Effects of Sediment Content, Flooding, and Drainage Process on Rice Growth and Leaf Physiology of Early Rice During Heading–Flowering Stage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Sampling and Measurements
2.3.1. Plant Height and Tillering
2.3.2. Leaf SPAD Value and Leaf Area
2.3.3. Leaf Antioxidant Properties
2.3.4. Aboveground Biomass (AGB) and Yield
2.3.5. Statistical Analysis
3. Results
3.1. Effect of Sediment Content, Flooding, and Drainage Process on Plant Height and Tillering
3.2. Effect of Sediment Content, Flooding, and Drainage Process on Leaf Area and SPAD Value
3.3. Effect of Sediment Content, Flooding, and Drainage Process on Antioxidant Activity
3.3.1. Activity of SOD
3.3.2. Activity of POD
3.3.3. MDA Content
3.4. Effect of Sediment Content, Flooding, and Drainage Process on Aboveground Biomass (AGB) and Yield
3.5. Correlation Analysis
3.6. Study of Drainage Programs for Rice After Flooding
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Panda, D.; Barik, J. Flooding Tolerance in Rice: Focus on Mechanisms and Approaches. Rice Sci. 2021, 28, 43–57. [Google Scholar] [CrossRef]
- Yu, Q.; Dai, Y.; Wei, J.; Wang, J.; Liao, B.; Cui, Y. Rice Yield and Water Productivity in Response to Water-Saving Irrigation Practices in China: A Meta-Analysis. Agric. Water Manag. 2024, 302, 109006. [Google Scholar] [CrossRef]
- Zhen, B.; Zhou, X.; Lu, H.; Li, H. Effects of Waterlogging on Rice Growth at Jointing–Booting Stage. Water 2024, 16, 1981. [Google Scholar] [CrossRef]
- Mackill, D.J.; Ismail, A.M.; Singh, U.S.; Labios, R.V.; Paris, T.R. Chapter Six—Development and Rapid Adoption of Submergence-Tolerant (Sub1) Rice Varieties. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2012; Volume 115, pp. 299–352. [Google Scholar]
- Cai, S.; Shi, H.; Pan, X.; Liu, F.; Cui, Y.; Xie, H. Integrating Ecological Restoration of Agricultural Non-Point Source Pollution in Poyang Lake Basin in China. Water 2017, 9, 745. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Xu, C.-Y.; Ye, X. The Changing Patterns of Floods in Poyang Lake, China: Characteristics and Explanations. Nat. Hazards 2015, 76, 651–666. [Google Scholar] [CrossRef]
- Singh, A.; Septiningsih, E.M.; Balyan, H.S.; Singh, N.K.; Rai, V. Genetics, Physiological Mechanisms and Breeding of Flood-Tolerant Rice (Oryza Sativa L.). Plant Cell Physiol. 2017, 58, 185–197. [Google Scholar] [CrossRef]
- Zhen, B.; Guo, X.; Zhou, X.; Lu, H.; Wang, Z. Effect of the Alternating Stresses of Drought and Waterlogging on the Growth, Chlorophyll Content, and Yield of Rice (Oryza Sativa L.). J. Irrig. Drain Eng. 2019, 145, 04019004. [Google Scholar] [CrossRef]
- Tian, L.; Zhang, Y.; Chen, P.; Zhang, F.; Li, J.; Yan, F.; Dong, Y.; Feng, B. How Does the Waterlogging Regime Affect Crop Yield? A Global Meta-Analysis. Front. Plant Sci. 2021, 12, 634898. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Z.; Li, L.; Zhou, Q.; Xiao, Y.; Wei, X.; Zhou, M. Short-Term Complete Submergence of Rice at the Tillering Stage Increases Yield. PLoS ONE 2015, 10, e0127982. [Google Scholar] [CrossRef]
- Bui, L.T.; Ella, E.S.; Dionisio-Sese, M.L.; Ismail, A.M. Morpho-Physiological Changes in Roots of Rice Seedling upon Submergence. Rice Sci. 2019, 26, 167–177. [Google Scholar] [CrossRef]
- Kar, G.; Sahoo, N.; Kumar, A. Deep-Water Rice Production as Influenced by Time and Depth of Flooding on the East Coast of India. Arch. Agron. Soil Sci. 2012, 58, 573–592. [Google Scholar] [CrossRef]
- Kato, Y.; Collard, B.C.Y.; Septiningsih, E.M.; Ismail, A.M. Physiological Analyses of Traits Associated with Tolerance of Long-Term Partial Submergence in Rice. AoB Plants 2014, 6, plu058. [Google Scholar] [CrossRef]
- Singh, S.; Mackill, D.J.; Ismail, A.M. Physiological Basis of Tolerance to Complete Submergence in Rice Involves Genetic Factors in Addition to the SUB1 Gene. AoB Plants 2014, 6, plu060. [Google Scholar] [CrossRef] [PubMed]
- Tong, C.; Hill, C.B.; Zhou, G.; Zhang, X.-Q.; Jia, Y.; Li, C. Opportunities for Improving Waterlogging Tolerance in Cereal Crops—Physiological Traits and Genetic Mechanisms. Plants 2021, 10, 1560. [Google Scholar] [CrossRef]
- Panda, D.; Sharma, S.G.; Sarkar, R.K. Chlorophyll Fluorescence Parameters, CO2 Photosynthetic Rate and Regeneration Capacity as a Result of Complete Submergence and Subsequent Re-Emergence in Rice (Oryza Sativa L.). Aquat. Bot. 2008, 88, 127–133. [Google Scholar] [CrossRef]
- Mustroph, A.; Albrecht, G. Tolerance of Crop Plants to Oxygen Deficiency Stress: Fermentative Activity and Photosynthetic Capacity of Entire Seedlings under Hypoxia and Anoxia. Physiol. Plant. 2003, 117, 508–520. [Google Scholar] [CrossRef]
- Pan, J.; Sharif, R.; Xu, X.; Chen, X. Mechanisms of Waterlogging Tolerance in Plants: Research Progress and Prospects. Front. Plant Sci. 2021, 11, 627331. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.H.M.; Zulfiqar, F.; Raza, A.; Mohsin, S.; Mahmud, J.; Fujita, M.; Fotopoulos, V. Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Steffens, B.; Steffen-Heins, A.; Sauter, M. Reactive Oxygen Species Mediate Growth and Death in Submerged Plants. Front. Plant Sci. 2013, 4, 179. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, B.; Zheng, Y.; Ma, K.; Xu, S.; Qiu, F. Screening Methods for Waterlogging Tolerance at Maize (Zea mays L.) Seedling Stage. Agric. Sci. China 2010, 9, 362–369. [Google Scholar] [CrossRef]
- Panda, D.; Sarkar, R.K. Characterization of Leaf Gas Exchange and Anti-Oxidant Defense of Rice (Oryza sativa L.) Cultivars Differing in Submergence Tolerance Owing to Complete Submergence and Consequent Re-Aeration. Agric. Res. 2013, 2, 301–308. [Google Scholar] [CrossRef]
- Zeng, H.; Liu, M.; Wang, X.; Liu, L.; Wu, H.; Chen, X.; Wang, H.; Shen, Q.; Chen, G.; Wang, Y. Seed-Soaking with Melatonin for the Improvement of Seed Germination, Seedling Growth, and the Antioxidant Defense System under Flooding Stress. Agronomy 2022, 12, 1918. [Google Scholar] [CrossRef]
- Mondal, S.; Khan, M.I.R.; Entila, F.; Dixit, S.; Cruz, P.C.S.; Panna Ali, M.; Pittendrigh, B.; Septiningsih, E.M.; Ismail, A.M. Responses of AG1 and AG2 QTL Introgression Lines and Seed Pre-Treatment on Growth and Physiological Processes during Anaerobic Germination of Rice under Flooding. Sci. Rep. 2020, 10, 10214. [Google Scholar] [CrossRef] [PubMed]
- Molla, K.A. Flowering Time and Photoperiod Sensitivity in Rice: Key Players and Their Interactions Identified. Plant Cell 2022, 34, 3489–3490. [Google Scholar] [CrossRef]
- Meng, Y.; Yu, S.; Yu, Y.; Jiang, L. Flooding Depth and Duration Concomitantly Influence the Growth Traits and Yield of Rice. Irrig. Drain. 2022, 71, 94–107. [Google Scholar] [CrossRef]
- Lee, K.-W.; Chen, P.-W.; Lu, C.-A.; Chen, S.; Ho, T.-H.D.; Yu, S.-M. Coordinated Responses to Oxygen and Sugar Deficiency Allow Rice Seedlings to Tolerate Flooding. Sci. Signal. 2009, 2, ra61. [Google Scholar] [CrossRef]
- Mongon, J.; Jantasorn, A.; Oupkaew, P.; Prom-u-Thai, C.; Rouached, H. The Time of Flooding Occurrence Is Critical for Yield Production in Rice and Vary in a Genotype-Dependent Manner. OnLine J. Biol. Sci. 2017, 17, 58–65. [Google Scholar] [CrossRef]
- Zhang, W.; Shi, H.; Cai, S.; Guo, Q.; Dai, Y.; Wang, H.; Wan, S.; Yuan, Y. Rice Growth and Leaf Physiology in Response to Four Levels of Continuous Drought Stress in Southern China. Agronomy 2024, 14, 1579. [Google Scholar] [CrossRef]
- Shao, G.-C.; Deng, S.; Liu, N.; Yu, S.-E.; Wang, M.-H.; She, D.-L. Effects of Controlled Irrigation and Drainage on Growth, Grain Yield and Water Use in Paddy Rice. Eur. J. Agron. 2014, 53, 1–9. [Google Scholar] [CrossRef]
- Shao, G.; Cui, J.; Yu, S.; Lu, B.; Brian, B.J.; Ding, J.; She, D. Impacts of Controlled Irrigation and Drainage on the Yield and Physiological Attributes of Rice. Agric. Water Manag. 2015, 149, 156–165. [Google Scholar] [CrossRef]
- Van Der Straeten, D.; Zhou, Z.; Prinsen, E.; Van Onckelen, H.A.; Van Montagu, M.C. A Comparative Molecular-Physiological Study of Submergence Response in Lowland and Deepwater Rice. Plant Physiol. 2001, 125, 955–968. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Meng, Y.; Chen, P.; Cao, K. Submergence Stress Reduces the Ability of Rice to Regulate Recovery after Disaster. Agronomy 2024, 14, 1319. [Google Scholar] [CrossRef]
- Jinwen, L.; Jingping, Y.; Pinpin, F.; Junlan, S.; Dongsheng, L.; Changshui, G.; Wenyue, C. Responses of Rice Leaf Thickness, SPAD Readings and Chlorophyll a/b Ratios to Different Nitrogen Supply Rates in Paddy Field. Field Crops Res. 2009, 114, 426–432. [Google Scholar] [CrossRef]
- Mohd Ikmal, A.; Noraziyah, A.A.S.; Wickneswari, R. Incorporating Drought and Submergence Tolerance QTL in Rice (Oryza sativa L.)—The Effects under Reproductive Stage Drought and Vegetative Stage Submergence Stresses. Plants 2021, 10, 225. [Google Scholar] [CrossRef]
- Panda, D.; Sarkar, R.K. Leaf Photosynthetic Activity and Antioxidant Defense Associated with Sub1 QTL in Rice Subjected to Submergence and Subsequent Re-Aeration. Rice Sci. 2012, 19, 108–116. [Google Scholar] [CrossRef]
- Panda, D.; Rao, D.N.; Sharma, S.G.; Strasser, R.J.; Sarkar, R.K. Submergence Effects on Rice Genotypes during Seedling Stage: Probing of Submergence Driven Changes of Photosystem 2 by Chlorophyll a Fluorescence Induction O-J-I-P Transients. Photosyntica 2006, 44, 69–75. [Google Scholar] [CrossRef]
- Li, S.; Wu, Z.; Liu, C.; Fan, L.; He, Y.; Lu, K.; Liu, D.; Feng, G. Overexpression of CsGSH2 Alleviates Propamocarb Residues and Phytotoxicity in Cucumber by Enhancing Antioxidant and Glutathione Detoxification Properties. Agriculture 2022, 12, 1528. [Google Scholar] [CrossRef]
- Feng, H.; Jiang, L.; Wang, B.; Pan, B.; Lin, Y. Dissolved Organic Matter from Earthworm Casts Restrained the Phytotoxicity of Soil Glyphosate to Citrus (Poncirus trifoliata (L.) Raf.) Plants. Agriculture 2023, 13, 1148. [Google Scholar] [CrossRef]
- Lal, B.; Gautam, P.; Rath, L.; Haldar, D.; Panda, B.B.; Raja, R.; Shahid, M.; Tripathi, R.; Bhattacharyya, P.; Mohanty, S.; et al. Effect of Nutrient Application on Growth, Metabolic and Enzymatic Activities of Rice Seedlings During Flooding Stress and Subsequent Re-Aeration. J. Agron. Crop Sci. 2015, 201, 138–151. [Google Scholar] [CrossRef]
- Kende, H.; Van Der Knaap, E.; Cho, H.-T. Deepwater Rice: A Model Plant to Study Stem Elongation. Plant Physiol. 1998, 118, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Iturralde Elortegui, M.D.R.M.; Berone, G.D.; Striker, G.G.; Martinefsky, M.J.; Monterubbianesi, M.G.; Assuero, S.G. Anatomical, Morphological and Growth Responses of Thinopyrum Ponticum Plants Subjected to Partial and Complete Submergence during Early Stages of Development. Funct. Plant Biol. 2020, 47, 757. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Panda, D.; Sarkar, R.K. Can Rice Cultivar with Submergence Tolerant Quantitative Trait Locus (SUB1) Manage Submergence Stress Better during Reproductive Stage? Arch. Agron. Soil Sci. 2017, 63, 998–1008. [Google Scholar] [CrossRef]
- Agustiani, N.; Sujinah, S.; Rumanti, I.A. Critical Variables of Morpho-Physiological Rice Plant under Stagnant Flooding Conditions. Indones. J. Agric. Sci. 2021, 22, 1. [Google Scholar] [CrossRef]
- Blu, R.O. Analysis of Factors Affecting Spikelet Sterility in Flooded Rice under Field Conditions in Chile. Arch. Agron. Soil Sci. 2007, 53, 183–192. [Google Scholar] [CrossRef]
- Nishiuchi, S.; Yamauchi, T.; Takahashi, H.; Kotula, L.; Nakazono, M. Mechanisms for Coping with Submergence and Waterlogging in Rice. Rice 2012, 5, 2. [Google Scholar] [CrossRef]
- Loreti, E.; Van Veen, H.; Perata, P. Plant Responses to Flooding Stress. Curr. Opin. Plant Biol. 2016, 33, 64–71. [Google Scholar] [CrossRef]
Treatment | Plant Height | |||
---|---|---|---|---|
Before Flooding (cm) | Before Drainage (cm) | After Drainage (cm) | Average Growth Rate (cm d−1) | |
CK | 69.97 ± 1.29 ab | 72.73 ± 1.42 abc | 74.57 ± 1.08 a | 0.38 ± 0.15 a |
S0F1D1 | 67.20 ± 2.31 b | 70.93 ± 2.45 c | 73.00 ± 3.60 ab | 0.97 ± 0.55 a |
S0F1D2 | 71.03 ± 2.94 ab | 75.00 ± 3.18 abc | 76.97 ± 3.33 ab | 0.66 ± 0.14 a |
S0F2D1 | 70.63 ± 2.59 ab | 76.57 ± 2.31 ab | 77.90 ± 1.90 ab | 0.81 ± 0.39 a |
S0F2D2 | 71.67 ± 1.88 ab | 77.07 ± 1.15 ab | 76.77 ± 0.65 ab | 0.43 ± 0.17 a |
S1F1D1 | 70.07 ± 3.61 ab | 74.77 ± 1.72 abc | 76.90 ± 0.85 ab | 1.14 ± 0.47 a |
S1F1D2 | 70.70 ± 2.82 ab | 73.67 ± 0.58 abc | 76.60 ± 2.62 b | 0.66 ± 0.46 a |
S1F2D1 | 68.10 ± 0.52 b | 73.40 ± 2.99 abc | 73.43 ± 3.79 ab | 0.59 ± 0.40 a |
S1F2D2 | 69.30 ± 1.91 b | 73.77 ± 3.50 abc | 76.13 ± 2.61 ab | 0.57 ± 0.37 a |
S2F1D1 | 68.20 ± 0.36 b | 70.80 ± 2.51 c | 72.97 ± 6.55 ab | 0.79 ± 1.09 a |
S2F1D2 | 70.07 ± 2.80 ab | 72.23 ± 3.23 bc | 76.50 ± 2.18 ab | 0.71 ± 0.14 a |
S2F2D1 | 71.03 ± 2.37 ab | 75.47 ± 1.75 abc | 76.20 ± 1.47 ab | 0.57 ± 0.10 a |
S2F2D2 | 71.57 ± 0.29 a | 77.37 ± 1.36 a | 78.87 ± 3.84 ab | 0.61 ± 0.10 a |
Treatment | Tillering | |||
---|---|---|---|---|
Before Flooding (cm) | Before Drainage (cm) | After Drainage (cm) | Spike Rate (%) | |
CK | 17.67 ± 1.15 abc | 17.78 ± 2.04 ab | 18.00 ± 2.00 abc | 88.89 |
S0F1D1 | 17.33 ± 0.58 bc | 17.00 ± 1.00 ab | 17.00 ± 1.00 abc | 57.39 |
S0F1D2 | 17.67 ± 1.15 abc | 17.33 ± 1.15 ab | 18.33 ± 1.53 abc | 76.75 |
S0F2D1 | 18.33 ± 1.15 abc | 19.67 ± 0.58 a | 18.67 ± 0.58 abc | 62.32 |
S0F2D2 | 19.00 ± 1.00 ab | 18.67 ± 0.58 ab | 19.00 ± 1.00 abc | 59.63 |
S1F1D1 | 17.67 ± 0.58 abc | 17.00 ± 1.00 ab | 17.67 ± 0.58 abc | 69.78 |
S1F1D2 | 18.67 ± 0.58 abc | 18.67 ± 1.53 ab | 19.33 ± 1.53 ab | 65.00 |
S1F2D1 | 19.67 ± 1.53 a | 19.67 ± 2.52 a | 20.00 ± 3.00 a | 76.65 |
S1F2D2 | 17.67 ± 0.58 abc | 17.33 ± 0.58 ab | 15.67 ± 1.53 c | 65.92 |
S2F1D1 | 17.33 ± 0.58 bc | 17.67 ± 0.58 ab | 17.67 ± 1.15 abc | 51.83 |
S2F1D2 | 17.00 ± 1.00 bc | 15.67 ± 1.53 b | 16.33 ± 2.08 bc | 64.71 |
S2F2D1 | 17.00 ± 1.73 bc | 17.67 ± 1.53 ab | 18.33 ± 1.53 abc | 83.93 |
S2F2D2 | 16.67 ± 1.15 c | 17.00 ± 1.73 ab | 19.00 ± 1.00 abc | 73.68 |
Treatment | Leaf Area | |||
---|---|---|---|---|
Before Flooding (cm2) | Before Drainage (cm2) | After Drainage (cm2) | Average Growth Rate (cm2 d−1) | |
CK | 31.59 ± 0.86 a | 35.12 ± 1.04 a | 37.60 ± 0.80 a | 0.50 ± 0.03 a |
S0F1D1 | 29.62 ± 2.73 a | 33.08 ± 2.09 abc | 34.00 ± 1.54 ab | 0.53 ± 0.13 a |
S0F1D2 | 31.04 ± 2.77 a | 32.64 ± 0.58 abc | 33.32 ± 1.07 ab | 0.42 ± 0.30 a |
S0F2D1 | 30.13 ± 0.75 a | 33.84 ± 2.20 ab | 36.02 ± 3.66 ab | 0.53 ± 0.08 a |
S0F2D2 | 30.58 ± 1.72 a | 33.48 ± 1.67 abc | 35.84 ± 2.16 ab | 0.44 ± 0.32 a |
S1F1D1 | 30.28 ± 2.53 a | 32.93 ± 1.40 abc | 33.12 ± 1.04 ab | 0.58 ± 0.19 a |
S1F1D2 | 29.80 ± 0.84 a | 30.62 ± 0.48 c | 31.85 ± 2.00 b | 0.51 ± 0.17 a |
S1F2D1 | 31.55 ± 2.05 a | 34.28 ± 0.90 ab | 34.44 ± 3.24 ab | 0.38 ± 0.05 a |
S1F2D2 | 29.68 ± 1.81 a | 33.14 ± 0.88 abc | 34.19 ± 1.11 ab | 0.37 ± 0.23 a |
S2F1D1 | 30.55 ± 0.86 a | 32.37 ± 0.86 abc | 34.03 ± 2.26 ab | 0.47 ± 0.26 a |
S2F1D2 | 29.49 ± 1.25 a | 33.37 ± 1.05 abc | 33.51 ± 1.08 ab | 0.44 ± 0.05 a |
S2F2D1 | 28.95 ± 2.09 a | 32.29 ± 2.75 abc | 33.40 ± 1.91 ab | 0.43 ± 0.11 a |
S2F2D2 | 29.22 ± 0.67 a | 31.69 ± 0.47 bc | 33.80 ± 1.29 ab | 0.38 ± 0.09 a |
Treatment | Effective Spike Number | Grain Number per Spike | Fruiting Rate (%) | Thousand-Grain Weight (g) | Yield (g pot−1) | Relative Yield (%) |
---|---|---|---|---|---|---|
CK | 13.00 ± 1.00 abcd | 106.40 ± 3.79 a | 87.87 ± 1.79 a | 24.26 ± 0.50 a | 128.70 ± 3.49 a | — |
S0F1D1 | 10.33 ± 2.31 cd | 86.55 ± 18.92 b | 67.33 ± 7.18 bc | 22.94 ± 0.36 ab | 87.77 ± 19.22 b | 68.19 |
S0F1D2 | 14.33 ± 1.53 abc | 82.80 ± 2.93 b | 60.97 ± 4.56 bc | 22.93 ± 1.26 ab | 76.80 ± 22.36 bc | 59.67 |
S0F2D1 | 12.67 ± 1.53 abcd | 79.96 ± 2.63 b | 54.66 ± 3.08 cd | 22.43 ± 0.49 abc | 58.14 ± 7.08 de | 45.18 |
S0F2D2 | 11.33 ± 3.79 abcd | 82.86 ± 8.69 b | 40.46 ± 11.00 de | 22.26 ± 0.30 abc | 38.67 ± 3.68 g | 30.04 |
S1F1D1 | 12.33 ± 2.31 abcd | 83.62 ± 4.50 b | 55.08 ± 1.06 c | 22.15 ± 0.47 abc | 61.14 ± 9.30 de | 47.5 |
S1F1D2 | 13.00 ± 1.53 abcd | 80.25 ± 2.93 b | 57.96 ± 4.56 ac | 23.31 ± 1.26 ab | 63.91 ± 6.68 d | 49.66 |
S1F2D1 | 15.33 ± 1.00 ab | 82.64 ± 12.92 b | 32.64 ± 14.64 e | 20.32 ± 0.27 cd | 67.45 ± 8.34 cd | 52.41 |
S1F2D2 | 10.33 ± 1.53 cd | 76.94 ± 12.82 b | 37.26 ± 4.10 e | 18.86 ± 1.46 d | 49.69 ± 11.89 efg | 38.61 |
S2F1D1 | 9.33 ± 0.58 d | 78.42 ± 7.08 b | 68.94 ± 6.73 bc | 23.62 ± 2.34 ab | 49.25 ± 5.13 efg | 38.27 |
S2F1D2 | 11.00 ± 0.58 bcd | 89.13 ± 9.52 ab | 58.40 ± 11.32 b | 22.18 ± 1.51 abc | 51.06 ± 11.99 ef | 39.68 |
S2F2D1 | 15.67 ± 4.00 a | 81.51 ± 8.30 b | 54.98 ± 0.64 c | 23.03 ± 0.59 ab | 44.34 ± 10.50 fg | 34.45 |
S2F2D2 | 14.00 ± 2.52 abc | 81.95 ± 3.40 b | 39.80 ± 6.38 e | 21.88 ± 1.01 bc | 44.93 ± 5.42 fg | 34.91 |
S | ns | ns | ** | ** | ** | — |
F | ns | * | ** | ** | ** | — |
D | ns | ns | * | ns | * | — |
S × F | * | ns | ns | * | ** | — |
S × D | ns | * | ** | ns | * | — |
F ×D | ** | ns | * | ns | * | — |
S × F × D | ns | * | * | ns | ns | — |
Sediment Content | Impact Factor | Effective Spike Number | Grain Number Per Spike | Fruiting Rate (%) | Thousand-Grain Weight (g) | Yield (g pot−1) |
---|---|---|---|---|---|---|
S0 | F | −0.660 | −0.447 | −0.720 * | −0.447 | −0.872 ** |
D | 0.265 | −0067 | −0.446 | −0.067 | −0.397 | |
SFW | 0.059 | −0.430 | −0.830 ** | −0.430 | −0.958 ** | |
S1 | F | 0.038 | −0.125 | −0.836 ** | −0.765 ** | −0.230 |
D | −0.500 | −0.264 | 0.145 | −0.037 | −0.436 | |
SFW | −0.189 | −0.230 | −0.683 * | −0.701 * | −0.401 | |
S2 | F | 0.717 ** | −0.149 | −0.836 ** | −0.187 | −0.971 * |
D | 0.003 | 0.406 | −0.206 | −0.545 | 0.211 | |
SFW | 0.642 * | 0.048 | −0.840 ** | −0.411 | −0.408 |
Sediment Content | Influencing Factor | Regression Equation | R | F Value | Sig |
---|---|---|---|---|---|
S0 | F and D | Ry = 69.42 − 0.872F − 0.397D | 0.901 | 50.894 ** | 0.000 ** |
SFW | Ry = 50.108 + 0.302SFW2 − 0.711SFW | 0.929 | 58.752 ** | 0.000 ** | |
S1 | F and D | Ry = 59.593 − 0.275F − 0.542D | 0.892 | 2.930 | 0.294 |
SFW | Ry = −7.272 + 20.572SFW2 − 1.773SFW | 0.863 | 3.141 | 0.371 | |
S2 | F and D | Ry = 74.868 − 0.971F − 0.891D | 0.965 | 42.817 * | 0.007 * |
SFW | Ry = 39.380 + 0.299SFW2 − 0.106SFW | 0.611 | 0.921 | 0.224 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, S.; Zhang, W.; Wang, B.; Wang, H.; Guo, Q.; Dai, Y.; Gong, L.; Shi, H. Effects of Sediment Content, Flooding, and Drainage Process on Rice Growth and Leaf Physiology of Early Rice During Heading–Flowering Stage. Agronomy 2025, 15, 334. https://doi.org/10.3390/agronomy15020334
Cai S, Zhang W, Wang B, Wang H, Guo Q, Dai Y, Gong L, Shi H. Effects of Sediment Content, Flooding, and Drainage Process on Rice Growth and Leaf Physiology of Early Rice During Heading–Flowering Stage. Agronomy. 2025; 15(2):334. https://doi.org/10.3390/agronomy15020334
Chicago/Turabian StyleCai, Shuo, Wenlong Zhang, Bingrui Wang, Haiyuan Wang, Qiaoling Guo, Yulong Dai, Laihong Gong, and Hong Shi. 2025. "Effects of Sediment Content, Flooding, and Drainage Process on Rice Growth and Leaf Physiology of Early Rice During Heading–Flowering Stage" Agronomy 15, no. 2: 334. https://doi.org/10.3390/agronomy15020334
APA StyleCai, S., Zhang, W., Wang, B., Wang, H., Guo, Q., Dai, Y., Gong, L., & Shi, H. (2025). Effects of Sediment Content, Flooding, and Drainage Process on Rice Growth and Leaf Physiology of Early Rice During Heading–Flowering Stage. Agronomy, 15(2), 334. https://doi.org/10.3390/agronomy15020334