.; Underwood, J.; Walsh, K. Maturity Estimation of Mangoes Using Hyperspectral Imaging from a Ground Based Mobile Platform. Comput. Electron. Agric. 2018, 155, 298–313. [Google Scholar] [CrossRef]
- Sun, J.; Yang, W.; Zhang, M.; Feng, M.; Xiao, L.; Ding, G. Estimation of Water Content in Corn Leaves Using Hyperspectral Data Based on Fractional Order Savitzky-Golay Derivation Coupled with Wavelength Selection. Comput. Electron. Agric. 2021, 182, 105989. [Google Scholar] [CrossRef]
- Xiao, Q.; Tang, W.; Zhang, C.; Zhou, L.; Feng, L.; Shen, J.; Yan, T.; Gao, P.; He, Y.; Wu, N. Spectral Preprocessing Combined with Deep Transfer Learning to Evaluate Chlorophyll Content in Cotton Leaves. Plant Phenomics 2022, 2022, 9813841. [Google Scholar] [CrossRef]
- Peng, X.; Shi, T.; Song, A.; Chen, Y.; Gao, W. Estimating Soil Organic Carbon Using VIS/NIR Spectroscopy with SVMR and SPA Methods. Remote Sens. 2014, 6, 2699–2717. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Li, Z.; Liu, P.; Yuan, L. Noise-Resistant Spectral Features for Retrieving Foliar Chemical Parameters. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 10, 5369–5380. [Google Scholar] [CrossRef]
- Pu, Y.-F.; Zhou, J.-L.; Yuan, X. Fractional Differential Mask: A Fractional Differential-Based Approach for Multiscale Texture Enhancement. IEEE Trans. Image Process. 2010, 19, 491–511. [Google Scholar] [CrossRef]
- Wang, J.; Tiyip, T.; Ding, J.; Zhang, D.; Liu, W.; Wang, F. Quantitative Estimation of Organic Matter Content in Arid Soil Using Vis-NIR Spectroscopy Preprocessed by Fractional Derivative. J. Spectrosc. 2017, 2017, 1375158. [Google Scholar] [CrossRef]
- Yierxiati, A.; Mamat, S.; Baidengsha, M.; Ma, C. A Possible Fractional Order Derivative and Optimized Spectral Indices for Assessing Total Nitrogen Content in Cotton. Comput. Electron. Agric. 2020, 171, 105275. [Google Scholar] [CrossRef]
- Prilianti, K.R.; Setiyono, E.; Kelana, O.H.; Brotosudarmo, T.H.P. Deep Chemometrics for Nondestructive Photosynthetic Pigments Prediction Using Leaf Reflectance Spectra. Inf. Process. Agric. 2021, 8, 194–204. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z. Quantitative Analysis Modeling of Infrared Spectroscopy Based on Ensemble Convolutional Neural Networks. Chemom. Intell. Lab. Syst. 2018, 181, 1–10. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, D.; Cai, Z.; Wang, L.; Wang, J.; Sun, L.; Fan, X.; Shen, S.; Zhao, J. Spectral Technology and Multispectral Imaging for Estimating the Photosynthetic Pigments and SPAD of the Chinese Cabbage Based on Machine Learning. Comput. Electron. Agric. 2022, 195, 106814. [Google Scholar] [CrossRef]
- Cui, C.; Fearn, T. Modern Practical Convolutional Neural Networks for Multivariate Regression: Applications to NIR Calibration. Chemom. Intell. Lab. Syst. 2018, 182, 9–20. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Dong, Z.; Su, J.; Han, Z.; Zhou, D.; Zhao, Y.; Bao, Y. 2-D Regional Short-Term Wind Speed Forecast Based on CNN-LSTM Deep Learning Model. Energy Convers. Manag. 2021, 244, 114451. [Google Scholar] [CrossRef]
- Ge, X.; Wang, J.; Ding, J.; Cao, X.; Zhang, Z.; Liu, J.; Li, X. Combining UAV-Based Hyperspectral Imagery and Machine Learning Algorithms for Soil Moisture Content Monitoring. PeerJ 2019, 7, e6926. [Google Scholar] [CrossRef]
- Vapnik, V.N. An Overview of Statistical Learning Theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [Google Scholar] [CrossRef]
- Geladi, P.; Kowalski, B. Partial Least-Squares Regression: A Tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Hong, Y.; Liu, Y.; Chen, Y.; Liu, Y.; Yu, L.; Liu, Y.; Cheng, H. Application of Fractional-Order Derivative in the Quantitative Estimation of Soil Organic Matter Content through Visible and near-Infrared Spectroscopy. Geoderma 2019, 337, 758–769. [Google Scholar] [CrossRef]
- Li, H.-D.; Liang, Y.-Z.; Cao, D.-S.; Xu, Q.-S. Model-Population Analysis and Its Applications in Chemical and Biological Modeling. TrAC Trends Anal. Chem. 2012, 38, 154–162. [Google Scholar] [CrossRef]
- Kuang, B.; Mouazen, A.M. Calibration of Visible and near Infrared Spectroscopy for Soil Analysis at the Field Scale on Three European Farms. Eur. J. Soil Sci. 2011, 62, 629–636. [Google Scholar] [CrossRef]
- Karl, E. Taylor Summarizing Multiple Aspects of Model Performance in a Single Diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Vašát, R.; Kodešová, R.; Klement, A.; Borůvka, L. Simple but Efficient Signal Pre-Processing in Soil Organic Carbon Spectroscopic Estimation. Geoderma 2017, 298, 46–53. [Google Scholar] [CrossRef]
- Lin, D.; Li, G.; Zhu, Y.; Liu, H.; Li, L.; Fahad, S.; Zhang, X.; Wei, C.; Jiao, Q. Predicting Copper Content in Chicory Leaves Using Hyperspectral Data with Continuous Wavelet Transforms and Partial Least Squares. Comput. Electron. Agric. 2021, 187, 106293. [Google Scholar] [CrossRef]
- Cheng, T.; Rivard, B.; Sánchez-Azofeifa, A. Spectroscopic Determination of Leaf Water Content Using Continuous Wavelet Analysis. Remote Sens. Environ. 2011, 115, 659–670. [Google Scholar] [CrossRef]
- Zhao, K.; Valle, D.; Popescu, S.; Zhang, X.; Mallick, B. Hyperspectral Remote Sensing of Plant Biochemistry Using Bayesian Model Averaging with Variable and Band Selection. Remote Sens. Environ. 2013, 132, 102–119. [Google Scholar] [CrossRef]
- Dehghan-Shoar, M.H.; Orsi, A.A.; Pullanagari, R.R.; Yule, I.J. A Hybrid Model to Predict Nitrogen Concentration in Heterogeneous Grassland Using Field Spectroscopy. Remote Sens. Environ. 2023, 285, 113385. [Google Scholar] [CrossRef]
- Acquarelli, J.; van Laarhoven, T.; Gerretzen, J.; Tran, T.N.; Buydens, L.M.C.; Marchiori, E. Convolutional Neural Networks for Vibrational Spectroscopic Data Analysis. Anal. Chim. Acta 2017, 954, 22–31. [Google Scholar] [CrossRef]
- Jiang, J.; Comar, A.; Burger, P.; Bancal, P.; Weiss, M.; Baret, F. Estimation of Leaf Traits from Reflectance Measurements: Comparison between Methods Based on Vegetation Indices and Several Versions of the PROSPECT Model. Plant Methods 2018, 14, 23. [Google Scholar] [CrossRef]
- Verstraete, M.M.; Pinty, B. Designing Optimal Spectral Indexes for Remote Sensing Applications. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1254–1265. [Google Scholar] [CrossRef]
- Sanaeifar, A.; Yang, C.; de la Guardia, M.; Zhang, W.; Li, X.; He, Y. Proximal Hyperspectral Sensing of Abiotic Stresses in Plants. Sci. Total Environ. 2023, 861, 160652. [Google Scholar] [CrossRef]
- Raju, A.; Subramoniam, R. Assessing Soil Nutrient Content and Mapping in Tropical Tamil Nadu, India, through Precursors IperSpettrale Della Mission Applicative Hyperspectral Spectroscopy. Appl. Sci. 2023, 14, 186. [Google Scholar] [CrossRef]
- Zhang, P.; Guo, Z.; Ullah, S.; Melagraki, G.; Afantitis, A.; Lynch, I. Nanotechnology and Artificial Intelligence to Enable Sustainable and Precision Agriculture. Nat. Plants 2021, 7, 864–876. [Google Scholar] [CrossRef]
- Orchi, H.; Sadik, M.; Khaldoun, M. On Using Artificial Intelligence and the Internet of Things for Crop Disease Detection: A Contemporary Survey. Agriculture 2021, 12, 9. [Google Scholar] [CrossRef]
Fruit Tree Species | Fruit Tree Variety | Planted Area (hm2) | Planted Time | Distance between Plants and Rows (m) | Fertility Stage |
---|---|---|---|---|---|
Walnut | ‘Xinwen185’, ‘Xinxin2’ | 138,000 | 2003 | 6 × 5 | Fruit hardcore stage |
Apricot | ‘Kucha small white apricots’ | 4200 | 2015 | 5.5 × 6 | Maturity stage |
Jujube | ‘Huizao’ | 5000 | 2007 | 6.5 × 4.5 | Final flowering stage |
Layer Type | Model Parameters | |
---|---|---|
Input layer | The number of input bands after Pearson correlation analysis is 10 | |
Convolutional 1 (Cov1) | Convolution kernel size 1 × 1, step size 1, no zero padding at edges, number of feature maps 50 | |
Batch Normalization1 (BN1) | ||
Convolutional 2 (Cov2) | Convolution kernel size 1 × 2, step size 1, no zero padding at edges, number of feature maps 100 | |
Batch Normalization2 (BN2) | ||
Fully connected 1 (Fully1) | ||
Fully connected 2 (Fully2) | ||
Output layer | Output the predicted value of leaf water content |
Dataset | Sample Set | Number | Min /% | Max/% | Mean/% | Standard Deviation/% | Coefficient of Variation/% | |
---|---|---|---|---|---|---|---|---|
(I) | Walnut | Calibration | 70 | 43.58 | 66.34 | 56.88 | 5.06 | 8.89 |
Validation | 24 | 43.70 | 64.22 | 56.02 | 5.56 | 9.92 | ||
Total | 94 | 43.58 | 66.34 | 56.66 | 5.17 | 9.13 | ||
(II) | Apricot | Validation | 24 | 34.74 | 66.31 | 55.33 | 9.29 | 16.79 |
Total | 90 | 30.33 | 73.46 | 53.83 | 9.37 | 17.40 | ||
(III) | Jujube | Validation | 24 | 34.21 | 60.58 | 52.35 | 7.27 | 13.88 |
Total | 90 | 25.86 | 70.08 | 51.82 | 7.31 | 4.11 | ||
(IV) | Mixed sample sets | Validation | 73 | 36.69 | 72.57 | 55.34 | 6.81 | 12.31 |
Total | 274 | 25.86 | 73.46 | 54.14 | 7.69 | 4.21 |
Preprocessing Method | Scale | Feature Bands (nm) |
---|---|---|
CWT | 1 | 2008, 806, 2273, 2192, 1273, 803, 1497, 1008, 962, 1174 |
2 | 1597, 1273, 1173, 1174, 2277, 1137, 1269, 1591, 2278, 1709 | |
3 | 2194, 2193, 1253, 1716, 1717, 1251, 1252, 2202, 2203, 2192 | |
4 | 1593, 1594, 1000, 1609, 1608, 1610, 1607, 1611, 1606, 1612 | |
5 | 997, 998, 1289, 1290, 2061, 2062, 2060, 2063, 2064, 2059 | |
FOD | 0.6 | 696, 697, 695, 698, 694, 693, 699, 700, 692, 701 |
0.9 | 650, 654, 639, 637, 638, 658, 661, 636, 647, 651 | |
1.2 | 639, 619, 637, 616, 638, 633, 614, 636, 647, 691 | |
1.5 | 543, 638, 613, 609, 636, 691, 690, 692, 507, 1026 | |
1.8 | 707, 704, 706, 708, 703, 709, 542, 690, 691, 507 |
Scale | Model | Calibration | Validation | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE/% | SD/% | R2 | RMSE/% | SD/% | ||
1 | CNN | 0.760 | 2.539 | 3.781 | 0.957 | 1.226 | 4.987 |
RFR | 0.900 | 2.298 | 3.122 | 0.948 | 2.973 | 2.657 | |
SVM | 0.670 | 2.886 | 4.077 | 0.821 | 2.546 | 4.195 | |
PLSR | 0.422 | 3.820 | 3.164 | 0.547 | 3.866 | 2.852 | |
2 | CNN | 0.923 | 1.434 | 4.511 | 0.976 | 0.863 | 5.298 |
RFR | 0.916 | 2.246 | 3.118 | 0.834 | 3.039 | 2.955 | |
SVM | 0.683 | 2.828 | 4.113 | 0.941 | 1.562 | 4.667 | |
PLSR | 0.332 | 4.105 | 2.846 | 0.352 | 4.388 | 3.073 | |
3 | CNN | 0.946 | 1.244 | 4.488 | 0.966 | 1.042 | 5.176 |
RFR | 0.866 | 2.402 | 3.146 | 0.900 | 2.873 | 2.931 | |
SVM | 0.364 | 4.098 | 2.656 | 0.559 | 3.710 | 4.410 | |
PLSR | 0.220 | 4.446 | 2.046 | 0.216 | 4.826 | 2.332 | |
4 | CNN | 0.591 | 3.308 | 3.089 | 0.988 | 0.62 | 5.367 |
RFR | 0.880 | 2.704 | 2.657 | 0.838 | 2.838 | 3.248 | |
SVM | 0.287 | 4.278 | 2.242 | 0.506 | 3.937 | 3.866 | |
PLSR | 0.006 | 7.263 | 5.683 | 0.118 | 5.316 | 3.407 | |
5 | CNN | 0.851 | 2.073 | 3.924 | 0.945 | 1.294 | 5.194 |
RFR | 0.892 | 2.541 | 2.831 | 0.808 | 3.217 | 2.796 | |
SVM | 0.330 | 4.139 | 2.671 | 0.692 | 3.134 | 3.809 | |
PLSR | 0.109 | 4.742 | 1.493 | 0.089 | 5.373 | 3.053 |
Scale | Model | Calibration | Validation | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE/% | SD/% | R2 | RMSE/% | SD/% | ||
0.6 | CNN | 0.537 | 3.496 | 2.943 | 0.925 | 1.762 | 4.386 |
RFR | 0.803 | 2.825 | 2.783 | 0.788 | 3.030 | 3.202 | |
SVM | 0.189 | 4.545 | 2.422 | 0.267 | 4.665 | 2.788 | |
PLSR | 0.131 | 4.693 | 1.461 | 0.256 | 4.740 | 2.151 | |
0.9 | CNN | 0.856 | 1.954 | 4.228 | 0.974 | 0.888 | 5.309 |
RFR | 0.814 | 2.577 | 3.158 | 0.882 | 2.597 | 3.384 | |
SVM | 0.302 | 4.222 | 2.605 | 0.771 | 2.681 | 4.254 | |
PLSR | 0.251 | 4.383 | 1.950 | 0.451 | 4.169 | 2.659 | |
1.2 | CNN | 0.932 | 1.363 | 4.485 | 0.949 | 1.274 | 5.073 |
RFR | 0.824 | 2.508 | 3.222 | 0.827 | 2.925 | 3.162 | |
SVM | 0.441 | 3.830 | 2.737 | 0.560 | 3.787 | 3.813 | |
PLSR | 0.250 | 4.356 | 2.273 | 0.523 | 3.878 | 3.042 | |
1.5 | CNN | 0.622 | 3.108 | 3.624 | 0.919 | 1.595 | 4.947 |
RFR | 0.859 | 2.468 | 3.120 | 0.845 | 2.925 | 3.083 | |
SVM | 0.504 | 3.581 | 3.236 | 0.662 | 3.228 | 4.247 | |
PLSR | 0.350 | 4.051 | 2.792 | 0.416 | 4.211 | 2.918 | |
1.8 | CNN | 0.854 | 1.968 | 4.243 | 0.919 | 1.595 | 4.963 |
RFR | 0.879 | 2.384 | 3.107 | 0.896 | 2.503 | 3.451 | |
SVM | 0.450 | 3.837 | 2.813 | 0.763 | 2.863 | 3.807 | |
PLSR | 0.249 | 4.364 | 2.170 | 0.327 | 4.481 | 2.779 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, J.; Sawut, M.; Ailijiang, N.; Manlike, A.; Hu, X. Estimation of Leaf Water Content of a Fruit Tree by In Situ Vis-NIR Spectroscopy Using Multiple Machine Learning Methods in Southern Xinjiang, China. Agronomy 2024, 14, 1664. https://doi.org/10.3390/agronomy14081664
Cui J, Sawut M, Ailijiang N, Manlike A, Hu X. Estimation of Leaf Water Content of a Fruit Tree by In Situ Vis-NIR Spectroscopy Using Multiple Machine Learning Methods in Southern Xinjiang, China. Agronomy. 2024; 14(8):1664. https://doi.org/10.3390/agronomy14081664
Chicago/Turabian StyleCui, Jintao, Mamat Sawut, Nuerla Ailijiang, Asiya Manlike, and Xin Hu. 2024. "Estimation of Leaf Water Content of a Fruit Tree by In Situ Vis-NIR Spectroscopy Using Multiple Machine Learning Methods in Southern Xinjiang, China" Agronomy 14, no. 8: 1664. https://doi.org/10.3390/agronomy14081664