Genome-Wide Identification and Characterization of TCP Genes in Eight Prunus Species and Their Expression Patterns Under Cold Stress in P. tenella var. tenella
Abstract
:1. Introduction
2. Materials and Methods
2.1. Taxon Sampling
2.2. Identification of TCP Genes
2.3. Chromosomal Location and Structure Analysis of TCPs
2.4. Prediction of cis-Regulatory Elements and Transcription Start Sites in the Promoter of PtTCPs
2.5. Construction of Phylogenetic Tree
2.6. Cold-Stress Treatment and qPCR Analyses
2.7. Subcellular Localization of PtTCP9 Protein
3. Results
3.1. Identification and Chromosomal Location of TCP Genes
3.2. Phylogenetic Analysis of TCP Proteins
3.3. Collinearity Analysis of TCP Genes
3.4. Conserved Motif and Domain Analysis of TCPs
3.5. Prediction of cis-Elements in the Promoter of TCPs
3.6. Expression of PtTCP Under Low Cold Stress
3.7. Subcellular Localization of PtTCP9 Proteins
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doebley, J.; Stec, A.; Hubbard, L. The evolution of apical dominance in maize. Nature 1997, 386, 485–488. [Google Scholar] [CrossRef] [PubMed]
- Kosugi, S.; Ohashi, Y. PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell 1997, 9, 1607–1619. [Google Scholar] [PubMed]
- Luo, D.; Carpenter, R.; Copsey, L.; Vincent, C.; Clark, J.; Coen, E. Control of organ asymmetry in flowers of antirrhinum. Cell 1999, 99, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Cubas, P.; Lauter, N.; Doebley, J.; Coen, E. The TCP domain: A motif found in proteins regulating plant growth and development. Plant J. 1999, 18, 215–222. [Google Scholar] [CrossRef]
- Doebley, J.; Stec, A.; Gustus, C. Teosinte branched1 and the origin of maize: Evidence for epistasis and the evolution of dominance. Genetics 1995, 141, 333–346. [Google Scholar] [CrossRef]
- Zhang, W.; Cochet, F.; Ponnaiah, M.; Lebreton, S.; Matheron, L.; Pionneau, C.; Boudsocq, M.; Resentini, F.; Huguet, S. The MPK 8-TCP 14 pathway promotes seed germination in Arabidopsis. Plant J. 2019, 100, 677–692. [Google Scholar] [CrossRef]
- Zhu, L.; Li, S.; Ma, Q.; Wen, J.; Yan, K.; Li, Q. The acer palmatum TCP transcription factor ApTCP2 controls leaf morphogenesis, acceler-ates senescence, and affects flowering via miR319 in Arabidopsis thaliana. J. Plant Growth Regul. 2021, 41, 710–733. [Google Scholar]
- Wang, H.; Mao, Y.; Yang, J.; He, Y. TCP24 modulates secondary cell wall thickening and anther endothecium development. Front. Plant Sci. 2015, 6, 00436. [Google Scholar] [CrossRef]
- Sarvepalli, K.; Nath, U. Interaction of TCP4-mediated growth module with phytohormones. Plant Signal. Behav. 2011, 6, 1440–1443. [Google Scholar] [CrossRef]
- Baulies, J.L.; Bresso, E.G.; Goldy, C.; Palatnik, J.F.; Schommer, C. Potent inhibition of TCP transcription factors by miR319 ensures proper root growth in Arabidopsis. Plant Mol. Biol. 2022, 108, 93–103. [Google Scholar] [CrossRef]
- Min, Z.; Chen, L.; Zhang, Y.; Li, Z.; Liu, M.; Li, W.; Ju, Y. VvBRC inhibits shoot branching in grapevine. Sci. Hortic. 2021, 289, 110370. [Google Scholar] [CrossRef]
- Kosugi, S.; Ohashi, Y. DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant J. 2002, 30, 337–348. [Google Scholar] [CrossRef] [PubMed]
- González-Grandío, E.; Pajoro, A.; Franco-Zorrilla, J.M.; Tarancón, C.; Immink, R.G.H.; Cubas, P. Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds. Proc. Natl. Acad. Sci. USA 2007, 114, E245–E254. [Google Scholar] [CrossRef] [PubMed]
- Braun, N.; de Saint, G.A.; Pillot, J.P.; Boutet-Mercey, S.; Dalmais, M.; Antoniadi, I.; Li, X.; Maia-Grondard, A.; Signor, C.L. The pea TCP transcription factor PsBRC1 acts downstream of Strigo-lactones to control shoot branching. Plant Physiol. 2011, 158, 225–238. [Google Scholar] [CrossRef]
- Clark, J.I.; Coen, E.S. The cycloidea gene can respond to a common dorsoventral prepattern in antirrhinum. Plant J. 2002, 30, 369–648. [Google Scholar] [CrossRef]
- Aguilar-Martínez, J.; Sinha, N. Analysis of the role of Arabidopsis class I TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf development. Front. Plant Sci. 2013, 4, 406. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Fan, X.; Lin, F.; Deng, X. Arabidopsis noncoding RNA mediates control of photomorpho-genesis by red light. Proc. Natl. Acad. Sci. USA 2014, 111, 10359. [Google Scholar] [CrossRef]
- Fang, Y.; Zheng, Y.; Lu, W.; Li, J.; Duan, Y.; Zhang, S.; Wang, Y. Roles of miR319-regulated TCPs in plant development and responseto abiotic stress. Crop J. 2021, 9, 17–28. [Google Scholar] [CrossRef]
- Wang, J.; Kan, J.; Wang, J.; Yan, X.; Li, Y.; Soe, T.; Tembrock, L.P.; Xing, G.; Wu, Z.; Jia, M. The pan-plastome of Prunus mume: Insights into Prunus diversity, phylogeny, and domestication history. Front. Plant Sci. 2024, 15, 1404071. [Google Scholar] [CrossRef]
- Yang, Y.X.; Tian, M.H.; Liu, X.H.; Sun, Z.S. Complete chloroplast genome of Prunus fruticosa and its implications for the phylogenetic position within Prunus sensulato (Rosaceae). Mitochondrial DNA 2020, 5, 3606–3608. [Google Scholar] [CrossRef]
- Iezzoni, A.F. Acquiring cherry germplasm from central and eastern Europe. HortScience 2005, 40, 304–308. [Google Scholar] [CrossRef]
- Liu, M. Development of TP-M13-SSR Primers and Application Research of Genetic Diversity to Prunus tenella Batsch; Xinjiang Agricultural University: Urumqi, China, 2017. [Google Scholar]
- Zhang, M.; Pa, H.T.; Yan, P.X. Analysis of amino acid components in Xinjiang Badan apricot. Spec. Wild Econ. Anim. Plant Res. 1995, 4, 47–50. [Google Scholar]
- Chen, T.T. Cloning and Functional Verification of Inducible Promoter of Amygdalus Ledebouriana Schlecht; Xinjiang Agricultural University: Urumqi, China, 2017. [Google Scholar]
- Li, J.; Zeng, B.; Luo, S.P.; Li, H. Protection and propagationof Amygdalus Ledebouriana Schleche in China. Xinjiang Agric. Sci. 2006, 1, 61–62. [Google Scholar]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef]
- Guan, Z.W.; Cao, X.Y.; Zhang, X.W.; Zhou, X.Y. Genome-wide identification and expression analysis of TCP family in rice. Mol. Plant Breed. 2022, 20, 3145–3156. [Google Scholar]
- Mukhopadhyay, P.; Tyagi, A.K. OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways. Sci. Rep. 2015, 5, 12381. [Google Scholar] [CrossRef]
- Mi, Y.; Tian, Y.; Yang, H.; Deng, Y.; Sun, H.; Li, Y. Identification and expression analysis of TCP gene family in Robinia pseudoacacia. Mol. Plant Breed. 2023, 1, 1–13. [Google Scholar]
- Zhao, Y.; Su, X.; Wang, X.; Wang, M.; Chi, X.; Manzoor, M.A.; Li, G.; Cai, Y. Comparative genomic analysis of TCP genes in six Rosaceae species and expression pattern analysis in Pyrus bretschneideri. Front. Genet. 2021, 12, 669959. [Google Scholar] [CrossRef]
- Cheng, P.; Bi, D.; Chen, J.; Zhao, M.; Wang, Y.; Wang, H.; Cao, P.; Huang, C. Genome-wide identification and analysis of TCP transcription factor genes in Rosa chinensis in response to abiotic stress and fungal diseases. Ornam. Plant Res. 2023, 3, 3. [Google Scholar] [CrossRef]
- Shulaev, V.; Sargent, D.J.; Crowhurst, R.N.; Mockler, T.C.; Folkerts, O.; Delcher, A.L.; Jaiswal, P.; Mockaitis, K.; Liston, A.; Mane, S.P.; et al. The genome of the woodland strawberry (Fragaria vesca). Nat. Genet. 2011, 43, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, Z.W.; Shi, Z.B.; Zhang, S.; Ming, R.; Zhu, S.; Khan, M.A.; Tao, S.; Korban, S.S.; Wang, H.; et al. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res. 2013, 23, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Ma, H.; Wang, J.; Zhang, D. Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa. J. Integr. Plant Biol. 2007, 49, 885–897. [Google Scholar] [CrossRef]
- Wei, N.; Li, Y.P.; Ma, Y.T.; Liu, W.W. Genome-wide identification of alfalfa TCP gene family and analysis of expression patterns under drought stress. Acta Prataculturae Sin. 2022, 31, 118–130. [Google Scholar]
- Li, F.; He, X.H.; Zhang, Y.B.; Yi, Y. Genome-wide identification and analysis of the TCP transcription factor family of Medicago truncatula. Mol. Plant Breed. 2018, 16, 6639–6645. [Google Scholar]
- Sharma, R.; Kapoor, M.; Tyagi, A.K.; Kapoor, S. Comparative transcript profiling of TCP family genes provide insight into gene functions and diversification in rice and Arabidopsis. J. Plant Mol. Biol. Biotechnol. 2010, 1, 24–38. [Google Scholar]
- Hur, Y.S.; Oh, J.; Namuk, K.; Kim, S.; Son, O.; Kim, J.; Um, j.h.; Ji, Z.; Kim, M.H.; Ko, J.H.; et al. Arabidopsis transcription factor TCP13 promotes shade avoidance syndrome-like responses by directly targeting a subset of shade-responsive gene promoters. J. Exp. Bot. 2024, 75, 241–257. [Google Scholar] [CrossRef]
- Zhao, P.; Yu, Q.; He, Y.; Wang, H.; Zhou, X.; Su, Y.; Gup, H. PagHAM4a-PagSCL21 and PagHAM4b-PagTCP20 modules positively regulate cambial activity and its differentiation into secondary xylem in poplar. J. Exp. Bot. 2024, 9, erae375. [Google Scholar] [CrossRef]
- Li, C.; Zhang, L.; Li, H.; Duan, Y.; Wen, X.; Yang, Y.; Sun, X. BrrTCP4b interacts with BrrTTG1 to suppress the development of trichomes in Brassica rapa var. rapa. Plant Divers. 2024, 46, 416–420. [Google Scholar] [CrossRef]
- Wang, S.; Sun, X.; Hoshino, Y.; Yu, Y.; Jia, B.; Sun, Z.W.; Duan, X.; Zhu, Y. MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa L.). PLoS ONE 2014, 9, e91357. [Google Scholar] [CrossRef]
- Han, J.H.; Liu, J.F.; Liu, H.M. Identification and characterization of TCP transcription factors in Prunus persica. Mol. Plant Breed. 2020, 18, 5261–5267. [Google Scholar]
- Francis, A.; Dhaka, N.; Bakshi, M.; Jung, K.H.; Sharma, M.K.; Sharma, R. Comparative phylogenomic analysis providesin sights into TCP gene function in Sorghum. Sci. Rep. 2017, 6, 38488. [Google Scholar]
- Liu, H.; Gao, Y.; Wu, M.; Shi, Y.; Wang, H.; Wu, L.; Xiang, Y. TCP10, a TCP transcription factor in moso bamboo (Phyllostachys edulis), confers drought tolerance to transgenic plants. Environ. Exp. Bot. 2020, 172, 104002. [Google Scholar] [CrossRef]
- Yao, Y.; Dong, L.; Fu, X.; Zhao, L.; Wei, J.; Cao, J.; Sun, Y.; Liu, J. HrTCP20 dramatically enhance drought tolerance of sea buckthorn (Hippophae rhamnoides L). by mediating the JA signaling pathway. Plant Physiol. Biochem. 2022, 174, 51–62. [Google Scholar] [CrossRef]
Subgenus | Species Name | Chromosome Number | Genome Size (Mb) | Genome Protein Number | Number of TCP Genes | Number of TCP Proteins | Proportion of TCP Proteins (%) |
---|---|---|---|---|---|---|---|
Amygdalus | P. tenella var. tenella | 8 | 220.3 | 32,088 | 19 | 19 | 0.059 |
P. amygdalus | 8 | 220.7 | 27,984 | 19 | 22 | 0.071 | |
P. mira | 8 | 242.8 | 28,519 | 19 | 19 | 0.067 | |
Cerasus | P. jamasakura var. jamasakura | 8 | 375.3 | 26,986 | 20 | 20 | 0.074 |
P. fruticosa | 8 | 249.2 | 28,587 | 19 | 19 | 0.070 | |
P. × yedoensis ‘Somei-yoshino’ | 8 | 299.5 | 41,294 | 22 | 22 | 0.053 | |
Prunus | P. armeniaca ‘Rojo Pasion’ | 8 | 251.3 | 40,067 | 17 | 19 | 0.045 |
P. mume var. tortuosa | 8 | 237.8 | 29,706 | 19 | 19 | 0.067 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Qian, C.; Li, L.; Li, W.; Li, Y.; Zhao, H. Genome-Wide Identification and Characterization of TCP Genes in Eight Prunus Species and Their Expression Patterns Under Cold Stress in P. tenella var. tenella. Genes 2024, 15, 1443. https://doi.org/10.3390/genes15111443
Zhang Q, Qian C, Li L, Li W, Li Y, Zhao H. Genome-Wide Identification and Characterization of TCP Genes in Eight Prunus Species and Their Expression Patterns Under Cold Stress in P. tenella var. tenella. Genes. 2024; 15(11):1443. https://doi.org/10.3390/genes15111443
Chicago/Turabian StyleZhang, Qiang, Cheng Qian, Lulu Li, Wei Li, Yanhua Li, and Han Zhao. 2024. "Genome-Wide Identification and Characterization of TCP Genes in Eight Prunus Species and Their Expression Patterns Under Cold Stress in P. tenella var. tenella" Genes 15, no. 11: 1443. https://doi.org/10.3390/genes15111443
APA StyleZhang, Q., Qian, C., Li, L., Li, W., Li, Y., & Zhao, H. (2024). Genome-Wide Identification and Characterization of TCP Genes in Eight Prunus Species and Their Expression Patterns Under Cold Stress in P. tenella var. tenella. Genes, 15(11), 1443. https://doi.org/10.3390/genes15111443