Selenium’s Role in Plant Secondary Metabolism: Regulation and Mechanistic Insights
Abstract
:1. Introduction
2. Absorption, Transport, and Metabolism of Se in Plants
2.1. Se Absorption Mechanism and Transport Pathway
2.2. Metabolic Pathways of Se in Plants
2.3. Effect of Se on Primary Metabolites in Plants
3. Effect of Se on Secondary Metabolites in Plants
3.1. Phenolic Compounds
Plant | Se Application | Secondary Metabolites (Content) | Overall Changes (Compared to Control) | Reference |
---|---|---|---|---|
Soybean | hydroponics Na2SeO3 | total phenolic compound | ↑ | [41] |
total flavonoid | It shows a tendency of increasing at the beginning and decreasing later. | |||
Ocimum basilicum L. | hydroponics/foliar application Na2SeO4 | total hydroxycinnamic acid | ↑ | [43] |
total phenolic compound | ↑ | |||
total flavonoid | NS | |||
total anthocyanin | ↑ | |||
Purple lettuce | hydroponics Na2SeO3 | anthocyanin | ↑ | [44] |
Red pitaya fruit | soil/foliar application NPs-Se (50–78 nm) | chlorogenic acid | ↑ | [45] |
caffeic acid | ↑ | |||
ferulic acid | ↑ | |||
ellagic acid | ↓ | |||
rutin | ↓ | |||
betacyanins | ↑ | |||
total phenolic compound | ↑ | |||
total flavonoid | ↑ | |||
Pepper | soil application NPs-Se | chlorogenic acid | ↑ (roots) | [49] |
caffeic acid | ↑ (roots) | |||
vanillic acid | ↑ (leaves) | |||
p-hydroxybenzonic acid | ↑ (leaves) | |||
syringic acid | ↑ (leaves) | |||
ferulic acid | ↑ (fruits) | |||
apigenin | ↑ (fruits) | |||
rutin | ↑ | |||
luteolin | ↑ | |||
Tomato | hydroponics/foliar application Na2SeO4 | chlorogenic acid | ↑ | [46] |
4-O-caffeoylquinic acid | ↑ | |||
caffeic acid hexose 1 | ↑ | |||
quinic acid derivatives | ↑ | |||
kaempferol | ↑ | |||
rutin | ↑ | |||
Radish | hydroponics/foliar application Na2SeO4 | total phenolic compound | ↑ (leaves) ↓ (roots) | [47] |
caffeic acid | ↑ (leaves) | |||
coumaric acid | ↑ (leaves) ↓ (roots) | |||
sinapic acid | ↑ (leaves) | |||
ferulic acid | ↑ (leaves) ↓ (roots) | |||
Chickpea | hydroponics Na2SeO3 | total phenolic compound | It shows a tendency of increasing at the beginning and decreasing later. | [42] |
isoflavones | ||||
Purple-grained wheat (202w17 and Shannong 129) | soil and foliar applications as the form of Se4+ (Se-enriched solid fertilizer and Se-enriched nutrient solution) | total anthocyanin | ↑ (foliar application > soil application, 202w17) NS (Shannong 129) | [48] |
Lycium chinense L. | nutrient solution Na2SeO3 | chlorogenic acid | ↑ | [50] |
rutin | ↓ |
3.2. Terpenes
3.3. Alkaloids
3.4. Other Secondary Metabolites
4. Potential Mechanism of Se Regulation on Secondary Metabolites in Plants
4.1. Effects of Se on Primary Carbon and Nitrogen Metabolic Pathways in Plants
4.2. Effect of Se on Biosynthesis Pathway of Secondary Metabolism in Plants
4.2.1. Direct Effect of Se on Key Enzymes
4.2.2. Transcriptional Regulation of Se on Secondary Metabolic Pathways
4.3. Se and Plant Hormones Regulate Secondary Metabolites
4.4. Relationship Between Se-Induced Oxidative Stress and Secondary Metabolites
5. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qu, L.; Xu, J.; Dai, Z.; Elyamine, A.M.; Huang, W.; Han, D.; Dang, B.; Xu, Z.; Jia, W. Selenium in Soil-Plant System: Transport, Detoxification and Bioremediation. J. Hazard. Mater. 2023, 452, 131272. [Google Scholar] [CrossRef] [PubMed]
- Tangjaidee, P.; Swedlund, P.; Xiang, J.; Yin, H.; Quek, S.Y. Selenium-Enriched Plant Foods: Selenium Accumulation, Speciation, and Health Functionality. Front. Nutr. 2023, 9, 962312. [Google Scholar] [CrossRef]
- Cheng, H.; Chang, S.; Shi, X.; Chen, Y.; Cong, X.; Cheng, S.; Li, L. Molecular Mechanisms of the Effects of Sodium Selenite on the Growth, Nutritional Quality, and Species of Organic Selenium in Dandelions. Horticulturae 2024, 10, 209. [Google Scholar] [CrossRef]
- Shi, M.-T.; Zhang, T.-J.; Fang, Y.; Pan, C.-P.; Fu, H.-Y.; Gao, S.-J.; Wang, J. Nano-Selenium Enhances Sugarcane Resistance to Xanthomonas albilineans Infection and Improvement of Juice Quality. Ecotoxicol. Environ. Saf. 2023, 254, 114759. [Google Scholar] [CrossRef]
- Taha, N.A.; Hamden, S.; Bayoumi, Y.A.; Elsakhawy, T.; El-Ramady, H.; Solberg, S.Ø. Nanofungicides with Selenium and Silicon Can Boost the Growth and Yield of Common Bean (Phaseolus vulgaris L.) and Control Alternaria Leaf Spot Disease. Microorganisms 2023, 11, 728. [Google Scholar] [CrossRef]
- Ran, M.; Wu, T.; Jiao, Y.; Wu, J.; Li, J. Selenium Bio-Nanocomposite Based on Extracellular Polymeric Substances (EPS): Synthesis, Characterization and Application in Alleviating Cadmium Toxicity in Rice (Oryza sativa L.). Int. J. Biol. Macromol. 2024, 258, 129089. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.F.; Kamal, M.A.; Shahid, M.; Awais, M.; Saleem, A.; Raza, M.A.S.; Ma, B.-L. Studying the Foliar Selenium-Modulated Dynamics in Phenology and Quality of Terminal Heat-Stressed Cotton (Gossypium hirsutum L.) in Association with Yield. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2021, 155, 668–678. [Google Scholar] [CrossRef]
- Sheikhalipour, M.; Esmaielpour, B.; Behnamian, M.; Gohari, G.; Giglou, M.T.; Vachova, P.; Rastogi, A.; Brestic, M.; Skalicky, M. Chitosan-Selenium Nanoparticle (Cs-Se NP) Foliar Spray Alleviates Salt Stress in Bitter Melon. Nanomaterials 2021, 11, 684. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Rahman, K.; Sathi, K.S.; Alam, M.M.; Nahar, K.; Fujita, M.; Hasanuzzaman, M. Supplemental Selenium and Boron Mitigate Salt-Induced Oxidative Damages in Glycine max L. Plants 2021, 10, 2224. [Google Scholar] [CrossRef]
- Trippe, R.C.; Pilon-Smits, E.A.H. Selenium Transport and Metabolism in Plants: Phytoremediation and Biofortification Implications. J. Hazard. Mater. 2021, 404, 124178. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, J.; Li, F.; Zeng, X.; Wu, Z.; Huang, Y.; Xue, Y.; Wang, Y. High Concentrations of Se Inhibited the Growth of Rice Seedlings. Plants 2024, 13, 1580. [Google Scholar] [CrossRef] [PubMed]
- Lanza, M.G.D.B.; Reis, A.R.D. Roles of Selenium in Mineral Plant Nutrition: ROS Scavenging Responses against Abiotic Stresses. Plant Physiol. Biochem. 2021, 164, 27–43. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, Y.; Dun, X.; Wang, X.; Wang, H. Research Progress of Selenium-Enriched Foods. Nutrients 2023, 15, 4189. [Google Scholar] [CrossRef]
- Pinto, T.; Aires, A.; Cosme, F.; Bacelar, E.; Morais, M.C.; Oliveira, I.; Ferreira-Cardoso, J.; Anjos, R.; Vilela, A.; Goncalves, B. Bioactive (Poly)Phenols, Volatile Compounds from Vegetables, Medicinal and Aromatic Plants. Foods 2021, 10, 106. [Google Scholar] [CrossRef]
- Zheng, H.; Fu, X.; Shao, J.; Tang, Y.; Yu, M.; Li, L.; Huang, L.; Tang, K. Transcriptional Regulatory Network of High-Value Active Ingredients in Medicinal Plants. Trends Plant Sci. 2023, 28, 429–446. [Google Scholar] [CrossRef]
- Mushtaq, N.U.; Alghamdi, K.M.; Saleem, S.; Shajar, F.; Tahir, I.; Bahieldin, A.; Rehman, R.U.; Hakeem, K.R. Selenate and Selenite Transporters in Proso Millet: Genome Extensive Detection and Expression Studies under Salt Stress and Selenium. Front. Plant Sci. 2022, 13, 1060154. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Hernández, E.; Antunes-Ricardo, M.; Jacobo-Velázquez, D.A. Improving the Health-Benefits of Kales (Brassica oleracea L. var. acephala DC) through the Application of Controlled Abiotic Stresses: A Review. Plants 2021, 10, 2629. [Google Scholar] [CrossRef] [PubMed]
- Barillas, J.R.V.; Quinn, C.F.; Pilon-Smits, E.A.H. Selenium Accumulation in Plants-Phytotechnological Applications and Ecological Implications. Int. J. Phytoremediat. 2011, 13, 166–178. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.-J.; Wang, Z.; Wirtz, M.; Hell, R.; Oliver, D.J.; Xiang, C.-B. SULTR3;1 Is a Chloroplast-Localized Sulfate Transporter in Arabidopsis Thaliana. Plant J. 2013, 73, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Ye, J.; Zeng, J.; Chen, L.; Korpelainen, H.; Li, C. Selenium Species Transforming along Soil-Plant Continuum and Their Beneficial Roles for Horticultural Crops. Hortic. Res. 2023, 10, uhac270. [Google Scholar] [CrossRef]
- Gupta, M.; Gupta, S. An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants. Front. Plant Sci. 2017, 7, 2074. [Google Scholar] [CrossRef]
- Wang, X.-F.; Chen, S.-Y.; Luo, Z.; Huang, Q.-Q.; Qiao, Y.-H.; Sun, H.-J.; Li, H.-F. Mechanisms of Selenium Uptake, Translocation and Chemical Speciation Transformation in Plants. J. Agric. Resour. Environ. 2014, 31, 539–544. [Google Scholar] [CrossRef]
- Wang, M.; Yang, W.; Zhou, F.; Du, Z.; Xue, M.; Chen, T.; Liang, D. Effect of Phosphate and Silicate on Selenite Uptake and Phloem-Mediated Transport in Tomato (Solanum lycopersicum L.). Environ. Sci. Pollut. Res. 2019, 26, 20475–20484. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, Y.; Lai, F. Effects of Different Water Management on Absorption and Accumulation of Selenium in Rice. Saudi J. Biol. Sci. 2018, 25, 1178–1182. [Google Scholar] [CrossRef]
- Song, Z.; Shao, H.; Huang, H.; Shen, Y.; Wang, L.; Wu, F.; Han, D.; Song, J.; Jia, H. Overexpression of the Phosphate Transporter Gene OsPT8 Improves the Pi and Selenium Contents in Nicotiana tabacum. Environ. Exp. Bot. 2017, 137, 158–165. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, B.; Li, W.; Che, R.; Deng, K.; Li, H.; Yu, F.; Ling, H.; Li, Y.; Chu, C. OsPT2, a Phosphate Transporter, Is Involved in the Active Uptake of Selenite in Rice. New Phytol. 2014, 201, 1183–1191. [Google Scholar] [CrossRef] [PubMed]
- Winkel, L.H.E.; Vriens, B.; Jones, G.D.; Schneider, L.S.; Pilon-Smits, E.; Banuelos, G.S. Selenium Cycling across Soil-Plant-Atmosphere Interfaces: A Critical Review. Nutrients 2015, 7, 4199–4239. [Google Scholar] [CrossRef]
- Zhang, L.; Chu, C. Selenium Uptake, Transport, Metabolism, Reutilization, and Biofortification in Rice. Rice 2022, 15, 30. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Xu, S.; Shi, H.; Zhao, P.; Liu, X.; Li, F.; Deng, T.; Du, R.; Wang, X.; Wang, F. Comparison of Foliar Silicon and Selenium on Cadmium Absorption, Compartmentation, Translocation and the Antioxidant System in Chinese Flowering Cabbage. Ecotoxicol. Environ. Saf. 2018, 166, 157–164. [Google Scholar] [CrossRef]
- Chauhan, R.; Awasthi, S.; Srivastava, S.; Dwivedi, S.; Pilon-Smits, E.A.H.; Dhankher, O.P.; Tripathi, R.D. Understanding Selenium Metabolism in Plants and Its Role as a Beneficial Element. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1937–1958. [Google Scholar] [CrossRef]
- Jiang, W.; Yang, N.; Chen, C.; Guo, X.; Tang, Z.; Wang, H. Effects of Selenium Treatment on Physiology and Primary Metabolism of Astragalus adsurgens. Bull. Bot. Res. 2022, 42, 1062–1069. [Google Scholar] [CrossRef]
- Hu, H.; Hu, J.; Wang, Q.; Xiang, M.; Zhang, Y. Transcriptome Analysis Revealed Accumulation-assimilation of Selenium and Physio-biochemical Changes in Alfalfa (Medicago sativa L.) Leaves. J. Sci. Food Agric. 2022, 102, 4577–4588. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Chen, Q.; Liao, X.; Yang, X.; Chao, W.; Cong, X.; Zhang, W.; Liao, Y.; Ye, J.; Qian, H.; et al. Exploring Effects of Exogenous Selenium on the Growth and Nutritional Quality of Cabbage (Brassica oleracea var. capitata L.). Horticulturae 2023, 9, 330. [Google Scholar] [CrossRef]
- Dimkovikj, A.; Van Hoewyk, D. Selenite Activates the Alternative Oxidase Pathway and Alters Primary Metabolism in Brassica napus Roots: Evidence of a Mitochondrial Stress Response. BMC Plant Biol. 2014, 14, 259. [Google Scholar] [CrossRef]
- Cabral Gouveia, G.C.; Galindo, F.S.; Dantas Bereta Lanza, M.G.; da Rocha Silva, A.C.; de Brito Mateus, M.P.; da Silva, M.S.; Rimoldi Tavanti, R.F.; Tavanti, T.R.; Lavres, J.; dos Reis, A.R. Selenium Toxicity Stress-Induced Phenotypical, Biochemical and Physiological Responses in Rice Plants: Characterization of Symptoms and Plant Metabolic Adjustment. Ecotoxicol. Environ. Saf. 2020, 202, 110916. [Google Scholar] [CrossRef]
- Qutab, S.; Iqbal, M.; Rasheed, R.; Ashraf, M.A.; Hussain, I.; Akram, N.A. Root Zone Selenium Reduces Cadmium Toxicity by Modulating Tissue-Specific Growth and Metabolism in Maize (Zea mays L.). Arch. Agron. Soil Sci. 2017, 63, 1900–1911. [Google Scholar] [CrossRef]
- Handa, N.; Kohli, S.K.; Thukral, A.K.; Bhardwaj, R.; Alyemeni, M.N.; Wijaya, L.; Ahmad, P. Protective Role of Selenium against Chromium Stress Involving Metabolites and Essential Elements in Brassica juncea L. Seedlings. 3 Biotech 2018, 8, 66. [Google Scholar] [CrossRef]
- Tian, M.; Xu, X.; Liu, F.; Fan, X.; Pan, S. Untargeted Metabolomics Reveals Predominant Alterations in Primary Metabolites of Broccoli Sprouts in Response to Pre-Harvest Selenium Treatment. Food Res. Int. 2018, 111, 205–211. [Google Scholar] [CrossRef]
- Schiavon, M.; Pilon, M.; Malagoli, M.; Pilon-Smits, E.A.H. Exploring the Importance of Sulfate Transporters and ATP Sulphurylases for Selenium Hyperaccumulation—A Comparison of Stanleya pinnata and Brassica juncea (Brassicaceae). Front. Plant Sci. 2015, 6, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lidon, F.C.; Oliveira, K.; Ribeiro, M.M.; Pelica, J.; Pataco, I.; Ramalho, J.C.; Leitao, A.E.; Almeida, A.S.; Campos, P.S.; Ribeiro-Barros, A.I.; et al. Selenium Biofortification of Rice Grains and Implications on Macronutrients Quality. J. Cereal Sci. 2018, 81, 22–29. [Google Scholar] [CrossRef]
- Huang, Y.; Lei, N.; Xiong, Y.; Liu, Y.; Tong, L.; Wang, F.; Fan, B.; Maesen, P.; Blecker, C. Influence of Selenium Biofortification of Soybeans on Speciation and Transformation during Seed Germination and Sprouts Quality. Foods 2022, 11, 1200. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Sandoval, S.N.; Guardado-Félix, D.; Gutiérrez-Uribe, J.A. Deglycosylation of Isoflavones in Selenized Germinated Chickpea Flours Due to Convection Drying. LWT 2022, 153, 112417. [Google Scholar] [CrossRef]
- Skrypnik, L.; Novikova, A.; Tokupova, E. Improvement of Phenolic Compounds, Essential Oil Content and Antioxidant Properties of Sweet Basil (Ocimum basilicum L.) Depending on Type and Concentration of Selenium Application. Plants 2019, 8, 458. [Google Scholar] [CrossRef]
- Liu, D.; Li, H.; Wang, Y.; Ying, Z.; Bian, Z.; Zhu, W.; Liu, W.; Yang, L.; Jiang, D. How Exogenous Selenium Affects Anthocyanin Accumulation and Biosynthesis-Related Gene Expression in Purple Lettuce. Pol. J. Environ. Stud. 2017, 26, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Miao, P.; Li, D.; Wu, Y.; Zhou, C.; Pan, C. Improving Red Pitaya Fruit Quality by Nano-Selenium Biofortification to Enhance Phenylpropanoid and Betalain Biosynthesis. Ecotoxicol. Environ. Saf. 2023, 267, 115653. [Google Scholar] [CrossRef]
- Schiavon, M.; dall’Acqua, S.; Mietto, A.; Pilon-Smits, E.A.H.; Sambo, P.; Masi, A.; Malagoli, M. Selenium Fertilization Alters the Chemical Composition and Antioxidant Constituents of Tomato (Solanum lycopersicon L.). J. Agric. Food Chem. 2013, 61, 10542–10554. [Google Scholar] [CrossRef]
- Schiavon, M.; Berto, C.; Malagoli, M.; Trentin, A.; Sambo, P.; Dall’Acqua, S.; Pilon-Smits, E.A.H. Selenium Biofortification in Radish Enhances Nutritional Quality via Accumulation of Methyl-Selenocysteine and Promotion of Transcripts and Metabolites Related to Glucosinolates, Phenolics, and Amino Acids. Front. Plant Sci. 2016, 7, 1371. [Google Scholar] [CrossRef]
- Xia, Q.; Yang, Z.; Shui, Y.; Liu, X.; Chen, J.; Khan, S.; Wang, J.; Gao, Z. Methods of Selenium Application Differentially Modulate Plant Growth, Selenium Accumulation and Speciation, Protein, Anthocyanins and Concentrations of Mineral Elements in Purple-Grained Wheat. Front. Plant Sci. 2020, 11, 1114. [Google Scholar] [CrossRef]
- Li, D.; Zhou, C.; Wu, Y.; An, Q.; Zhang, J.; Fang, Y.; Li, J.-Q.; Pan, C. Nanoselenium Integrates Soil-Pepper Plant Homeostasis by Recruiting Rhizosphere-Beneficial Microbiomes and Allocating Signaling Molecule Levels under Cd Stress. J. Hazard. Mater. 2022, 432, 128763. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, R.; De Feudis, M.; Guiducci, M.; Businelli, D. Zea mays L. Grain: Increase in Nutraceutical and Antioxidant Properties Due to Se Fortification in Low and High Water Regimes. J. Agric. Food Chem. 2019, 67, 7050–7059. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Wang, Z.; Yuan, N.; Lu, Q.; Sun, L.; Li, Y.; Zhang, J.; Zhang, Y.; Ge, G.; Jia, Y. Evaluation of Nano-Selenium Biofortification Characteristics of Alfalfa (Medicago sativa L.). Green Process. Synth. 2023, 12, 20228121. [Google Scholar] [CrossRef]
- Chomchan, R.; Siripongvutikorn, S.; Puttarak, P.; Rattanapon, R. Influence of Selenium Bio-Fortification on Nutritional Compositions, Bioactive Compounds Content and Anti-Oxidative Properties of Young Ricegrass (Oryza sativa L.). Funct. Foods Health Dis. 2017, 7, 195. [Google Scholar] [CrossRef]
- Li, L.; Yu, J.; Li, L.; Rao, S.; Wu, S.; Wang, S.; Cheng, S.; Cheng, H. Treatment of Ginkgo Biloba with Exogenous Sodium Selenite Affects Its Physiological Growth, Changes Its Phytohormones, and Synthesizes Its Terpene Lactones. Molecules 2022, 27, 7548. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.Z.; Wang, Y.; Wang, S.H.; Yin, L.P.; Xu, G.J.; Zheng, C.; Lei, C.; Zhang, M.Z. Selenium Increases Chlorogenic Acid, Chlorophyll and Carotenoids of Lycium chinense Leaves. J. Sci. Food Agric. 2013, 93, 310–315. [Google Scholar] [CrossRef]
- Khalid, K.A. Evaluation of Salvia officinalis L. Essential Oil under Selenium Treatments. J. Essent. Oil Res. 2011, 23, 57–60. [Google Scholar] [CrossRef]
- Hosseinzadeh Rostam Kalaei, M.; Abdossi, V.; Danaee, E. Evaluation of Foliar Application of Selenium and Flowering Stages on Selected Properties of Iranian Borage as a Medicinal Plant. Sci. Rep. 2022, 12, 12568. [Google Scholar] [CrossRef]
- Semida, W.M.; Abd El-Mageed, T.A.; Abdelkhalik, A.; Hemida, K.A.; Abdurrahman, H.A.; Howladar, S.M.; Leilah, A.A.A.; Rady, M.O.A. Selenium Modulates Antioxidant Activity, Osmoprotectants, and Photosynthetic Efficiency of Onion under Saline Soil Conditions. Agronomy 2021, 11, 855. [Google Scholar] [CrossRef]
- Li, L.; Qiao, Z.; Cai, J.; Liang, Y.; Lin, Y.; Wei, G.; Hou, X.; Miao, J.; Wei, K. Effects of Selenium on Growth and Biochemical Characters of Tissue Culture Seedlings of Sophora tonkinensis. Pharmacogn. Mag. 2023, 19, 772–781. [Google Scholar] [CrossRef]
- Mimmo, T.; Tiziani, R.; Valentinuzzi, F.; Lucini, L.; Nicoletto, C.; Sambo, P.; Scampicchio, M.; Pii, Y.; Cesco, S. Selenium Biofortification in Fragaria × ananassa: Implications on Strawberry Fruits Quality, Content of Bioactive Health Beneficial Compounds and Metabolomic Profile. Front. Plant Sci. 2017, 8, 1887. [Google Scholar] [CrossRef] [PubMed]
- Seregina, I.; Tsygutkin, A.S.; Dmitrevskaya, I.; Belopukhov, S.; Vigilyansky, Y.M. Productivity and Grain Quality Indicators of White Lupine (Lupinus albus L.) Variety Degas When Using Sodium Selenite. Iop Conf. Ser. Earth Environ. Sci. 2021, 843, 012039. [Google Scholar] [CrossRef]
- Tian, Y.; Deng, F.M.; Qing, Z.X.; Zhao, L.Y.; Peng, P. Advances in understanding the structure and function of glucosinolates in brassicaceae. Food Sci. 2020, 41, 292–303. [Google Scholar] [CrossRef]
- Liao, X.; Rao, S.; Yu, T.; Zhu, Z.; Yang, X.; Xue, H.; Gou, Y.; Cheng, S.; Xu, F. Selenium Yeast Promoted the Se Accumulation, Nutrient Quality and Antioxidant System of Cabbage (Brassica oleracea var. capitata L.). Plant Signal. Behav. 2021, 16, 1907042. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Xu, X.; Liu, Y.; Xie, L.; Pan, S. Effect of Se Treatment on Glucosinolate Metabolism and Health-Promoting Compounds in the Broccoli Sprouts of Three Cultivars. Food Chem. 2016, 190, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Gui, J.; Rao, S.; Gou, Y.; Xu, F.; Cheng, S. Comparative Study of the Effects of Selenium Yeast and Sodium Selenite on Selenium Content and Nutrient Quality in Broccoli Florets (Brassica oleracea L. var. italica). J. Sci. Food Agric. 2022, 102, 1707–1718. [Google Scholar] [CrossRef]
- Zhao Shuang; Zhou Yuqi; Yang Xuyan; Fan Zhenyu; Li Fangquan; Yuan Taiyong; Wu Tong; Wang Yushu Effect of selenium and sulfur interaction on the glucosinolate content and antioxidant activity of sprouts of chinese cabbage. Food Sci. 2023, 44, 22–29. [CrossRef]
- Dall’Acqua, S.; Ertani, A.; Pilon-Smits, E.A.H.; Fabrega-Prats, M.; Schiavon, M. Selenium Biofortification Differentially Affects Sulfur Metabolism and Accumulation of Phytochemicals in Two Rocket Species (Eruca sativa Mill. and Diplotaxis tenuifolia) Grown in Hydroponics. Plants 2019, 8, 68. [Google Scholar] [CrossRef] [PubMed]
- Malik, J.A.; Kumar, S.; Thakur, P.; Sharma, S.; Kaur, N.; Kaur, R.; Pathania, D.; Bhandhari, K.; Kaushal, N.; Singh, K.; et al. Promotion of Growth in Mungbean (Phaseolus aureus Roxb.) by Selenium Is Associated with Stimulation of Carbohydrate Metabolism. Biol. Trace Elem. Res. 2011, 143, 530–539. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Ge, C.; Wu, H.; Jing, F.; Wu, S.; Li, H.; Zhou, D. Foliar Selenium Nanoparticles Application Promotes the Growth of Maize (Zea mays L.) Seedlings by Regulating Carbon, Nitrogen and Oxidative Stress Metabolism. Sci. Hortic. 2023, 311, 111816. [Google Scholar] [CrossRef]
- Bhadwal, S.; Sharma, S. Selenium Alleviates Carbohydrate Metabolism and Nutrient Composition in Arsenic Stressed Rice Plants. Rice Sci. 2022, 29, 385–396. [Google Scholar] [CrossRef]
- Shahid, M.A.; Balal, R.M.; Khan, N.; Zotarelli, L.; Liu, G.D.; Sarkhosh, A.; Fernández-Zapata, J.C.; Martínez Nicolás, J.J.; Garcia-Sanchez, F. Selenium Impedes Cadmium and Arsenic Toxicity in Potato by Modulating Carbohydrate and Nitrogen Metabolism. Ecotoxicol. Environ. Saf. 2019, 180, 588–599. [Google Scholar] [CrossRef]
- Xue, W.; Kang, Y.; Pan, C.; Hu, T.; Yu, M.; Chen, Y.; Zhang, S. Nano-Selenium Regulates the Sugar Metabolism in Pea (Pisum sativum L.) Sprouts. S. Afr. J. Bot. 2024, 167, 487–499. [Google Scholar] [CrossRef]
- Liu, X.; Hu, B.; Chu, C. Nitrogen Assimilation in Plants: Current Status and Future Prospects. J. Genet. Genom. 2022, 49, 394–404. [Google Scholar] [CrossRef]
- Bhadwal, S.; Sharma, S. Selenium Alleviates Physiological Traits, Nutrient Uptake and Nitrogen Metabolism in Rice under Arsenate Stress. Environ. Sci. Pollut. Res. 2022, 29, 70862–70881. [Google Scholar] [CrossRef]
- Cunha, M.L.O.; de Oliveira, L.C.A.; Silva, V.M.; Montanha, G.S.; Reis, A.R. dos Selenium Increases Photosynthetic Capacity, Daidzein Biosynthesis, Nodulation and Yield of Peanuts Plants (Arachis hypogaea L.). Plant Physiol. Biochem. 2022, 190, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Cunha, M.L.O.; de Oliveira, L.C.A.; Mendes, N.A.C.; Silva, V.M.; Vicente, E.F.; dos Reis, A.R. Selenium Increases Photosynthetic Pigments, Flavonoid Biosynthesis, Nodulation, and Growth of Soybean Plants (Glycine max L.). J. Soil Sci. Plant Nutr. 2023, 23, 1397–1407. [Google Scholar] [CrossRef]
- Cunha, M.L.O.; Oliveira, L.C.A.; Silva, V.M.; Agathokleous, E.; Vicente, E.F.; dos Reis, A.R. Selenium Promotes Hormesis in Physiological, Biochemical, and Biological Nitrogen Fixation Traits in Cowpea Plants. Plant Soil 2024, 501, 555–572. [Google Scholar] [CrossRef]
- Bian, Z.; Lei, B.; Cheng, R.; Wang, Y.; Li, T.; Yang, Q. Selenium Distribution and Nitrate Metabolism in Hydroponic Lettuce (Lactuca sativa L.): Effects of Selenium Forms and Light Spectra. J. Integr. Agric. 2020, 19, 133–144. [Google Scholar] [CrossRef]
- Lara, T.S.; de Lima Lessa, J.H.; Dazio de Souza, K.R.; Branco Corguinha, A.P.; Dias Martins, F.A.; Lopes, G.; Guimaraes Guilherme, L.R. Selenium Biofortification of Wheat Grain via Foliar Application and Its Effect on Plant Metabolism. J. Food Compos. Anal. 2019, 81, 10–18. [Google Scholar] [CrossRef]
- Bocchini, M.; D’Amato, R.; Ciancaleoni, S.; Fontanella, M.C.; Palmerini, C.A.; Beone, G.M.; Onofri, A.; Negri, V.; Marconi, G.; Albertini, E.; et al. Soil Selenium (Se) Biofortification Changes the Physiological, Biochemical and Epigenetic Responses to Water Stress in Zea mays L. by Inducing a Higher Drought Tolerance. Front. Plant Sci. 2018, 9, 389. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wu, L.; Zhang, H.; Wu, W.; Zhang, M.; Li, X.; Wu, H. Regulation of the Phenylpropanoid Pathway: A Mechanism of Selenium Tolerance in Peanut (Arachis hypogaea L.) Seedlings. J. Agric. Food Chem. 2016, 64, 3626–3635. [Google Scholar] [CrossRef]
- Yu, J. Ginkgo biloba Flavonoid Genes CHS, FLS, PAL, FOMT Respond to Selenium Treatments Based on Transcriptomics and Metabolomics. Master’s Thesis, Wuhan Polytechnic University, Wuhan, China, 2020. [Google Scholar]
- Xu, R.; Ming, Y.; Li, Y.; Li, S.; Zhu, W.; Wang, H.; Guo, J.; Shi, Z.; Shu, S.; Xiong, C.; et al. Full-Length Transcriptomic Sequencing and Temporal Transcriptome Expression Profiling Analyses Offer Insights into Terpenoid Biosynthesis in Artemisia argyi. Molecules 2022, 27, 5948. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Pang, D.; Chen, C.; Tian, Y.; Sun, Y.; Li, Y.; Chen, L. Differential expression of Tcs1 allele involved in the formation of low caffeine in nongdao yecha. Chin. J. Trop. Crops 2024, 45, 23–29. [Google Scholar] [CrossRef]
- Sun, M.; Wang, J.; Liu, W.; Yin, P.; Guo, G.; Tong, C.; Chang, Y. Effect and Mechanism of Exogenous Selenium on Selenium Content and Quality of Fresh Tea Leaves. Not. Bot. Horti Agrobot. Cluj-Napoca 2022, 50, 12814. [Google Scholar] [CrossRef]
- Yu, J.; Xiao, X.; Cheng, H.; Zha, S.; Luo, Y.; Cheng, S. Transcriptome Sequencing Analysis of Gene Expression of Terpenoid Biosynthesis in Ginkgo Biloba Based on Selenium Treatment. Genom. Appl. Biol. 2020, 39, 4099–4107. [Google Scholar] [CrossRef]
- Liu, C.; Zhou, G.; Qin, H.; Guan, Y.; Wang, T.; Ni, W.; Xie, H.; Xing, Y.; Tian, G.; Lyu, M.; et al. Metabolomics Combined with Physiology and Transcriptomics Reveal Key Metabolic Pathway Responses in Apple Plants Exposure to Different Selenium Concentrations. J. Hazard. Mater. 2024, 464, 132953. [Google Scholar] [CrossRef] [PubMed]
- Laechler, K.; Imhof, J.; Reichelt, M.; Gershenzon, J.; Binder, S. The Cytosolic Branched-Chain Aminotransferases of Arabidopsis thaliana Influence Methionine Supply, Salvage and Glucosinolate Metabolism. Plant Mol. Biol. 2015, 88, 119–131. [Google Scholar] [CrossRef]
- Tian, M.; Yang, Y.; Ávila, F.W.; Fish, T.; Yuan, H.; Hui, M.; Pan, S.; Thannhauser, T.W.; Li, L. Effects of Selenium Supplementation on Glucosinolate Biosynthesis in Broccoli. J. Agric. Food Chem. 2018, 66, 8036–8044. [Google Scholar] [CrossRef]
- Sams, C.E.; Panthee, D.R.; Charron, C.S.; Kopsell, D.A.; Yuan, J.S. Selenium Regulates Gene Expression for Glucosinolate and Carotenoid Biosynthesis in Arabidopsis. J. Am. Soc. Hortic. Sci. 2011, 136, 23–34. [Google Scholar] [CrossRef]
- Zhang, X.; He, Y.; Li, L.; Liu, H.; Hong, G. Involvement of the R2R3-MYB Transcription Factor MYB21 and Its Homologs in Regulating Flavonol Accumulation in Arabidopsis Stamen. J. Exp. Bot. 2021, 72, 4319–4332. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yu, J.; Yuan, H.; Zha, S.; Deng, K.; Xiao, X.; Luo, Y.; Cheng, S.; Cheng, H. High-Density Kinetic Analysis of the Metabolomic and Transcriptomic Response of Ginkgo biloba Flavonoids Biosynthesis to Selenium Treatments. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 792–803. [Google Scholar] [CrossRef]
- An, C.; Lu, L.; Shen, M.-Q.; Chen, S.-Z.; Ye, K.-Z.; Qin, Y. Research Progress of bHLH Gene Family in Plants and Its Application Prospects in Medical Plants. Biotechnol. Bull. 2023, 39, 1–16. [Google Scholar] [CrossRef]
- Zou, Y.; Han, C.; Wang, F.; Tan, Y.; Yang, S.; Huang, C.; Xie, S.; Xiao, X. Integrated Metabolome and Transcriptome Analysis Reveal Complex Molecular Mechanisms Underlying Selenium Response of Aloe vera L. J. Plant Biol. 2021, 64, 135–143. [Google Scholar] [CrossRef]
- Liu, S.; Huang, H.; Yi, X.; Zhang, Y.; Yang, Q.; Zhang, C.; Fan, C.; Zhou, Y. Dissection of Genetic Architecture for Glucosinolate Accumulations in Leaves and Seeds of Brassica napus by Genome-Wide Association Study. Plant Biotechnol. J. 2020, 18, 1472–1484. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Yang, R.; Gu, Z. Cloning of Genes Related to Aliphatic Glucosinolate Metabolism and the Mechanism of Sulforaphane Accumulation in Broccoli Sprouts under Jasmonic Acid Treatment. J. Sci. Food Agric. 2016, 96, 4329–4336. [Google Scholar] [CrossRef]
- Han, Y.; Zhu, Z.; Shen, M.; Cheng, Y.; Yin, Y.; Fang, W. Effects of Selenium and Sulfur on Physiology and Metabolism of Sulforaphane of Broccoli Sprouts under High Temperature Stress. J. Nucl. Agric. Sci. 2020, 34, 1350–1358. [Google Scholar] [CrossRef]
- McKenzie, M.; Matich, A.; Hunter, D.; Esfandiari, A.; Trolove, S.; Chen, R.; Lill, R. Selenium Application during Radish (Raphanus sativus) Plant Development Alters Glucosinolate Metabolic Gene Expression and Results in the Production of 4-(Methylseleno)but-3-Enyl Glucosinolate. Plants 2019, 8, 427. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, L.; Wang, J.; Liang, D.; Xia, H.; Lv, X.; Deng, Q.; Wang, X.; Luo, X.; Liao, M.; et al. Gibberellic Acid Promotes Selenium Accumulation in Cyphomandra betacea under Selenium Stress. Front. Plant Sci. 2022, 13, 968768. [Google Scholar] [CrossRef]
- Dey, S.; Sen Raychaudhuri, S. Methyl Jasmonate Improves Selenium Tolerance via Regulating ROS Signalling, Hormonal Crosstalk and Phenylpropanoid Pathway in Plantago ovata. Plant Physiol. Biochem. 2024, 209, 108533. [Google Scholar] [CrossRef]
- Kim, H.S.; Juvik, J.A. Effect of Selenium Fertilization and Methyl Jasmonate Treatment on Glucosinolate Accumulation in Broccoli Florets. J. Am. Soc. Hortic. Sci. 2011, 136, 239–246. [Google Scholar] [CrossRef]
- Jia, Y.; Kang, L.; Wu, Y.; Zhou, C.; Cai, R.; Zhang, H.; Li, J.; Chen, Z.; Kang, D.; Zhang, L.; et al. Nano-Selenium Foliar Intervention-Induced Resistance of Cucumber to Botrytis cinerea by Activating Jasmonic Acid Biosynthesis and Regulating Phenolic Acid and Cucurbitacin. Pest Manag. Sci. 2024, 80, 554–568. [Google Scholar] [CrossRef]
- Zaji, B.; Khavari-Nejad, R.A.; Saadatmand, S.; Nejadsatari, T.; Iranbakhsh, A. Combined Application of 24-Epibrassinolide and Selenium Improves Essential Oil Content and Composition of Dragonhead (Dracocephalum moldavica L.). J. Essent. Oil Bear. Plants 2019, 22, 893–902. [Google Scholar] [CrossRef]
- Cao, D.; Ma, L.; Liu, Y.; Gong, Z. Absorption and Accumulation Characteristics of Selenium in Tea Plant (Camellia sinensis) and Expression Analysis of Genes Related to Selenium Regulation. J. Tea Sci. 2020, 40, 77–84. [Google Scholar] [CrossRef]
- Guardado-Felix, D.; Serna-Saldivar, S.O.; Cuevas-Rodriguez, E.O.; Jacobo-Velazquez, D.A.; Gutierrez-Uribe, J.A. Effect of Sodium Selenite on Isoflavonoid Contents and Antioxidant Capacity of Chickpea (Cicer arietinum L.) Sprouts. Food Chem. 2017, 226, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Alves, L.R.; dos Reis, A.R.; Prado, E.R.; Lavres, J.; Pompeu, G.B.; Azevedo, R.A.; Gratao, P.L. New Insights into Cadmium Stressful-Conditions: Role of Ethylene on Selenium-Mediated Antioxidant Enzymes. Ecotoxicol. Environ. Saf. 2019, 186, 109747. [Google Scholar] [CrossRef]
- Rady, M.M.; Belal, H.E.E.; Gadallah, F.M.; Semida, W.M. Selenium Application in Two Methods Promotes Drought Tolerance in Solanum lycopersicum Plant by Inducing the Antioxidant Defense System. Sci. Hortic. 2020, 266, 109290. [Google Scholar] [CrossRef]
- Liang, P.-X.; Xing, Y.; Liao, Q.; Pan, L.-P.; Chen, J.-P.; Liu, Y.-X.; Jiang, Z.-P. Effects of Selenium on Activity and Quality of Glutathione Peroxidase in Spring Tea. Southwest China J. Agric. Sci. 2018, 31, 2559–2562. [Google Scholar] [CrossRef]
- Maassoumi, N.; Ghanati, F.; Zare-Maivan, H.; Gavlighi, H.A. Metabolic Changes Network in Selenium-Treated Astragalus Cells Derived by Glutathione as a Core Component. Plant Cell Tissue Organ Cult. 2022, 149, 455–465. [Google Scholar] [CrossRef]
- Maassoumi, A.A.; Ashouri, P. The Hotspots and Conservation Gaps of the Mega Genus Astragalus (Fabaceae) in the Old-World. Biodivers. Conserv. 2022, 31, 2119–2139. [Google Scholar] [CrossRef]
- Pannico, A.; El-Nakhel, C.; Graziani, G.; Kyriacou, M.C.; Giordano, M.; Soteriou, G.A.; Zarrelli, A.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Selenium Biofortification Impacts the Nutritive Value, Polyphenolic Content, and Bioactive Constitution of Variable Microgreens Genotypes. Antioxidants 2020, 9, 272. [Google Scholar] [CrossRef]
- D’Amato, R.; Fontanella, M.C.; Falcinelli, B.; Beone, G.M.; Bravi, E.; Marconi, O.; Benincasa, P.; Businelli, D. Selenium Biofortification in Rice (Oryza sativa L.) Sprouting: Effects on Se Yield and Nutritional Traits with Focus on Phenolic Acid Profile. J. Agric. Food Chem. 2018, 66, 4082–4090. [Google Scholar] [CrossRef]
- Islam, M.Z.; Park, B.-J.; Kang, H.-M.; Lee, Y.-T. Influence of Selenium Biofortification on the Bioactive Compounds and Antioxidant Activity of Wheat Microgreen Extract. Food Chem. 2020, 309, 125763. [Google Scholar] [CrossRef]
Plant | Se Application | Major Effect | Reference |
---|---|---|---|
Sugarcane (Saccharum spp. hybrids) | Nano-Se | Se increased the antioxidant and jasmonic acid content and reduced the accumulation of ROS induced by Xanthomonas albilineans infection, thus enhancing its quality. | [4] |
Common Bean (Phaseolus vulgaris L.) | Nano-Se and nano-Si | The combined application of selenium and silicon nanoparticles showed remarkable results in suppressing plant pathogens. | [5] |
Rice (Oryza sativa L.) | Se bio-nanocomposite | Se reduced cadmium levels in rice and mitigated damage caused by cadmium-induced oxidative stress. | [6] |
Cotton (Gossypium hirsutum L.) | Foliar Se application | Se reduced oxidative damage from heat stress by reducing the accumulation of reactive oxygen species in cotton. | [7] |
Bitter Melon | Chitosan–selenium nanoparticle | Se mitigated oxidative stress damage by enhancing antioxidant enzyme activity. | [8] |
Glycine max L. | Na2SeO4 and H3BO3 | The application of Se and B in combination effectively enhanced the antioxidant defense system of plants and attenuated the oxidative damage induced by salt stress. | [9] |
Plant | Se Application | Secondary Metabolites (Content) | Overall Changes (Compared to Control) | Reference |
---|---|---|---|---|
Zea mays L. grains | soil application Na2SeO3 | xanthophyll | ↑ | [51] |
zeaxanthin | ↑ | |||
Medicago sativa L. | foliar application NPs-Se | carotenoids | ↑ | [52] |
Oryza sativa L. | hydroponics Na2SeO3 | carotenoids | ↑ | [53] |
total phenolic compound | ↑ | |||
Ginkgo biloba | soil/foliar application Na2SeO3 | total terpene lactone | ↑ (foliar applications) | [54] |
↓ (soil applications) | ||||
Lycium chinense L. | nutrient solution Na2SeO3 | carotenoids | ↑ | [50] |
Salvia officinalis L. | soil irrigation | α-thujone | ↑ | [55] |
β- thujone | ||||
camphor | ||||
Arabidopsis shoot | hydroponics Na2SeO4 | xanthophyll | ↓ | [56] |
Plant | Se Application | Secondary Metabolites (Content) | Overall Changes (Compared to Control) | Reference |
---|---|---|---|---|
Iranian Borage | foliar application Na2SeO4 and Na2SeO3 | total alkaloids | ↑ | [57] |
Onion | foliar application Na2SeO4 | choline | ↑ | [58] |
betaine | ↑ (leaves); ↓ (bulbs) | |||
Sophora tonkinensis | nutrient solution Se amino acids | matrine | ↑ (the whole plant) | [59] |
oxymatrine | ||||
Fragaria × ananassa | hydroponics Na2SeO4 | gramine | ↑ (100 µM) | [60] |
Lupinus albus L. | foliar application Na2SeO3 | total alkaloids | ↓ | [61] |
Plant | Se Application | Secondary Metabolites (Content) | Overall Changes (Compared to Control) | Reference |
---|---|---|---|---|
Brassica oleracea var. capitata L. | soil application Se yeast | total glucosinolate | ↑ | [63] |
Broccoli sprouts (FL60, WX90, SL120) | spraying Na2SeO4, Na2SeO3 | total glucosinolate | ↑ (Na2SeO4: WX90) | [64] |
sulforaphane | NS (FL60, SL120) | |||
↑ (SL120: Na2SeO4) | ||||
↑ (FL60, WX90: Na2SeO3) | ||||
Brassica oleracea L. var. italica | soil application Se yeast/Na2SeO3 | total glucosinolate | ↑ | [65] |
Chinese cabbage sprouts | spraying ZnSO4/Na2SeO3/mixture | total glucosinolate | ↑ | [66] |
Radish | foliar application/hydroponics Na2SeO4 | total glucosinolate | ↑ (leaves, 5 mg/plant; roots, 20 mg/plant) | [47] |
↓ (leaves, 40 µM) | ||||
Eruca Sativa Mill. and Diplotaxis Tenuifolia | hydroponics Na2SeO4 | total glucosinolate | ↓ | [67] |
glucoraphanin | ↓ | |||
glucoerucin | ↓ (Eruca Sativa Mill.) | |||
dimeric-4-mercaptobutyl glucosinolate (DMB-GLS) | ↓ (Eruca Sativa Mill.) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Nie, K.; Geng, L.; Wang, Y.; Li, L.; Cheng, H. Selenium’s Role in Plant Secondary Metabolism: Regulation and Mechanistic Insights. Agronomy 2025, 15, 54. https://doi.org/10.3390/agronomy15010054
Zhou Y, Nie K, Geng L, Wang Y, Li L, Cheng H. Selenium’s Role in Plant Secondary Metabolism: Regulation and Mechanistic Insights. Agronomy. 2025; 15(1):54. https://doi.org/10.3390/agronomy15010054
Chicago/Turabian StyleZhou, Yan, Kaiqin Nie, Lulu Geng, Yixin Wang, Linling Li, and Hua Cheng. 2025. "Selenium’s Role in Plant Secondary Metabolism: Regulation and Mechanistic Insights" Agronomy 15, no. 1: 54. https://doi.org/10.3390/agronomy15010054
APA StyleZhou, Y., Nie, K., Geng, L., Wang, Y., Li, L., & Cheng, H. (2025). Selenium’s Role in Plant Secondary Metabolism: Regulation and Mechanistic Insights. Agronomy, 15(1), 54. https://doi.org/10.3390/agronomy15010054