Genomic Regions 10q22.2, 17q21.31, and 2p23.1 Can Contribute to a Lower Lung Function in African Descent Populations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Populations Studied
2.2. Spirometric Measurements
2.3. Genomic DNA Extraction and Genotyping
2.4. Local Ancestry Inferences
2.5. Relationship between Lung Function and Individual Ancestry
2.6. Admixture Mapping
2.7. Imputation, Fine Mapping, Annotation
3. Results
3.1. Study Population
3.2. Admixture Mapping and Fine Mapping for Lung Function
3.3. Replication Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Pierce, R. Spirometry: An essential clinical measurement. Aust. Fam. Physician 2005, 34, 535–539. [Google Scholar]
- Lambert, A.; Drummond, M.B.; Wei, C.; Irvin, C.; Kaminsky, D.; McCormack, M.; Wise, R. Diagnostic accuracy of FEV1/forced vital capacity ratio z scores in asthmatic patients. J. Allergy Clin. Immunol. 2015, 136, 649–653.e644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parazzi, P.L.F.; Barros Filho, A.d.A.; Schivinski, C.I.d.S.S. Interferência do crescimento na função pulmonar. Pediatr. Mod. 2012, 48, 663129. [Google Scholar]
- Clarke, J.R.; Reese, A.; Silverman, M. Bronchial responsiveness and lung function in infants with lower respiratory tract illness over the first six months of life. Arch. Dis. Child. 1992, 67, 1454–1458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stocks, J.; Dezateux, C. The effect of parental smoking on lung function and development during infancy. Respirology 2003, 8, 266–285. [Google Scholar] [CrossRef] [PubMed]
- Hankins, D.; Drage, C.; Zamel, N.; Kronenberg, R. Pulmonary function in identical twins raised apart. Am. Rev. Respir. Dis. 1982, 125, 119–121. [Google Scholar] [PubMed]
- Buniello, A.; MacArthur, J.A.L.; Cerezo, M.; Harris, L.W.; Hayhurst, J.; Malangone, C.; McMahon, A.; Morales, J.; Mountjoy, E.; Sollis, E.; et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019, 47, D1005–D1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imboden, M.; Bouzigon, E.; Curjuric, I.; Ramasamy, A.; Kumar, A.; Hancock, D.B.; Wilk, J.B.; Vonk, J.M.; Thun, G.A.; Siroux, V.; et al. Genome-wide association study of lung function decline in adults with and without asthma. J. Allergy Clin. Immunol. 2012, 129, 1218–1228. [Google Scholar] [CrossRef] [Green Version]
- Barnes, K.C.; Grant, A.V.; Hansel, N.N.; Gao, P.; Dunston, G.M. African Americans with asthma: Genetic insights. Proc. Am. Thorac. Soc. 2007, 4, 58–68. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Seibold, M.A.; Aldrich, M.C.; Williams, L.K.; Reiner, A.P.; Colangelo, L.; Galanter, J.; Gignoux, C.; Hu, D.; Sen, S. Genetic ancestry in lung-function predictions. N. Engl. J. Med. 2010, 363, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Menezes, A.M.B.; Wehrmeister, F.C.; Hartwig, F.P.; Perez-Padilla, R.; Gigante, D.P.; Barros, F.C.; Oliveira, I.O.; Ferreira, G.D.; Horta, B.L. African ancestry, lung function and the effect of genetics. Eur. Respir. J. 2015, 45, 1582–1589. [Google Scholar] [CrossRef] [PubMed]
- Kehdy, F.S.; Gouveia, M.H.; Machado, M.; Magalhães, W.C.; Horimoto, A.R.; Horta, B.L.; Moreira, R.G.; Leal, T.P.; Scliar, M.O.; Soares-Souza, G.B.; et al. Origin and dynamics of admixture in Brazilians and its effect on the pattern of deleterious mutations. Proc. Natl. Acad. Sci. USA 2015, 112, 8696–8701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, H.; Zhu, X. Power comparison of admixture mapping and direct association analysis in genome-wide association studies. Genet. Epidemiol. 2012, 36, 235–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magalhães, W.C.; Araujo, N.M.; Leal, T.P.; Araujo, G.S.; Viriato, P.J.; Kehdy, F.S.; Costa, G.N.; Barreto, M.L.; Horta, B.L.; Lima-Costa, M.F.; et al. EPIGEN-Brazil Initiative resources: A Latin American imputation panel and the Scientific Workflow. Genome Res. 2018, 28, 1090–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreto, M.L.; Cunha, S.S.; Alcântara-Neves, N.; Carvalho, L.P.; Cruz, Á.A.; Stein, R.T.; Genser, B.; Cooper, P.J.; Rodrigues, L.C. Risk factors and immunological pathways for asthma and other allergic diseases in children: Background and methodology of a longitudinal study in a large urban center in Northeastern Brazil (Salvador-SCAALA study). BMC Pulm. Med. 2006, 6, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Victora, C.G.; Barros, F.C. Cohort profile: The 1982 Pelotas (Brazil) birth cohort study. Int. J. Epidemiol. 2005, 35, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Instituto Brasileiro de Geografia e Estatistica—IBGE. 2019. Available online: https://www.ibge.gov.br/ (accessed on 13 August 2020).
- Thornton, T.; Tang, H.; Hoffmann, T.J.; Ochs-Balcom, H.M.; Caan, B.J.; Risch, N. Estimating kinship in admixed populations. Am. J. Hum. Genet. 2012, 91, 122–138. [Google Scholar] [CrossRef] [Green Version]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef] [Green Version]
- Miller, M. ATS/ERS task force: Standardisation of spirometry. Eur Respir J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [Green Version]
- Matos, S.M.; Jesus, S.R.; Saldiva, S.R.; Prado, M.S.; D’Innocenzo, S.; Assis, A.M.; Rodrigues, L.C.; Alcantara-Neves, N.M.; Cruz, Á.A.; de Magalhães Simões, S.; et al. Overweight, asthma symptoms, atopy and pulmonary function in children of 4–12 years of age: Findings from the SCAALA cohort in Salvador, Bahia, Brazil. Public Health Nutr. 2011, 14, 1270–1278. [Google Scholar] [CrossRef] [Green Version]
- Pereira, C.A.C.; Neder, J.A. Espirometria. Diretrizes Para Testes de Função Pulmonar. J. Bras. Pneumol. 2002, 28, 40–42. [Google Scholar]
- Maples, B.K.; Gravel, S.; Kenny, E.E.; Bustamante, C.D. RFMix: A discriminative modeling approach for rapid and robust local-ancestry inference. Am. J. Hum. Genet. 2013, 93, 278–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borda, V.; Alvim, I.; Aquino, M.M.; Silva, C.; Soares-Souza, G.B.; Leal, T.P.; Scliar, M.O.; Zamudio, R.; Zolini, C.; Padilla, C.; et al. The genetic structure and adaptation of Andean highlanders and Amazonian dwellers is influenced by the interplay between geography and culture. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2010. Available online: http://www.R-project.org (accessed on 3 September 2020).
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Scliar, M.O.; Anna, H.P.S.; Santolalla, M.L.; Leal, T.P.; Araujo, N.M.; Alvim, I.; Borda, V.; Magalhães, W.C.; Gouveia, M.H.; Lyra, R. Admixture/fine-mapping in Brazilians reveals a West African associated potential regulatory variant (rs114066381) with a strong female-specific effect on body mass-and fat mass-indexes. bioRxiv 2019. [Google Scholar] [CrossRef] [Green Version]
- Shriner, D.; Adeyemo, A.; Rotimi, C.N. Joint ancestry and association testing in admixed individuals. PLoS Comput. Biol. 2011, 7, e1002325. [Google Scholar] [CrossRef] [Green Version]
- Howie, B.N.; Donnelly, P.; Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009, 5, e1000529. [Google Scholar] [CrossRef] [Green Version]
- Pruim, R.J.; Welch, R.P.; Sanna, S.; Teslovich, T.M.; Chines, P.S.; Gliedt, T.P.; Boehnke, M.; Abecasis, G.R.; Willer, C.J. LocusZoom: Regional visualization of genome-wide association scan results. Bioinformatics 2010, 26, 2336–2337. [Google Scholar] [CrossRef] [Green Version]
- Aken, B.L.; Ayling, S.; Barrell, D.; Clarke, L.; Curwen, V.; Fairley, S.; Fernandez Banet, J.; Billis, K.; García Girón, C.; Hourlier, T.; et al. The Ensembl gene annotation system. Database 2016, 2016. [Google Scholar] [CrossRef]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [Green Version]
- Culver, B.H.; Graham, B.L.; Coates, A.L.; Wanger, J.; Berry, C.E.; Clarke, P.K.; Hallstrand, T.S.; Hankinson, J.L.; Kaminsky, D.A.; MacIntyre, N.R.; et al. Recommendations for a standardized pulmonary function report. An official American Thoracic Society technical statement. Am. J. Respir. Crit. Care Med. 2017, 196, 1463–1472. [Google Scholar] [CrossRef] [PubMed]
- Bouzigon, E.; Corda, E.; Aschard, H.; Dizier, M.-H.; Boland, A.; Bousquet, J.; Chateigner, N.; Gormand, F.; Just, J.; Le Moual, N.; et al. Effect of 17q21 variants and smoking exposure in early-onset asthma. N. Engl. J. Med. 2008, 359, 1985–1994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouzigon, E.; Siroux, V.; Dizier, M.-H.; Lemainque, A.; Pison, C.; Lathrop, M.; Kauffmann, F.; Demenais, F.; Pin, I. Scores of asthma and asthma severity reveal new regions of linkage in EGEA study families. Eur. Respir. J. 2007, 30, 253–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, L.V.; Shrine, N.; Miller, S.; Jackson, V.E.; Ntalla, I.; Soler Artigas, M.; Billington, C.K.; Kheirallah, A.K.; Allen, R.; Cook, J.P.; et al. Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): A genetic association study in UK Biobank. Lancet 2015, 3, 769–781. [Google Scholar]
- Brehm, J.M.; Acosta-Pérez, E.; Klei, L.; Roeder, K.; Barmada, M.M.; Boutaoui, N.; Forno, E.; Cloutier, M.M.; Datta, S.; Kelly, R.; et al. African ancestry and lung function in Puerto Rican children. J. Allergy Clin. Immunol. 2012, 129, 1484–1490. [Google Scholar] [CrossRef] [Green Version]
- Hankinson, J.L.; Kinsley, K.B.; Wagner, G.R. Comparison of spirometric reference values for Caucasian and African American blue-collar workers. J. Occup. Environ. Med. 1996, 38, 137–143. [Google Scholar] [CrossRef]
- Harik-Khan, R.I.; Fleg, J.L.; Muller, D.C.; Wise, R.A. The effect of anthropometric and socioeconomic factors on the racial difference in lung function. Am. J. Respir. Crit. Care Med. 2001, 164, 1647–1654. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Ren, Y.; Li, H.; Huang, M.; Jia, H.; Yang, T.; Wang, Z.; Huang, Z.; Wu, H. Identification of a novel CDH23 gene variant associated with non-syndromic progressive hearing loss in a Chinese family: Individualized hearing rehabilitation guided by genetic diagnosis. Int. J. Pediatric Otorhinolaryngol. 2019, 127, 109649. [Google Scholar] [CrossRef]
- Ierodiakonou, D.; Postma, D.; Koppelman, G.; Boezen, H.; Gerritsen, J.; Ten Hacken, N.; Timens, W.; Vonk, J. E-cadherin gene polymorphisms in asthma patients using inhaled corticosteroids. Eur. Respir. J. 2011, 38, 1044–1052. [Google Scholar] [CrossRef] [Green Version]
- Quinn, B.J.; Welch, E.J.; Kim, A.C.; Lokuta, M.A.; Huttenlocher, A.; Khan, A.A.; Kuchay, S.M.; Chishti, A.H. Erythrocyte scaffolding protein p55/MPP1 functions as an essential regulator of neutrophil polarity. Proc. Natl. Acad. Sci. USA 2009, 106, 19842–19847. [Google Scholar] [CrossRef] [Green Version]
- Heller, G.; Fong, K.M.; Girard, L.; Seidl, S.; End-Pfützenreuter, A.; Lang, G.; Gazdar, A.F.; Minna, J.D.; Zielinski, C.C.; Zöchbauer-Müller, S. Expression and methylation pattern of TSLC1 cascade genes in lung carcinomas. Oncogene 2006, 25, 959–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dear, T.N.; Boehm, T. Identification and characterization of two novel calpain large subunit genes. Gene 2001, 274, 245–252. [Google Scholar] [CrossRef]
- Litosh, V.A.; Rochman, M.; Rymer, J.K.; Porollo, A.; Kottyan, L.C.; Rothenberg, M.E. Calpain-14 and its association with eosinophilic esophagitis. J. Allergy Clin. Immunol. 2017, 139, 1762–1771. [Google Scholar] [CrossRef] [PubMed]
Trait | Chr Regions | Chr Position | Initial Window Marker | Final Window Marker | Ancestry | Effect (β) | p-Value |
---|---|---|---|---|---|---|---|
FEV1/FVC (before bronchodilator) | 10q22.1–10q22.2 | 10:74052899 | rs16929751 | rs73272395 | African | −1.27 | 1.09 × 10−04 |
10:73717457 | rs11498014 | rs111781439 | African | −1.26 | 1.18 × 10−04 | ||
10:73527047 | rs1867982 | rs115465907 | African | −1.27 | 1.73 × 10−04 | ||
FEV1/FVC (after bronchodilator) | 17q21.31 | 17:41085242 | rs116644941 | rs12951528 | African | −1.17 | 3.82 × 10−05 |
17:40114544 | rs4796750 | rs7502710 | African | −1.17 | 3.82 × 10−05 | ||
17:41689336 | rs74961000 | rs1107748 | African | −1.16 | 4.04 × 10−05 | ||
17:40261545 | rs12600570 | rs77641795 | African | −1.14 | 6.72 × 10−05 | ||
17:40919959 | rs35381342 | rs76847100 | African | −1.12 | 7.46 × 10−05 | ||
17:39902271 | rs7219088 | rs4594300 | African | −1.12 | 8.13 × 10−05 | ||
17q21.31 | 17:41689336 | rs74961000 | rs1107748 | European | 1.12 | 8.70 × 10−05 | |
17:43368600 | rs16939953 | rs1724385 | European | 1.09 | 1.21 × 10−04 | ||
17:42872361 | rs730818 | rs713101 | European | 1.09 | 1.32 × 10−04 | ||
17:41774588 | rs115305838 | rs1684668 | European | 1.09 | 1.33 × 10−04 | ||
17:40114544 | rs4796750 | rs7502710 | European | 1.10 | 1.34 × 10−04 | ||
FEV1/FVC (after bronchodilator) | 2p23.1 | 2:33733554 | rs6761582 | rs4287749 | African | −1.089 | 1.40 × 10−04 |
2:34018767 | rs62150613 | rs75291994 | African | −1.083 | 1.64 × 10−04 | ||
2:30145791 | rs12714294 | rs77336532 | African | −1.072 | 1.65 × 10−04 | ||
4p15.2 | 4:21669818 | rs150467258 | rs4621420 | Nat. A. | 2.688 | 4.86 × 10−06 | |
4:21488871 | rs358580 | rs4697227 | Nat. A. | 2.493 | 9.93 × 10−06 | ||
4:21339971 | rs16870863 | rs114908241 | Nat. A. | 2.476 | 1.18 × 10−05 | ||
4:22133556 | rs115891762 | rs9992463 | Nat. A. | 2.436 | 1.77 × 10−05 | ||
4:20637946 | rs1465522 | rs1156304 | Nat. A. | 2.465 | 2.01 × 10−05 | ||
4:21701301 | rs2167246 | rs115214367 | Nat. A. | 2.466 | 2.035 × 10−05 | ||
4:21245276 | rs77753664 | rs71607066 | Nat. A. | 2.355 | 3.08 × 10−05 | ||
4:20535717 | rs3775816 | rs936360 | Nat. A. | 2.407 | 3.90 × 10−05 |
Cohort | Trait | CHR | SNP | BP | A1 | A2 | MAF | β | CI (Min) | CI (Max) | p-Value | β (2) | p-Value (2) | β (3) | p-Value (3) | Gene |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SCAALA | FEV1/FVC (before bronchodilator) | 10 | rs10999948 | 73440988 | G | A | 0.223 | −1.572 | −2357 | −0.786 | 9.51 × 10−05 | −1.609 | 6.639 × 10−05 | −1.61 | 6.62 × 10−05 | CDH23 |
FEV1/FVC (after bronchodilator) | 17 | rs373831475 | 41886161 | A | ATCTTC | 0.221 | −1.388 | −2.02 | −0.756 | 1.83 × 10−05 | −1.38 | 2.165 × 10−05 | −1.37 | 2.43 × 10−05 | MPP3 | |
17 | rs8068257 | 41909216 | G | A | 0.268 | −1.252 | −1.85 | −0.654 | 4.44 × 10−05 | −1.252 | 4.69 × 10−05 | −1.24 | 5.43 × 10−05 | MPP3 | ||
2 | rs6744555 | 30929681 | A | C | 0.091 | −2.083 | −2.93 | −1.23 | 1.94 × 10−06 | −2.094 | 1.872 × 10−06 | −2.09 | 1.95 × 10−06 | NONE | ||
2 | rs1520322 | 31008331 | A | G | 0.433 | −1.23 | −1.76 | −0.697 | 6.78 × 10−06 | −1.227 | 7.707 × 10−06 | −1.22 | 7.83 × 10−06 | CAPN13 | ||
PELOTAS | FEV1/FVC (before bronchodilator) | 10 | rs10999948 | 73440988 | G | A | 0.192 | −0.725 | −1.23 | −0.215 | 5.31 × 10−03 | −0.597 | 4.86 × 10−03 | CDH23 | ||
FEV1/FVC (after bronchodilator) | 17 | rs373831475 | 41886161 | A | ATCTTC | 0.071 | 0.674 | −0.001 | 1.35 | 2.78 × 10−02 | 0.537 | 3.58 × 10−02 | MPP3 | |||
17 | rs8068257 | 41909216 | G | A | 0.086 | 0.67 | 0.028 | 1.312 | 4.08 × 10−02 | 0.558 | 1.84 × 10−02 | MPP3 | ||||
2 | rs6744555 | 30929681 | A | C | 0.083 | −0.675 | −1.276 | −0.074 | 2.70 × 10−02 | −0.487 | 0.051 | NONE | ||||
2 | rs1520322 | 31008331 | A | G | 0.273 | 0.411 | 0.024 | 0.798 | 3.72 × 10−02 | 0.346 | 2.67 × 10−02 | CAPN13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonseca, H.; da Silva, T.M.; Saraiva, M.; Santolalla, M.L.; Sant’Anna, H.P.; Araujo, N.M.; Lima, N.P.; Rios, R.; Tarazona-Santos, E.; Horta, B.L.; et al. Genomic Regions 10q22.2, 17q21.31, and 2p23.1 Can Contribute to a Lower Lung Function in African Descent Populations. Genes 2020, 11, 1047. https://doi.org/10.3390/genes11091047
Fonseca H, da Silva TM, Saraiva M, Santolalla ML, Sant’Anna HP, Araujo NM, Lima NP, Rios R, Tarazona-Santos E, Horta BL, et al. Genomic Regions 10q22.2, 17q21.31, and 2p23.1 Can Contribute to a Lower Lung Function in African Descent Populations. Genes. 2020; 11(9):1047. https://doi.org/10.3390/genes11091047
Chicago/Turabian StyleFonseca, Héllen, Thiago M. da Silva, Mariana Saraiva, Meddly L. Santolalla, Hanaisa P. Sant’Anna, Nathalia M. Araujo, Natália P. Lima, Raimon Rios, Eduardo Tarazona-Santos, Bernardo L Horta, and et al. 2020. "Genomic Regions 10q22.2, 17q21.31, and 2p23.1 Can Contribute to a Lower Lung Function in African Descent Populations" Genes 11, no. 9: 1047. https://doi.org/10.3390/genes11091047
APA StyleFonseca, H., da Silva, T. M., Saraiva, M., Santolalla, M. L., Sant’Anna, H. P., Araujo, N. M., Lima, N. P., Rios, R., Tarazona-Santos, E., Horta, B. L., Cruz, A., Barreto, M. L., & Figueiredo, C. A. (2020). Genomic Regions 10q22.2, 17q21.31, and 2p23.1 Can Contribute to a Lower Lung Function in African Descent Populations. Genes, 11(9), 1047. https://doi.org/10.3390/genes11091047