Natural Variation and Association Analysis of Melatonin Synthesis Genes with Root-Related Traits in the Maize Seedling Stage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials, Growth Conditions, and Phenotyping
2.2. DNA Isolation and Re-Sequencing of Genes Involved in Melatonin Synthesis
2.3. Association Analysis between Nine Melatonin Synthesis Genes and Root Traits
2.4. Generation of ZmTDC4 Transgenic Maize Plants and Phenotypic Analysis
3. Results
3.1. Sequence Polymorphisms of Genes Involved in Melatonin Biosynthesis
3.2. Nucleotide Diversity of Melatonin Biosynthesis Genes in Teosintes, Landraces, and Inbred Lines
3.3. Association Analysis Identifies Genetic Determinants of Root Traits
3.4. ZmTDC4 Is Significantly Associated with Root Development
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hake, S.; Ross-Ibarra, J. Genetic, evolutionary and plant breeding insights from the domestication of maize. eLife 2015, 4, e05861. [Google Scholar] [CrossRef] [PubMed]
- Osmont, K.S.; Sibout, R.; Hardtke, C.S. Hidden Branches: Developments in root system architecture. Annu. Rev. Plant Biol. 2007, 58, 93–113. [Google Scholar] [CrossRef]
- Lynch, J.P. Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. 2013, 112, 347–357. [Google Scholar] [CrossRef]
- Meister, R.; Rajani, M.S.; Ruzicka, D.; Schachtman, D.P. Challenges of modifying root traits in crops for agriculture. Trends Plant Sci. 2014, 19, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhong, Y.; Han, J.; Huang, L.; Wang, Y.; Shi, X.; Li, M.; Zhuang, Y.; Ren, W.; Liu, X.; et al. NIN-LIKE PROTEIN3. 2 inhibits repressor Aux/IAA14 expression and enhances root biomass in maize seedlings under low nitrogen. Plant Cell 2024, 2024, koae184. [Google Scholar] [CrossRef] [PubMed]
- Hochholdinger, F.; Park, W.J.; Sauer, M.; Woll, K. From weeds to crops: Genetic analysis of root development in cereals. Trends Plant Sci. 2004, 9, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Hochholdinger, F. The maize root system: Morphology, anatomy, and genetics. In Handbook of Maize: Its Biology; Springer: Berlin/Heidelberg, Germany, 2009; pp. 145–160. [Google Scholar]
- Atkinson, J.A.; Rasmussen, A.; Traini, R.; Voß, U.; Sturrock, C.; Mooney, S.J.; Wells, D.M.; Bennett, M.J. Branching out in roots: Uncovering form, function, and regulation. Plant Physiol. 2014, 166, 538–550. [Google Scholar] [CrossRef] [PubMed]
- Salvi, S.; Giuliani, S.; Ricciolini, C.; Carraro, N.; Maccaferri, M.; Presterl, T.; Ouzunova, M.; Tuberosa, R. Two major quantitative trait loci controlling the number of seminal roots in maize co-map with the root developmental genes rtcs and rum1. J. Exp. Bot. 2016, 67, 1149–1159. [Google Scholar] [CrossRef]
- Yu, P.; Hochholdinger, F.; Li, C. Plasticity of lateral root branching in maize. Front. Plant Sci. 2019, 10, 363. [Google Scholar] [CrossRef]
- Tan, D.X. Melatonin: A potent, endogenous hydroxyl radical scavenger. J. Pineal Res. 1993, 1, 57–60. [Google Scholar]
- Reiter, R.J.; Tan, D.X.; Galano, A. Melatonin: Exceeding expectations. Physiology 2014, 29, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Schippers, K.J.; Nichols, S.A. Deep, dark secrets of melatonin in animal evolution. Cell 2014, 159, 9–10. [Google Scholar] [CrossRef]
- Khan, M.; Hussain, A.; Yun, B.-W.; Mun, B.-G. Melatonin: The multifaceted molecule in plant growth and defense. Int. J. Mol. Sci. 2024, 25, 6799. [Google Scholar] [CrossRef]
- Tosches, M.A.; Bucher, D.; Vopalensky, P.; Arendt, D. Melatonin signaling controls circadian swimming behavior in marine zooplankton. Cell 2014, 159, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhang, Q.; Hua, C.; Ci, X. Melatonin alleviates particulate matter-induced liver fibrosis by inhibiting ROS-mediated mitophagy and inflammation via Nrf2 activation. Ecotoxicol. Environ. Saf. 2023, 268, 115717. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernández-Ruiz, J. Melatonin: Plant growth regulator and/or biostimulator during stress? Trends Plant Sci. 2014, 19, 789–797. [Google Scholar] [CrossRef]
- Khan, Z.; Jan, R.; Asif, S.; Farooq, M.; Jang, Y.-H.; Kim, E.-G.; Kim, N.; Kim, K.-M. Exogenous melatonin induces salt and drought stress tolerance in rice by promoting plant growth and defense system. Sci. Rep. 2024, 14, 1214. [Google Scholar] [CrossRef] [PubMed]
- Erland, L.A.E. Views and perspectives on the indoleamines serotonin and melatonin in plants: Past, present and future. Plant Signal. Behav. 2024, 19, 2366545. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Wang, D.; Delaplace, P.; Pan, Y.; Zhou, Y.; Tang, W.; Chen, K.; Chen, J.; Xu, Z.; Ma, Y.; et al. Melatonin enhances drought tolerance by affecting jasmonic acid and lignin biosynthesis in wheat (Triticum aestivum L.). Plant Physiol. Biochem. 2023, 202, 107974. [Google Scholar] [CrossRef]
- Miao, R.; Li, Z.; Yuan, Y.; Yan, X.; Pang, Q.; Zhang, A. Endogenous melatonin involved in plant salt response by impacting auxin signaling. Plant Cell Rep. 2024, 43, 33. [Google Scholar] [CrossRef]
- Bajwa, V.S.; Shukla, M.R.; Sherif, S.M.; Murch, S.J.; Saxena, P.K. Role of melatonin in alleviating cold stress in Arabidopsis thaliana. J. Pineal Res. 2014, 56, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Byeon, Y.; Back, K. Melatonin synthesis in rice seedlings in vivo is enhanced at high temperatures and under dark conditions due to increased serotonin N-acetyltransferase and N-acetylserotonin methyltransferase activities. J. Pineal Res. 2013, 56, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Rehaman, A.; Mishra, A.K.; Ferdose, A.; Per, T.S.; Hanief, M.; Jan, A.T.; Asgher, M. Melatonin in plant defense against abiotic stress. Forests 2021, 12, 1404. [Google Scholar] [CrossRef]
- Mao, J.; Niu, C.; Li, K.; Chen, S.; Tahir, M.M.; Han, M.; Zhang, D. Melatonin promotes adventitious root formation in apple by promoting the function of MdWOX11. BMC Plant Biol. 2020, 20, 536. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Rutto, L.; Katuuramu, D. Melatonin acts synergistically with auxin to promote lateral root development through fine tuning auxin transport in Arabidopsis thaliana. PLoS ONE 2019, 14, e0221687. [Google Scholar] [CrossRef]
- Park, S.; Back, K. Melatonin promotes seminal root elongation and root growth in transgenic rice after germination. J. Pineal Res. 2012, 53, 385–389. [Google Scholar] [CrossRef]
- Chen, J.; Li, H.; Yang, K.; Wang, Y.; Yang, L.; Hu, L.; Liu, R.; Shi, Z. Melatonin facilitates lateral root development by coordinating PAO-derived hydrogen peroxide and Rboh-derived superoxide radical. Free. Radic. Biol. Med. 2019, 143, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Su, T.; Huo, L.; Wei, H.; Jiang, Y.; Xu, L.; Ma, F. Unveiling the mechanism of melatonin impacts on maize seedling growth: Sugar metabolism as a case. J. Pineal Res. 2015, 59, 255–266. [Google Scholar] [CrossRef]
- Liu, G.; Hu, Q.; Zhang, X.; Jiang, J.; Zhang, Y.; Zhang, Z. Melatonin biosynthesis and signal transduction in plants in response to environmental conditions. J. Exp. Bot. 2022, 73, 5818–5827. [Google Scholar] [CrossRef]
- Colombage, R.; Singh, M.B.; Bhalla, P.L. Melatonin and abiotic stress tolerance in crop plants. Int. J. Mol. Sci. 2023, 24, 7447. [Google Scholar] [CrossRef]
- Tan, D.-X.; Reiter, R.J. An evolutionary view of melatonin synthesis and metabolism related to its biological functions in plants. J. Exp. Bot. 2020, 71, 4677–4689. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Kang, K.; Lee, K.; Back, K. Characterization of rice tryptophan decarboxylases and their direct involvement in serotonin biosynthesis in transgenic rice. Planta 2007, 227, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Kang, K.; Lee, K.; Back, K. Characterization of tryptamine 5-hydroxylase and serotonin synthesis in rice plants. Plant Cell Rep. 2007, 26, 2009–2015. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Back, K. Melatonin-deficient rice plants show a common semidwarf phenotype either dependent or independent of brassinosteroid biosynthesis. J. Pineal Res. 2019, 66, e12537. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, A.; Hashimoto, Y.; Tanaka, C.; Dubouzet, J.G.; Nakao, T.; Matsuda, F.; Nishioka, T.; Miyagawa, H.; Wakasa, K. The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonin production. Plant J. 2008, 54, 481–495. [Google Scholar] [CrossRef]
- Back, K. Melatonin metabolism, signaling and possible roles in plants. Plant J. 2020, 105, 376–391. [Google Scholar] [CrossRef]
- Qi, Z.; Guo, C.; Li, H.; Qiu, H.; Li, H.; Jong, C.; Yu, G.; Zhang, Y.; Hu, L.; Wu, X.; et al. Natural variation in Fatty Acid 9 is a determinant of fatty acid and protein content. Plant Biotechnol. J. 2024, 22, 759–773. [Google Scholar] [CrossRef]
- Jiang, L.; Guo, T.; Song, X.; Jiang, H.; Lu, M.; Luo, J.; Rossi, V.; He, Y. MSH7 confers quantitative variation in pollen fertility and boosts grain yield in maize. Plant Biotechnol. J. 2024, 22, 1372–1386. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, S.; Liu, C.-B.; Zhang, M.; Fu, X.-Q.; Wang, Y.-L.; Song, T.; Chao, Z.-F.; Han, M.-L.; Tian, Z.; et al. Natural variants of molybdate transporters contribute to yield traits of soybean by affecting auxin synthesis. Curr. Biol. 2023, 33, 5355–5367.e5. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, T.; Yang, J.; Wang, H.; Ji, W.; Xu, Y.; Yang, Z.; Xu, C.; Li, P. GWAS and transcriptome analysis reveal key genes affecting root growth under low nitrogen supply in maize. Genes. 2022, 13, 1632. [Google Scholar] [CrossRef]
- Choi, M.; Scholl, U.I.; Ji, W.; Liu, T.; Tikhonova, I.R.; Zumbo, P.; Nayir, A.; Bakkaloğlu, A.; Özen, S.; Sanjad, S.; et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc. Natl. Acad. Sci. USA 2009, 106, 19096–19101. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Nei, M.; Miller, J.C. A simple method for estimating average number of nucleotide substitutions within and between populations from restriction data. Genetics 1990, 125, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.-X.; Li, W.-H. Statistical tests of neutrality of mutations. Genetics 1993, 133, 693–709. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef] [PubMed]
- Rogers, E.D.; Benfey, P.N. Regulation of plant root system architecture: Implications for crop advancement. Curr. Opin. Biotechnol. 2015, 32, 93–98. [Google Scholar] [CrossRef]
- Yang, L.; You, J.; Li, J.; Wang, Y.; Chan, Z. Melatonin promotes Arabidopsis primary root growth in an IAA-dependent manner. J. Exp. Bot. 2021, 72, 5599–5611. [Google Scholar] [CrossRef]
- Chang, Q.; Zhang, L.; Chen, S.; Gong, M.; Liu, L.; Hou, X.; Mi, Y.; Wang, X.; Wang, J.; Zhang, Y.; et al. Exogenous Melatonin enhances the yield and secondary metabolite contents of prunella vulgaris by modulating antioxidant system, root architecture and photosynthetic capacity. Plants 2023, 12, 1129. [Google Scholar] [CrossRef]
- Singh, J.; Gezan, S.A.; Vallejos, C.E. Developmental pleiotropy shaped the roots of the domesticated common bean (Phaseolus vulgaris). Plant Physiol. 2019, 180, 1467–1479. [Google Scholar] [CrossRef] [PubMed]
- York, L.M.; Galindo-Castañeda, T.; Schussler, J.R.; Lynch, J.P. Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress. J. Exp. Bot. 2015, 66, 2347–2358. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Lin, Z.; Wang, J.; Xu, M.; Lai, J.; Yu, J.; Lin, Z. The genetic architecture of nodal root number in maize. Plant J. 2018, 93, 1032–1044. [Google Scholar] [CrossRef] [PubMed]
- Uga, Y.; Sugimoto, K.; Ogawa, S.; Rane, J.; Ishitani, M.; Hara, N.; Kitomi, Y.; Inukai, Y.; Ono, K.; Kanno, N.; et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat. Genet. 2013, 45, 1097–1102. [Google Scholar] [CrossRef]
- Gamuyao, R.; Chin, J.H.; Pariasca-Tanaka, J.; Pesaresi, P.; Catausan, S.; Dalid, C.; Slamet-Loedin, I.; Tecson-Mendoza, E.M.; Wissuwa, M.; Heuer, S. The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 2012, 488, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Ni, Y.; Qiao, T.; Ji, X.; Xu, J.; Li, B.; Sun, Q. Overexpression of VvASMT1 from grapevine enhanced salt and osmotic stress tolerance in Nicotiana benthamiana. PLoS ONE 2022, 17, e0269028. [Google Scholar] [CrossRef] [PubMed]
- Zuo, B.; Zheng, X.; He, P.; Wang, L.; Lei, Q.; Feng, C.; Zhou, J.; Li, Q.; Han, Z.; Kong, J. Overexpression of MzASMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis thaliana plants. J. Pineal Res. 2014, 57, 408–417. [Google Scholar] [CrossRef]
- Gou, Y.; Heng, Y.; Ding, W.; Xu, C.; Tan, Q.; Li, Y.; Fang, Y.; Li, X.; Zhou, D.; Zhu, X.; et al. Natural variation in OsMYB8 confers diurnal floret opening time divergence between indica and japonica subspecies. Nat. Commun. 2024, 15, 2262. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Fu, M.; Li, W.; Dong, Y.; Zhou, Q.; Wang, Q.; Li, X.; Gao, J.; Wang, Y.; Wang, H.; et al. Genetic variation in ZmKW1 contributes to kernel weight and size in dent corn and popcorn. Plant Biotechnol. J. 2024, 22, 1453–1467. [Google Scholar] [CrossRef]
- Mao, H.; Li, S.; Chen, B.; Jian, C.; Mei, F.; Zhang, Y.; Li, F.; Chen, N.; Li, T.; Du, L.; et al. Variation in cis-regulation of a NAC transcription factor contributes to drought tolerance in wheat. Mol. Plant 2022, 15, 276–292. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Liu, S.; Ferjani, A.; Li, J.; Yan, J.; Yang, X.; Qin, F. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat. Genet. 2016, 48, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
Parameters | ZmTDC1 | ZmTDC2 | ZmTDC3 | ZmTDC4 | ZmT5H | ZmSNAT | ZmASMT1 | ZmASMT2 | ZmCOMT |
---|---|---|---|---|---|---|---|---|---|
Total length of amplicons (bp) | 4161 | 3832 | 4628 | 4109 | 3437 | 10,152 | 3919 | 4771 | 4270 |
Number of all the sequence variants | 437 | 527 | 554 | 591 | 343 | 1405 | 400 | 767 | 294 |
Frequency of all of the sequence variants | 9.52 | 7.27 | 8.35 | 6.95 | 10.02 | 7.23 | 9.8 | 6.22 | 14.52 |
Number of polymorphic sites | 345 | 439 | 443 | 465 | 286 | 1093 | 306 | 621 | 223 |
Frequency of polymorphic sites per bp | 12.1 | 8.7 | 10.4 | 8.8 | 12 | 9.3 | 12.8 | 7.7 | 19.1 |
Number of InDel sites | 92 | 88 | 111 | 126 | 57 | 312 | 94 | 146 | 71 |
Average InDel length | 4.1 | 3.6 | 4.68 | 2.9 | 2.75 | 3.65 | 3.23 | 2.6 | 3.66 |
Frequency of InDels per bp | 45.2 | 43.5 | 41.7 | 32.6 | 60.3 | 32.5 | 41.7 | 32.7 | 60.1 |
Π × 1000 | 6.51 | 8.54 | 4.97 | 14.5 | 11.43 | 16.22 | 14.24 | 19.25 | 7.59 |
θ × 1000 | 21.2 | 24.71 | 21.18 | 29.91 | 25.24 | 29.47 | 27.37 | 31.46 | 16.9 |
Tajima’s D | −2.101 ** | −1.990 * | −2.327 ** | −1.568 | −1.654 | −1.376 | −1.453 | −1.184 | −1.658 |
Fu and Li’s D | −7.420 ** | −7.418 ** | −8.610 ** | −5.295 ** | −6.781 ** | −6.491 ** | −6.384 ** | −6.112 ** | −8.466 ** |
Fu and Li’s F | −5.288 ** | −5.169 ** | −6.015 ** | −3.776 ** | −4.700 ** | −4.193 ** | −4.335 ** | −3.924 ** | −5.673 ** |
Gene | Population | π × 1000 | θ × 1000 | TD | D | F |
---|---|---|---|---|---|---|
ZmTDC1 | Inbreds (A) | 4.09 | 4.47 | −0.251 | −7.537 ** | −4.689 ** |
Landraces | 5.16 | 8.32 | −2.134 * | −3.039 * | −3.044 ** | |
Teosintes | 23.65 | 31.67 | −0.976 | −1.632 | −1.52 | |
ZmTDC2 | Inbreds (A) | 8.58 | 6.9 | 0.731 | −1.573 | −0.465 |
Landraces | 9.15 | 12.66 | −0.967 | −3.281 ** | −2.655 * | |
Teosintes | 23.33 | 38.76 | −1.538 | −1.739 | −1.795 | |
ZmTDC3 | Inbreds (A) | 3.18 | 2.9 | 0.286 | −5.033 ** | −2.972 ** |
Landraces | 3.77 | 7.07 | −1.611 | −3.458 ** | −3.088 ** | |
Teosintes | 21.31 | 30.44 | −1.158 | −1.786 | −1.698 | |
ZmTDC4 | Inbreds (A) | 14.55 | 12.08 | 0.625 | 1.022 | 1.026 |
Landraces | 23.53 | 24.81 | −0.181 | −0.501 | −0.357 | |
Teosintes | 42.75 | 53 | −0.748 | −0.815 | −0.845 | |
ZmT5H | Inbreds (A) | 12.01 | 8.32 | 1.327 | 0.564 | 1.132 |
Landraces | 12.71 | 14.71 | −0.473 | −1.442 | −1.202 | |
Teosintes | 23.61 | 32.45 | −1.05 | −1.54 | −1.498 | |
ZmSNAT | Inbreds (A) | 15.54 | 10.92 | 1.305 | 1.486 | 1.68 |
Landraces | 21.9 | 23.89 | −0.294 | −1.369 | −0.973 | |
Teosintes | 34.62 | 46.25 | −0.975 | −1.195 | −1.169 | |
ZmASMT1 | Inbreds (A) | 16.08 | 13.2 | 0.663 | 0.659 | 0.786 |
Landraces | 19.63 | 21.38 | −0.286 | 0.169 | 0.083 | |
Teosintes | 34.3 | 50.42 | −1.234 | −1.872 | −1.799 | |
ZmASMT2 | Inbreds (A) | 21.09 | 12.64 | 2.05 | 1.118 | 1.881 * |
Landraces | 22.46 | 20.78 | 0.284 | 0.33 | 0.395 | |
Teosintes | 33.12 | 49.33 | −1.271 | −1.588 | −1.609 | |
ZmCOMT | Inbreds (A) | 10 | 6.19 | 1.827 | −0.839 | 0.568 |
Landraces | 12.36 | 11.49 | 0.262 | −0.603 | −0.275 | |
Teosintes | 19.29 | 32.15 | −1.541 | −2.382 | −2.319 |
Trait | Marker | Alleles | Gene | Pos | p-Value | r2 | Region |
---|---|---|---|---|---|---|---|
LRL | SNP-1824 | T/A | ZmTDC4 | −1824 | 0.000127 | 0.052999 | Upstream |
LRL | SNP-1784 | C/T | ZmTDC4 | −1784 | 2.31 × 10−5 | 0.065923 | Upstream |
LRL | SNP-1621 | C/T | ZmTDC4 | −1621 | 0.00025 | 0.047588 | Upstream |
LRL | InDel-1559 | G/− | ZmTDC4 | −1559 | 0.000426 | 0.044274 | Upstream |
LRL | InDel-1558 | A/− | ZmTDC4 | −1558 | 0.000426 | 0.044274 | Upstream |
TRL | SNP-1824 | T/A | ZmTDC4 | −1824 | 0.000142 | 0.051605 | Upstream |
TRL | SNP-1784 | C/T | ZmTDC4 | −1784 | 3.25 × 10−5 | 0.062842 | Upstream |
TRL | SNP-1621 | C/T | ZmTDC4 | −1621 | 0.00022 | 0.048104 | Upstream |
TRL | InDel-1559 | G/− | ZmTDC4 | −1559 | 0.000317 | 0.045821 | Upstream |
TRL | InDel-1558 | A/− | ZmTDC4 | −1558 | 0.000317 | 0.045821 | Upstream |
RA | SNP-1824 | T/A | ZmTDC4 | −1824 | 9.60 × 10−5 | 0.054849 | Upstream |
RA | SNP-1784 | C/T | ZmTDC4 | −1784 | 1.71 × 10−5 | 0.067742 | Upstream |
RV | SNP-1824 | T/A | ZmTDC4 | −1824 | 0.000128 | 0.053491 | Upstream |
RV | SNP-1784 | C/T | ZmTDC4 | −1784 | 3.04 × 10−5 | 0.064379 | Upstream |
RV | SNP-1729 | A/T | ZmTDC4 | −1729 | 0.000319 | 0.047004 | Upstream |
RV | SNP-1478 | C/T | ZmTDC4 | −1478 | 0.000256 | 0.048183 | Upstream |
RV | SNP-559 | C/T | ZmTDC4 | −559 | 0.000432 | 0.045902 | Upstream |
PRL | InDel1305 | --/AT | ZmASMT1 | 1305 | 0.000142 | 0.050241 | 3′UTR |
CRN | SNP-1642 | G/A | ZmASMT2 | −1642 | 3.29 × 10−5 | 0.052575 | Upstream |
CRN | SNP-987 | T/C | ZmASMT2 | −987 | 8.23 × 10−5 | 0.046927 | Upstream |
CRN | SNP1047 | T/C | ZmASMT2 | 1047 | 0.000186 | 0.058105 | Intron1 |
CRN | SNP1055 | T/C | ZmASMT2 | 1055 | 0.00024 | 0.056122 | Intron1 |
CRN | SNP1283 | A/G | ZmASMT2 | 1283 | 0.000439 | 0.037222 | Intron1 |
CRN | SNP1285 | C/T | ZmASMT2 | 1285 | 0.000439 | 0.037222 | Intron1 |
CRN | SNP1299 | C/A | ZmASMT2 | 1299 | 0.000404 | 0.038014 | Intron1 |
CRN | SNP2028 | C/T | ZmASMT2 | 2028 | 0.000284 | 0.03973 | Exon2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, S.; Li, W.; Wang, B.; Zhu, X.; Tian, H.; Zhu, T.; Sun, D.; Yang, A.; Duan, Y.; Yan, Y.; et al. Natural Variation and Association Analysis of Melatonin Synthesis Genes with Root-Related Traits in the Maize Seedling Stage. Agronomy 2024, 14, 2031. https://doi.org/10.3390/agronomy14092031
Fang S, Li W, Wang B, Zhu X, Tian H, Zhu T, Sun D, Yang A, Duan Y, Yan Y, et al. Natural Variation and Association Analysis of Melatonin Synthesis Genes with Root-Related Traits in the Maize Seedling Stage. Agronomy. 2024; 14(9):2031. https://doi.org/10.3390/agronomy14092031
Chicago/Turabian StyleFang, Shuai, Wei Li, Baoqing Wang, Xinjie Zhu, Huanling Tian, Tianze Zhu, Dan Sun, Aiqing Yang, Yamin Duan, Yuxing Yan, and et al. 2024. "Natural Variation and Association Analysis of Melatonin Synthesis Genes with Root-Related Traits in the Maize Seedling Stage" Agronomy 14, no. 9: 2031. https://doi.org/10.3390/agronomy14092031