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Abstract: Managing foliar corn diseases like northern leaf blight (NLB) and gray leaf spot
(GLS), which can occur rapidly and impact yield, requires proactive measures including
early scouting and fungicides to mitigate these effects. Decision support tools, which use
data from in-field monitors and predicted leaf wetness duration (LWD) intervals based
on meteorological conditions, can help growers to anticipate and manage crop diseases
effectively. Effective crop disease management programs integrate crop rotation, tillage
practices, hybrid selection, and fungicides. However, growers often struggle with correctly
timing fungicide applications, achieving only a 30–55% positive return on investment (ROI).
This paper describes the development of a disease-warning and fungicide timing system,
equally effective at predicting NLB and GLS with ~70% accuracy, that utilizes historical
and forecast hourly weather data. This scalable recommendation system represents a
valuable tool for proactive, practicable crop disease management, leveraging in-season
weather data and advanced modeling techniques to guide fungicide applications, thereby
improving profitability and reducing environmental impact. Extensive on-farm trials (>150)
conducted between 2020 and 2023 have shown that the predicted fungicide timing out-
yielded conventional grower timing by 5 bushels per acre (336 kg/ha) and the untreated
check by 9 bushels per acre (605 kg/ha), providing a significantly improved ROI.

Keywords: disease management; fungicide application; predictive modeling; gray leaf spot;
northern leaf blight; return of investment; corn; leaf wetness duration; machine learning;
weather forecast

1. Introduction
Crop diseases can severely impact plant survival and yield. Proactive measures,

such as preventive fungicides, are essential if there is sufficient warning about conditions
conducive to disease development [1]. Rowlandson et al. showed that decision sup-
port tools, using data from in-field sensors and predicted leaf wetness duration (LWD)
intervals based on meteorological conditions, can help growers to anticipate and man-
age crop diseases effectively. Access to accurate and timely weather data is crucial for
effective crop disease management, and the internet provides meteorological data for thou-
sands of locations across the United States. Effective crop disease management programs
combine crop rotation, tillage practices, hybrid selection, and fungicide use. Third-party
market research conducted by Kynetec—https://www.kynetec.com/agriculture (accessed
on 24 January 2020), for Corteva, showed that Midwest growers’ top two challenges are
application timing and return on investment (ROI). Growers can increase their ROI and
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reduce pathogen resistance, and manufacturers can enhance customer loyalty and retention,
by applying fungicides only when conditions are favorable for disease outbreaks.

Leaf wetness is a critical parameter in plant disease development [1]. Studies have
shown that leaf wetness duration (LWD) is influenced by factors such as dew and rainfall.
Models that incorporate daily meteorological conditions and surface energy balances, such
as the Penman–Monteith model, can estimate dew formation and duration [2]. These
models are essential for predicting disease conditions and guiding fungicide applications.
The number of leaf wetness hours required for disease development varies according
to the pathogen, ranging from 30 min for Phytophthora in strawberries to more than
100 h for Diaporthe in soybeans [3,4]. LWD can be measured directly by sensors [5,6] or
modeled using physical models [7–9] and machine-learning techniques [10–12]. However,
the accuracy of models can vary due to different sources of noise [1,13–17].

Plant pathosystems’ occurrence and infections are commonly modeled using mecha-
nistic approaches that incorporate well-characterized behaviors of biological agents [18].
Framing weather data as a count of hours under certain conditions is beneficial from
the modeling standpoint as it can efficiently compress a large amount of data into a few
informative features. For instance, Kang et al. [19] used hourly weather data collected in a
set of environments to model rice blast [20] based on temperature and LWD, tracking the
disease progression and projecting trends across geographies using interpolation. Similarly,
Kassie et al. [21] used a mechanistic model approach to predict early-phase Asian Soybean
Rust (ASR) epidemic dynamics in soybeans. The approach included moisture and tempera-
ture modeling, producing a system that could lead and contribute to a fungicide-treatment
program for ASR in Brazil.

University extension agencies and research groups have proposed correlations be-
tween meteorological conditions and crop disease development. These empirical relation-
ships postulate optimal meteorological parameter combinations that must be met before
disease expression begins. However, the relationship between weather conditions and
crop disease development is complex and variable, since it depends on soil conditions,
management practices, and crop stage. This ultimately impacts when and if a curative
or preventative fungicide should be applied. Various models incorporating daily meteo-
rological conditions and surface energy balances can be essential for predicting disease
conditions and guiding fungicide applications.

Epidemiological models track disease progression based on environmental conditions
and host–parasite interactions. These models predict infection efficiency, latent periods, and
spore production, which are influenced by factors such as plant nutrition, relative humidity,
temperature, and radiation [22]. For example, Kang et al. [19] used hourly weather data to
model rice blast progression. El Jarroudi et al. [23,24] iterated on a pre-existing mechanistic
model [25], Figure A1, to forecast stripe rust based on relative humidity and temperature
combinations. The principles of the epidemiological modeling of plant diseases were
formalized by Van der Plank [26]. These models can be utilized for predicting time-to-
infection, disease severity, probability of an epidemic, and management actions [27].

Mechanistic approaches are commonly used to model plant pathosystems which
incorporate well-characterized behaviors of biological agents [18]. These models frame
weather data as a count of hours under certain conditions. Hamer et al. [28] modeled
powdery mildew with multiple tree-based machine-learning methods fed with a few
pathogen-specific mechanistic features derived from daily summaries of temperature, rela-
tive humidity, wind speed, and precipitation collected in specific locations. Skelsey [29]
used two main mechanistic features, the daily sum of hours RH ≥ 90% (as LWD proxy)
and minimum temperature, on the 28 days prior to infection to model potato blight out-
breaks using an ensemble of multiple predictors. As an alternative to mechanistic features,
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Xu et al. [30] calibrated a fully data-driven model by utilizing weather and soil data to
parametrize a spatial–temporal recurrent neural network to forecast yellow rust outbreaks
in wheat.

Northern leaf blight (NLB) is a major corn disease caused by Exserohilum turcicum that
develops under high humidity and moderate temperatures. The pathogen overwinters
on crop debris [31] and has multiple pathotypes, with corn hybrids displaying varying
degrees of race-specific resistance [32,33]. Conidial germination and the formation of
appressorium on the leaves of susceptible hybrids occur with 3 to 5 consecutive hours of
dew at temperatures between 15 and 30 ◦C, with optimal conditions around 20 ◦C [34].
Levy and Cohen showed that lesions form within 5 h of dew at 20 ◦C, and the severity of
the disease progression depends on the hybrid’s resistance level. Bowen and Petterson [35],
Figure A2, reported that NLB infections occur as a function of dew, relative humidity
(60 < RH < 94%), and temperature (10 < T < 35 ◦C), with an optimal temperature range
between 20 and 28 ◦C. There is no lesion expansion under 15 ◦C or over 35 ◦C, and the
latency period for new lesions is about 6 days.

Gray leaf spot (GLS) in corn, caused by the fungus Cercospora zeae-maydis, is
a major foliar disease that significantly impacts corn yields worldwide. GLS symp-
toms begin as small, necrotic lesions that expand into rectangular, gray to tan spots
following the leaf veins (https://content.ces.ncsu.edu/gray-leaf-spot-in-corn, accessed
on 22 January 2025). These lesions reduce the photosynthetic area of the leaves,
leading to substantial yield losses, especially when the upper leaves are infected
(https://www.extension.purdue.edu/extmedia/bp/BP-56-W.pdf, accessed on 22 January
2025). Studies have shown that environmental conditions such as prolonged periods of
high humidity coupled to warm temperatures (22 to 30 ◦C), favor the development and
spread of GLS [36]. Factors such as hybrid susceptibility, weather conditions, crop rotation
history, and timely fungicide applications can influence the severity of GLS outbreaks.
Paul and Munkvold developed risk assessment models for GLS using preplanting site and
maize genotype data for predictors [37]. Research has identified several quantitative trait
loci (QTL) in the maize genome that confer resistance to GLS, providing insights into the
genetic mechanisms underlying disease resistance [38].

In this paper, we describe a disease-warning system for two major corn diseases, NLB
and GLS, which utilizes historical and forecast hourly weather data, as well as a range of
soil and field management features. This system leverages pre-existing continuous leaf
wetness duration (LWD) conditions (e.g., algorithms when dew is present), coupled with
optimal humidity and a range of temperature conditions relative to the specific manifesta-
tion of corn pathogens. Modeling these conditions, at scale, in real-time, can be used to
predict potential disease onset and provide a recommendation system alerting growers of
risk and furthermore guiding their fungicide application timing decisions. This optimal
timing system not only improves grower profitability but also contributes to improved
sustainability (higher yields with same input) and a reduced risk of pathogen resistance
(optimal timing results in better control). We therefore believe that this disease-warning
system offers significant advantages for crop disease management and fits very well in
integrated pest management practices. By utilizing accurate weather data and advanced
modeling techniques, growers can make informed decisions about fungicide applications,
improving profitability and reducing environmental impact. This system represents a
valuable tool for proactive crop disease management, with potential applications in other
regions, crops, and diseases.

https://content.ces.ncsu.edu/gray-leaf-spot-in-corn
https://www.extension.purdue.edu/extmedia/bp/BP-56-W.pdf
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2. Materials and Methods
2.1. Weather Information

Hourly weather data utilized for the modeling was sourced from IBM’s weather API
(https://www.ibm.com/docs/en/environmental-intel-suite?topic=components-weather-
data-apis, accessed on 22 January 2025). Weather stations, including the cabled Vantage
Pro2 Plus (www.davisinstruments.com, accessed on 22 January 2025), equipped with leaf
wetness sensors (Davis Instruments, Hayward, CA, USA), were installed in 20 sites in 2020
to assess and compare the concordance of locally collected weather data with IBM and
GridMet [39]. The alignment among different sources of data is displayed in Figure A3.

2.2. Soil Information

Data for soil parameters used with the machine-learning algorithm were obtained
from the Soil Survey Geographic Database (SSURGO) available through the USDA Natural
Resources Conservation Service (NRCS) web soil survey (WSS). The parameters under
different evaluations included the slope, available water capacity (AWC), cation exchange
capacity (CEC-7), soil pH, organic matter, and the texture as a percentage of sand, silt,
and clay (Web Soil Survey (usda.gov)). From the described variables, the top-soil fraction,
representing the 0–10 cm depth, was utilized for features in the model development.

2.3. Leaf Wetness Determination

The primary parameter others have used to relate foliar pathogen expression is the
leaf wetness duration (LWD) [14]. It is believed that dry periods greater than 5 h retard or
eliminate the possibility of disease progression and the process based upon combinations
of meteorological variables is reinitiated following a dry period. Dew is defined as the
process where moisture condenses on the surface of, for example, a plant leaf during the
night. This moisture can come from three sources: the air (dewfall), the soil (dewrise), and
plants (guttation) [40]. Dew formation can be simulated using conservation equations for
energy and mass (water). LWD was calculated based on precipitation status, dew point,
temperature, relative humidity, and wind speed. In this study, we based our estimator of
LWD on atmospheric conditions using a condensation model of dew formation in the plant
canopy [7,41]. The methodology used herein, from Kim et al. [42], determines whether dew
is present from the flowchart decision tree shown below (Figure 1).
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2.4. Mechanistic Features for NLB Model Development

Disease units (DUs) were utilized to parameterize hourly weather data from the
planting date to the disease observation date. DUs efficiently compress longitudinal
climatic data from multiple meteorological variables and time points and, for the purpose
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of disease forecasting, enable time-to-event predictions. Disease units were computed by
extending the threshold model as follows:{

LWD < 6, DU = 0
LWD ≥ 6, DU = LWD ÷ 6

where LWD is the number of consecutive hours under leaf wetness under certain conditions
of relative humidity (≥ 90%) and temperature (17 ◦C < T < 27 ◦C). Such parametrization
jointly accounts for leaf wetness duration [43] and the optimal disease development condi-
tions [23,24]. In addition, the extended model described above provides a more quantitative
metric of disease units than traditional threshold models, allowing for prolonged periods
of time under ideal infection windows to be more favorable than conditions that barely
reach the threshold, as illustrated in Figure 2. This mechanistic approach is the way in
which the NLB risk DUs were calculated; the optimal humidity, temperature, and LWD
ranges were already widely known from the public university pathology websites.
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2.5. Genetic Tolerance Data

The disease tolerance information utilized in this spray timing model was extracted
from the Pioneer agronomy catalog (Corn Product Catalog). These data consisted of product
scores on a 1–9 scale where 9 represents a highly resistant variety and 1 a highly susceptible
one. Most corn hybrids evaluated and utilized in the modeling had product scores between
3 and 7.

2.6. ML Feature Engineering for GLS Model Development

Hourly weather data and disease severity ratings were collected in 2019 across
5 weekly timepoints and across 50 independent trial locations in the Midwest, Figure 3.
Natural disease progression was observed and monitored since the trial fields were not
treated with a fungicide.
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Figure 3. Trial locations from which 5 observational disease ratings were taken in 2019.

Nine different weather variables were selected as predictors to model GLS onset and
progression across the Midwest locations. These chosen weather variables are provided in
Table 1. From the hourly weather data, across these observation trial locations, 9 variables
were used to generate 216 features from each hour of the day recorded. The weather data
were aggregated, by weekly average, starting from the week prior to the first observation
date until the week prior to the last observation date. The response variable, utilized in the
model training, consisted of the time-series disease observational data. Scores from each
timepoint were averaged across hybrids for each of the 5 scoring timepoints.

Table 1. Set of Inputs utilized for GLS model development.

Weather Variables

Rainfall (mm)
Dewpoint (◦C)
Relative humidity (%)
Temperature (◦C)
Barometric pressure (kPa)
Wind chill (◦C)
Heat index (◦C)
Radiation solar (MJ/m2/h)
Wind Speed (m/s)

A classification and regression tree (CART) model algorithm was used to help split
the dataset into subsets based on the most significant variables to predict our continuous
target outcomes from this data matrix. A CART model was chosen for its simplicity and
interpretability while still achieving a strong accuracy in disease prediction; this also avoids
the complexity of black-box models. The visible decision points, nodes, and branches of
CART models enable easy adjustments and pruning to prevent overfitting as more data are
gathered. The model output consists of generating daily GLS risk DUs through accumulated
time-series weather data which can help to predict disease onset and progression.
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2.7. Disease Severity Ratings

NLB scores representing disease severity were collected on a 1–9 scale in multiple
hybrids within each location [44]. The overall severity of a given location was obtained
by averaging the score of individual hybrids. An illustration of disease scores is provided
in Figure A4 from the Pioneer scoring system. Disease scores, from NLB and GLS, were
collected by Corteva field agronomists in 667 locations in the United States and Canada,
from which 595 locations were observed in 2019 and 72 locations in 2020, as shown in
Figure 4. Some locations exhibited medium-to-high disease pressure; a picture of visible
symptoms observed for GLS and NLB, from southern Illinois and eastern Iowa, respectively,
is shown in Figure A5.
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2.8. Mixed Variable Predictive Modeling for Fungicide Timing

Data were leveraged across the disease-scored locations to develop the fungicide spray
timing model; the following features at each location were used: soil features, agronomic
management information, and hourly weather data. Agronomic data from each location
included the tillage practice (conventional, conservative, none), irrigation (full, limited,
none), previous crop (soybean, corn, other), and nitrogen fertilization (lb/a) applied, as
well as the row spacing and planting density. These input variables were added to the soil
variables already mentioned.

A small set of cumulative weather parameters were used including cumulative LW
hours, rainfall, and accumulated growing degree units (GDUs) for corn (Growing Degree
Units and Corn Emergence|CropWatch|University of Nebraska–Lincoln). These three
continuous variables were combined with the ML-based GLS risk DUs and the mechanistic
NLB risk DUs, both described in the previous sections, to serve as the final set of inputs for
predicting spray timing in corn. This list of features is shown below in Table 2 across various
classes. Hybrid information, such as the disease resistance to select pathogens, was used in
the decision tree framework for predicting spray timing across differing tolerance classes.
A heuristic set of governance rules were built into a decision tree that included agronomic
knowledge, irrigation practice, hybrid information, environmental risk components, and
disease models (Figure A6).
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Table 2. Set of variables used in building the spray timing decision model.

Feature Class Features

Soils

Slope%
AWC (available water capacity)
GLS Risk DU
CEC-7 (cation exchange capacity)
LWD hours (cum)
NLB Risk DU
Sand/Clay/Silt%
Organic matter
GDUs (cum)
Soil pH

Agronomic

Previous crop
Tillage
Irrigation practice
Planting rate density
Nitrogen fert. (lb/a)

Weather Rainfall (cum)

An economic threshold line was drawn to establish and depict differences between
early and late infections when predicting the timing to spray fungicides (Figure 5). In this
figure, disease score or severity is on the y-axis, whereas time, in days, from planting is on
the x-axis. The linear economic threshold line represents some time X after planting where
one can expect to observe a “very low” to “low” disease pressure observance in the canopy
(ultimately representing a leaf area loss of approximately 10–15%).
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2.9. Performance On-Farm Trials and Experimental Design

In testing the spray timing model framework, locations were selected for testing the
ROI (return of investment) compared to the standard grower timing and the untreated
check (UTC). In total, 190 on-farm trials were carried out from 2020 to 2023 across the US
Midwest corn-growing regions, see Figure 6. These locations tested are broken down in
Table 3 by state and by year, with totals across years and states also shown. The most-dense



Agronomy 2025, 15, 328 9 of 23

corn-growing areas were targeted across Iowa, Illinois, Indiana, Nebraska, Ohio, Wisconsin,
and Minnesota, and accounted for 153 of the 190 on-farm trial locations.

Table 3. Performance on-farm trials broken down by state and year. Totals are shown for each state
across the years, as well as the total number of trials conducted within each year.

Fungicide Timing On-Farm Trials

State 2020 2021 2022 2023 Totals

AL 1 1

AR 1 1

GA 1 1

IA 7 10 14 31

IL 1 8 8 30 47

IN 4 1 18 23

KS 1 1 2

LA 1 1 1 3

MD 1 1

MI 2 3 5

MN 8 8

MO 1 1 4 6

MS 1 2 3

NC 1 1

NE 6 1 1 8 16

OH 6 10 16

PA 2 3 5

SD 3 3

TN 1 1

TX 2 2 4

WI 7 5 12

Totals 22 45 15 108 190

Most trials were conducted using a simple unrepeated three-treatment strip-plot
approach where strips of 5+ acres were leveraged across the field. The three treatment areas
consisted of (1) an unsprayed portion or an untreated check (UTC), (2) one area sprayed
according to the grower’s standard choice of timing (GT) or conventional timing, and
(3) an area treated based on the Corteva model-recommended spray timing (CT). Growers in
the Midwest United States commonly use two-way or three-way mode-of-action fungicide
products, including strobilurins (group 11), triazoles (group 3), and SDHIs (group 7), to
combat fungal diseases in corn and soybeans. Fungicide applications typically occur
around the VT/R1 stage, with some growers also scouting fields to determine the presence
of disease before spraying.

Experimental layouts for on-farm trials were either designed by the grower or completed
by Corteva and given to the grower to reference from. If completed by Corteva, experimental
layouts favored uniform placement from previous yield analysis harvest maps, and productiv-
ity zones analyzed by satellite imagery, as well as intra-field soil type differences to minimize
differences compromising the yield effects between the different strips.
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A very low number of trials were not able to keep all 3 treatment blocks fully intact by
harvest time; however, partial yield data were still achieved in these fields. This resulted
in 35 trials where the UTC block was lost, 15 trials where the CT block was lost, and
24 trials where the GT was lost. The loss of some treatment blocks was due to unforeseen
circumstances from logistics, delays, application mishaps, or combine failures at harvest
time. Both treated areas leveraged the same chemical fungicide, at the same rate, but
differed only in the timing of the application. Aproach PrimaTM (Corteva Agriscience,
Indianapolis, IN, USA) fungicide was the preferred chemical used at most all trial sites in
this study. Aproach PrimaTM contains picoxystrobin and cyproconazole, at 18% and 7%,
respectively. Other common chemicals are frequently used by growers that include, but
are not limited to, products such as Trivapro, Quilt Xcel, Veltyma, Headline AMP, Delaro
Complete, and Stratego YLD, to name a few.
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2.10. Statistical Analyses and Yield Analyses

In creating an ML-based GLS prediction model, a regression decision tree was built by
recursively partitioning the data according to relationships between the predictor variables
and the response variable (i.e., the GLS disease score). Both the response and predictor
variables were continuous data and the decision tree was constructed using JMP®, Version
18.1 SAS Institute Inc., Cary, NC, USA, 1989–2023. A CART model was selected because
it is useful for exploring relationships in the data while handling large problems easily
with interpretable results. To evaluate the model performance, a 5-fold cross-validation
technique was selected since it provides a more robust and reliable performance estimate:
it reduces the impact of data variability and minimizes the risk of overfitting. Since the
dataset was small to medium in size, this ensured every data point was used in both
training and validation for a more comprehensive but still unbiased evaluation. The
location-level risk DUs were compared to the ground scores observed from the 2019 and
2020 agronomy trials highlighted from Figure 4 to evaluate the NLB risk model and gauge
accuracy. These disease risk units for NLB (calculated from Figure 2) can track and measure
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potential disease onset and continued progression across time. Scoring data collected
from the 2019 and 2020 field seasons were evaluated by viewing the area under the ROC
curve for detection accuracies to calculate the disease models’ performance in predicting
disease severity.

The risk DUs for the two pathogen models were combined with agronomic data from
the field along with soil attributes to serve as a set of input features for the mixed variable
model to predict disease observations. Corn hybrid disease ratings from the 50 Midwest
observation trials were used to build independent risk thresholds by tolerance class to NLB
and GLS; these involved identifying NLB and GLS accumulated risk DUs that accounted
for drops in disease pressure observed from the trial observations. For each resistance class,
a linear threshold was drawn that predicted a potential disease outbreak for NLB or GLS
at very low to low levels of severity. A set of CART-based decision regression trees were
constructed using recursive partitioning and the outputs from these trees were averaged
for an overall composite stress score prediction.

The results from the on-farm trials to calculate ROI were analyzed by t-tests and
p-values were used to assess significance between the different treatment blocks tested.
Yield analyses, throughout the different growing seasons, were either analyzed by the
growers themselves or completed by Corteva. From the analyses completed by Corteva,
the as-planted, as-applied, and as-harvested data layers were gathered and overlayed
together to dissect yield cuts from the designed treatment blocks. Some buffering was
performed on treatment block lines to avoid contamination from adjacent treatments as
well as headland exclusions on the exterior parts of the field edges. This type of bracketed
analysis shows more consistent block-to-block differences over a full field breakout analysis
which can introduce more unwanted variation due to potential ditches and soil types.
Roughly 70% of the fields were analyzed in this fashion versus the other 30% analyzed by
the growers themselves.

3. Results
A graph that highlights the likely occurrence of NLB infection, across 2019 and 2020,

with increased NLB risk DUs, is shown in Figure A7. This result allowed the establishment
of NLB risk DUs to be incorporated into the spray timing decision model. The NLB model
was shown to be very predictive of the overall pressure and likely occurrence.

A model selection process was determined to validate that the ML model had the best
performance on the GLS data, while the mechanistic model was superior on the NLB data.
We can view the model area under the curve (AUC), as in Table 4. The variations in weather
and disease pressure between 2019 and 2020 significantly influenced the data quality and
quantity, which proportionally affected the accuracy and AUC values of the disease models
for NLB and GLS. In 2019, cooler and wetter conditions led to higher NLB pressure, while
2020’s warmer and drier conditions, along with a shift in trial locations, resulted in GLS
being more predominant. Despite these differences, both models maintained an average
accuracy of around 70% even with the year effect differences observed.

Disease detection accuracy in our analyses involved distinguishing zero-to-low disease
pressure environments from moderate-to-high pressure environments. Receiver operating
characteristic (ROC) curves were plotted in viewing the True Positive Rate (TPR) against
the False Positive Rate (FPR) for different disease presence versus absence thresholds. In
the summarized performance found in Table 4, the area under the ROC curve is measured
from 0 to 1, where 1 is best (TPR) and 0 is worst (FPR).
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Table 4. Disease prediction model results shown by area under the ROC curve for detection accuracies.

Year Disease Data Set NLB Model:
Mechanistic

GLS Model:
Machine Learning

2019 Agronomy Trials Obs 0.73 0.665

2020 Agronomy Trials Obs 0.7 0.72

Averages 0.715 0.693

Through feature engineering of extracted hourly weather data, nine variables were
selected and leveraged to predict GLS disease onset and progression across the on-farm
trials from 2019. A recursive partitioning decision tree was created, using the disease scores
(N = 250), from 50 trials (Figure 3) as a y-response variable. The statistical performance
metrics of the devised model illustrates the 5k-fold cross-validated accuracies of ~R2 = 0.9,
as shown in Table 5. The relative humidity % average at 8 p.m., rainfall (mm) accumulation
at 4 a.m., and wind speed (m/s) average at 12 p.m. are the top three contributors to the
ML model.

Table 5. Performance metrics are shown for the GLS featured decision tree ML-model including the
R2, RMSE, SSE, N (# of observations), number of splits (N), and the Akaike information criterion
(AIC) values.

Model
Performance R2 SSE RMSE N Number of

Splits AICc

Overall 0.951 116,770 21 250 67 2437

5 K-Fold 0.896 247,334

That NLB and GLS average pressure scores collected across the Midwest in 2019
and 2020 helped to build the mixed variable spray timing models, are shown Figure 7.
These results show differential GLS and NLB symptoms scored across key parts of the
Midwest. This clearly shows that a fungicide spray timing recommendation system would
be extremely valuable to growers in this target geography to combat corn diseases and
potential yield loss if and when they may manifest.
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indicates no symptoms and 1 indicates very severe symptoms.

A disease prediction model was designed and built to accompany differential field
attributes, genetic tolerance, irrigation practice, and environmental risk into a single overall
fungicide timing spray decision. Built from the validation data from Figure 4 as a response
variable, 18 input variables, shown in Table 2, were utilized within a recursive partitioning
decision tree to predict disease stress at the field level. Four different decision tree models
were created and used in combination to provide an ensemble disease prediction.

Each of the four models were validated using either a random holdback approach
with a set number (N) of locations used for a training and validation set or by using a 5-fold
cross-validation method. The statistical performance metrics of the four varying models
are shown below in Table 6. These models show R2 values between 0.85 and 0.91.

Table 6. Four different decision tree models are shown and validated differently between cross-
validation and random holdback techniques. The statistical model performance and accuracy metrics
and values are shown for the sum of squared error (SSE), R2, AIC, root average square error (RASE),
N, and # of splits in the tree.

Model # Training/Validation R2 SSE RASE N Number of
Splits AICc

CART Model 1
Overall 0.9598 9352 3 667 146 4035

5 K-Fold 0.902 22,777

CART Model 2
Overall 0.9623 8774 3 667 147 3996

5 K-Fold 0.9095 21,033

CART Model 3
Training 0.97 3 474 200 3161

Holdback 30% 0.889 6 193

CART Model 4
Training 0.963 3 451 183 3074

Holdback 30% 0.855 6 216

For CART model 1, the top column contributions were weather features consisting of
the NLB risk model, cumulative GDUs, and the soil variables of organic matter, slope%, and
pH. These five variables contributed to nearly 77% of the explainable variation. For CART
model 2, which did not include the agronomic variables, the top column contributions were
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a similar set of weather features which included the NLB risk model, cumulative GDUs,
and the soil variables of sand%, slope%, and pH; these features contributed to ~78% of
the explainable variation seen in the model. For CART model 3, which utilized random
holdback validation, the top contributors explained ~73% of the variation which consisted
of the weather features of the GLS risk model and NLB risk model, the cumulative GDUs,
and the available water capacity and pH from the soil inputs. Lastly, CART model 4, which
excluded agronomic variables in the feature set, highlighted weather features such as the
cumulative LWD hours, NLB risk model, and cumulative GDUs along with the silt% and
pH from the soils; nearly 77% of the variation was explainable by these terms alone.

A set of environmental constraints were established based on the genetic tolerance
information for a given hybrid, under a given irrigation management (full, limited, or
none) which utilized leaf wetness hours, rainfall (mm), and each of the GLS and NLB
DUs. Within a decision tree logical framework, like that shown in Figure A6, values were
determined and orchestrated with decision points serving both as logical checkpoints
and environmental risk checkmarks to evaluate the season-long accumulated risk. This
developed framework also utilized the disease stress prediction models, from Table 6, in
developing unique disease threat thresholds by tolerance class; once these thresholds were
exceeded, a spray call was then triggered.

To view the spray timing model performance across the years, from 2020 to 2023, a
descending piano bar graph was created showing the differing fungicide treated timings
(CT and GT) relative to the UTC. Figure 8 shows these yield advantage breakdowns, by
trial, which in turn lead to a positive or negative return of investment (ROI).

In the first graph of Figure 8, the yield difference between the conventional timing,
chosen by the grower, and the untreated check is shown in descending order. From the
results of 3 years of independent trial data collected by our R&D and commercial agronomy
teams, the average bu/acre advantage, across 131 trials, for the GT compared to the UTC
was 4.7 bu/acre. Our results showed that 55 of 131 trials (42%) surpassed a 4 bu/acre
advantage, while only 51 trials (39%) exceeded a 5 bu/acre advantage. Assuming a farmer
needs 5 bu/acre to recoup the full cost of the spray, this indicated that around ~60% of the
time, farmers do not see a clear ROI when spraying fungicides on their corn crop.

The second graph in Figure 8 shows the yield difference between the Corteva timing
compared to the UTC, with an average increase of 9.5 bu/acre. This fungicide spray
timing model, developed by Corteva, showed 102/146 trials (70%) exceeded a 4 bu/acre
advantage, while 93 trials (64%) exceeded a 5 bu/acre advantage. This fungicide spray
timing model shows a 20–30% gain in achieving a positive ROI, per field basis, compared
with the grower timing treatments.

Shown in the third graph of Figure 8, the yield difference of the CT was compared to
the GT across 151 trials. The yield advantage of the CT averaged +5.1 bu/acre. CT was
compared to the GT across 151 trials and averaged a benefit of 5.1 bu/acre. Among these
statistics, a win-rate of 62% (94 trials) was achieved for a >2 bu/acre advantage, while 54%
of the time (82 trials) there was a >3 bu/acre advantage.
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4. Discussion
Agricultural research has recently shifted focus to sustainable farm practices and

increasing crop production. The goal of this study was to build and expand pathogen risk
models, using predictive ML and mechanistic models, to predict the onset and progression
of key corn diseases (NLB and GLS) in real time to better time fungicide applications.
Growers benefit from increased corn yield in terms of bushels leading to higher returns
of investment from their crop protection inputs through better application timing. This
research contributes to guide more sustainable farming practices in opportunities to reduce
inputs when crop protection products are not needed to control disease.

The spray timing model incorporates disease risk and LWD models in different ways.
Both features serve as checkpoints from which a set of value thresholds can differ across
varying tolerance classes. These hybrid tolerance classes were divided up between highly
susceptible, moderately susceptible, moderately tolerant, and tolerant. The disease pressure
predictor models, from a mixed variable set of inputs, act as triggers when the threshold is
reached or exceeded. These models were validated using k-fold cross validation as well as
other random holdback techniques.

This research demonstrates a disease model and recommendation system that was
developed by Corteva to successfully control and protect against fungal diseases in corn,
as evident by the bu/acre advantage seen from the Corteva timing versus the check and
grower timings. A 9.46 bu/acre advantage was observed via comparing the CT versus the
UTC across 146 trials, while a 5.1 bu/acre advantage was confirmed, across 151 trials, from
analyzing the CT versus the GT treated areas.

These results show that by correctly timing the disease onset and progression, there
can be a substantial fungicide advantage, not only evident in canopy health, but in total
bushels per acre. This disease prediction spray model system builds upon general fungal
risk modeling with the addition of the spray timing component. Growers struggle to break
even with traditional practices. As shown in the GT vs. UTC comparisons in Figure 8
farmers in the Midwest typically only break even, at >5 bu/acre over the UTC, ~39% of
the time. The Corteva timing showed a drastic increase in the win-rate percentage to break
even with a 25% advantage over the GT of ~64% of the time.

The variability in disease pressure across different environments in the Midwest
significantly impacts the yield potential. Primary diseases like GLS and NLB are major
threats during the V14–R1 stages, while tar spot and southern rust become problematic
in the later stages (R2–R4) and are very year-dependent. The differences in return on
investment (ROI) across trials over four years are mainly due to these environmental and
disease variations along with trial placement, not the fungicide chemistry, as Aproach
Prima was used consistently.

In conclusion, the disease-warning system described in this document offers a sig-
nificant advancement in crop disease management by leveraging accurate weather data
and advanced modeling techniques. By predicting disease onset and guiding fungicide
applications, this system enhances grower profitability and sustainability while reducing
pathogen resistance. The integration of historical and forecast weather data, along with soil
and field management features, provides a comprehensive approach to managing diseases
like NLB and GLS. Field trials have demonstrated the system’s effectiveness, showing
substantial yield advantages and a better return on investment compared to conventional
methods. Overall, this innovative approach represents a valuable tool for proactive and
informed crop disease management.

Empirical models, which rely on observation rather than theory, have extensively been
used in academic and industry pest management research. These statistical models such as
CART and LWD estimation have been used frequently when modeling for fungal disease
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risks [15–17,37]. Recently, in 2024, new published research has shown improvements
in predictions for daily LWD using random forest (RF) models utilizing a multi-step ML
approach from the ERA5 reanalysis weather products [45]. Due to the limited availability of
leaf wetness sensors and the high cost for physical weather stations, advances in data-based
predictions using ML models are emerging as the preferred choice for measuring LWD at
scale. Furthermore, with climate change and pest risk modeling becoming major concerns,
local daily and hourly LWD predictions are critical to forecast and track pathogen threats.

The strengths of the spray timing framework described herein consist of the mixed
variables that are leveraged together as features that combine the field specific agronomic
metadata, local hourly historical and forecast weather data, soil information, and product
disease tolerance to provide an in-season recommendation. Potential gaps in the feature
set that could be added to improve future model predictions could be the use of remote
sensing and the utilization of real-time pivot telemetry data from irrigated fields, as well as
spore traps which could quantify and identify spore load. The main challenges of practical
application are the limited availability of on-farm data capture for non-John Deere (JD)
users, which restricts critical input data for field-level recommendations, and the constraints
on weather data ingestion, which affect the timeliness and scalability of the model’s daily
recommendations. As the project scales, managing increased data processing demands
without exceeding computing capacity is also crucial. Along with these model additions,
many companies provide comprehensive soil samplings, by field, which can potentially
help to identify and determine pathogen load abundance along with other nutrient levels.
These agronomic field-level assessments mentioned could be used to tailor the right crop
protection chemistries to combat the identified disease targets.

Throughout the trial protocol execution phase, it was critically important for the
Corteva field team to overcommunicate with the growers on the field work tasks (data
collection, spray timing, etc.) to garner whether the necessary modeling information for
trial sites was achieved. Engaging with busy farmers, whose priorities extend far beyond
the strip trials you are partnering with them on, need constant reminders and follow-ups.
For trial creation and experimental design, it was important to view soil types, satellite
imagery, and yield zones (productivity acres) to ensure the size, shape, and placement of
the treatment blocks, especially the UTC, were uniform. These consistencies allowed for
better execution and better signal-to-noise yield differences for treatment effects, driven by
different application timings, and lower error estimates across the bracketed analyses.

Further research and next steps are ongoing to expand the disease model suite to
in-corporate spray timing recommendations for tar spot and southern rust. Southern rust,
while more common in the southern states of the US, can present difficult and challenging
problems for Midwest growers when tropical storms or wind events blow spores from
this disease north to infect corn fields (https://www.cropscience.bayer.us/articles/bayer/
identifying-and-managing-southern-rust-of-corn) (accessed on 22 January 2025). This
devastating fungal disease can cause severe damage to the corn yield as well as spread
quickly from field to field. Large fungicide bushel advantages can be observed when
protecting from this crucial disease at the right time. Tar spot, which is one of the newer
emerging diseases in the upper Midwest and far-east US, thrives in cooler temperatures
around 15–22 ◦C under moderately high humidities >80% (https://www.pioneer.com/us/
agronomy/Tar-Spot-of-Corn.html) (accessed on 22 January 2025). While moderate ambient
temperatures (18–23 ◦C) can drive and increase P. maydis stroma, tar spot progression has
shown to be hindered by extended periods of higher relative humidity levels of >90% [46].

Expansion into other areas of research can be leveraged from the results of this study
to include decisions for two-spray application programs and ROI calculations. From the
spray timing model discussed, the first spray timing decision can be initiated. A second

https://www.cropscience.bayer.us/articles/bayer/identifying-and-managing-southern-rust-of-corn
https://www.cropscience.bayer.us/articles/bayer/identifying-and-managing-southern-rust-of-corn
https://www.pioneer.com/us/agronomy/Tar-Spot-of-Corn.html
https://www.pioneer.com/us/agronomy/Tar-Spot-of-Corn.html
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application might be warranted using weather forecast information to know whether
conditions will potentially progress the disease. As with any spray timing decision, growers
are most concerned with the amount of return on investment they potentially might reach
after harvest. Genetic tolerance data would need to be incorporated along with the field-
level disease risk. These two factors can influence the response a given hybrid has to
fungicide as well as project the likely disease pressure impact, or leaf area loss, the disease
would have on the crop.

5. Patents
Automated Fungicide Spray Timing
Utility Patent Reference Number: 108467-WO-SEC-1 & 108467-US-UTL-1.
Above is the extension of a provisional patent that was filed on 21 February 2023

(9396-US-PSP).
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