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Abstract: Background: The Balkan Peninsula has served as an important migration corridor
between Asia Minor and Europe throughout humankind’s history and a refugium during
the Last Glacial Maximum. Past migrations such as the Neolithic expansion, Bronze Age
migrations, and the settlement of Slavic tribes in the Early Middle Ages, are well known for
their impact on shaping the genetic pool of contemporary Balkan populations. They have
contributed to the high genetic diversity of the region, especially in mitochondrial DNA
(mtDNA) lineages. Serbia, located in the heart of the Balkans, reflects this complex history
in a broad spectrum of mtDNA subhaplogroups. Methods: To explore genetic diversity
in Serbia and the wider Balkan region, we analyzed rare mtDNA subclades—R0a, N1a,
N1b, I5, W, and X2—using publicly available data. Our dataset included already published
sequences from 3499 HVS-I/HVS-II and 1426 complete mitogenomes belonging to West
Eurasian and African populations, containing both contemporary and archaeological sam-
ples. We assessed the parameters of genetic diversity found in different subclades across the
studied regions and constructed detailed phylogeographic trees and haplotype networks
to determine phylogenetic relationships. Results: Our analyses revealed the observable
geographic structure and identified novel mtDNA subclades, some of which may have
originated in the Balkan Peninsula (e.g., R0a1a5, I5a1, W1c2, W3b2, and X2n). Conclusions:
The geographic distribution of rare subclades often reveals patterns of past population
movements, routes, and gene flows. By tracing the origin and diversity of these subclades,
our study provided new insights into the impact of historical migrations on the maternal
gene pool of Serbia and the wider Balkan region, contributing to our understanding of the
complex genetic history of this important European crossroads.

Keywords: human populations; Balkan Peninsula; mtDNA; genetic diversity; high-
resolution phylogeny; human migrations

1. Introduction
The Balkan Peninsula has played an important role in the history of the human

population in Eurasia, serving as an important migration corridor from the Palaeolithic
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era to the present-day [1–3], not only as a bridge between Asia Minor and Europe [4,5]
but also as one of the glacial refugia during the Last Glacial Maximum [6–8]. The region’s
turbulent history suggests that several different migration events shaped the gene pool of
contemporary Balkan populations [9,10]. Agriculture arrived in Europe from the Middle
East during the Neolithic expansion through Asia Minor and the Balkans, as documented
with archaeological remains from some of the oldest Neolithic farmer societies found
in Europe (e.g., Starčevo and Vinča cultures) [11,12]. Analysis of ancient DNA from
the Neolithic populations of the Balkan Peninsula has revealed a significant admixture
between autochthonous hunter-gatherer populations and newly arrived farmer populations
from northwestern Anatolia [4]. Additionally, several studies indicate that Neolithic
expansion took two distinct routes through the Balkans: one following the Danube River,
reaching central Europe, and another along the Mediterranean route, reaching the Iberian
Peninsula [4,12].

The second historical event that significantly shaped the genetic pool of Balkan popu-
lations occurred during the Early Bronze Age, when steppe tribes of the Yamnaya culture
initiated a chain of migration events followed by their admixture with the indigenous
groups, which impacted not only southeast but also Central Europe [13–17]. During the
Migration Period in the Early Middle Ages (fourth to ninth century A.D.), the genetic
landscape of human populations further changed in southeast, Central, and East Europe,
significantly influencing the genetic variability of modern European populations [18]. Anal-
ysis of segments identical by descent revealed that these populations share a substantial
number of common ancestors dating back to this period [18]. In the Balkan Peninsula,
the most significant event of this period was the large-scale settlement of Slavic tribes.
This event not only defined the region’s cultural trajectory, as most Balkan populations
today speak one of the South Slavic languages [19], but was also one of the largest per-
manent demographic changes in Europe during the entire Migration Period [20]. Hence,
the Balkans’ turbulent history of migration and colonization processes led to high genetic
diversity observed in the Balkan human population [9] and greater haplotype diversity
compared to Northern Europe [21] as well as several micro-differentiation processes in
isolated populations [22]. All these results highlight the importance of southern Europe,
particularly the Balkan region, as a crucial reservoir of genetic variation for European
populations [5,9,20,22].

The Republic of Serbia is positioned in the central part of the Balkan Peninsula. Stud-
ies of the variability and distribution of mitochondrial DNA (mtDNA) (sub)haplogroups
reveal that Serbian population occupies a space between the two groups of South Slavic
populations inhabiting the eastern (Bulgaria and North Macedonia) and western (Slove-
nia, Croatia, Bosnia and Herzegovina) part of the Balkan Peninsula [9,19] and correlates
with its geographic position. Studies based on Y-chromosome haplogroups show similar
relations [10]. Furthermore, the Serbian population exhibits high heterogeneity of mtDNA
(sub)haplogroups [9], indicating that various evolutionary processes shaped its maternal
genetic landscape as well [9,23,24]. Phylogeographic analyses of super haplogroup U lin-
eages found in the contemporary Serbian population further corroborated that its gene pool
was shaped by the migrations from the Neolithic, Bronze Age, and Migration Period [5,23],
while analyses of several rare mtDNA lineages (H6a2b, L2a1k, U1a1c2, U4c1b1, U5b3j, and
K1a4l) found in this population imply that they have possibly evolved in the Balkan Penin-
sula [9,23]. All these findings suggest that the Serbian population could be representative
for the genetic diversity studies for both South Slavic and Balkan populations.

Analyzing genetic variability within specific mtDNA subclades and their geographic
distribution can help identify the region where these subclades may have originated. De-
termining the source population and the geographical regions where specific subclades
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have evolved is important for tracing the direction of the migrations and gene flow be-
tween various populations. For this type of analysis, the rare subclades can provide more
information than the frequently found ones, among different populations [25]. The value
of investigating the genealogy of low-frequency haplogroups with relic distribution to
trace human migration routes was previously already demonstrated for R0a, N1a1a, and X
haplogroups [25–28].

Although haplogroup R0a is rare in Europe, its frequency in the Arabian Peninsula can
be as high as 17% [29,30]. According to Gandini et al. [25], the dispersion of R0a lineages
from the Levantine refugium to Europe most likely occurred during the Late Glacial/Early
Postglacial period. Similarly, subclade N1b is rare in Europe but can be found with almost
doubled frequencies in the Middle East [26]. Most likely, N1b carriers arrived in Europe
during the Late Glacial, allowing enough time for certain lineages, like N1b2, to evolve
within Europe [26]. Subclade N1a and some of the subclades of haplogroup W, together
with T2, K, J, HV, V, and X were part of the so-called mitochondrial “Neolithic package”,
characteristic of early Neolithic farmers from Central Europe [31]. During the Late Neolithic
and Bronze Age, haplogroup N1a almost disappeared in European populations and new
mtDNA haplogroups I, T1, U2, U4, U5a, W, and subtypes of H replaced early Neolithic
haplogroups [31–33]. To identify the centers of diversity for these rare subclades in Europe
and reconstruct the migration routes, we have analyzed the genetic diversity of selected
rare subclades found within the different regions of West Eurasia and Africa.

To assess the geographical origin of the haplotypes found in the Serbian population
belonging to subclades rare in European populations, such as R0a, N1a, N1b, I5, W, and X2,
we conducted a detailed analysis of available data for mtDNA HVS-I and HVS-II sequences,
as well as complete mitogenomes from West Eurasian and African populations. Our aim
was to evaluate the impact of different migrations on shaping the contemporary gene pool
of the Serbian population and the populations in the region from a maternal perspective.

2. Materials and Methods
2.1. Sample

MtDNA haplotypes belonging to (sub)haplogroups R0a, N1a, N1b, I5, W, and X2 were
collected from available published data (Table S1). A total of 3499 HVS-I/HVS-II haplo-
types and 1426 complete mitogenomes, classified into the mentioned rare (sub)haplogroups,
were collected for the analyses. Out of the total analyzed samples, 111 sequences origi-
nated from archaeological remains. Haplotypes were defined by the variations in HVS-I
(nucleotide positions (nps) 16,024–16,400) and HVS-II (nps 72–340) sequences of the control
region or the complete mitogenomes where available. Haplotypes were reconstructed
using the HaploSearch program [34] for the samples whose haplotypes were not pro-
vided in the publications and those with only available sequences. For samples that
lacked haplogroup classification in the original publications we have performed hap-
logrouping using the Haplogrep 2 and Haplogrep 3 software [35,36]. In addition, complete
mitogenome sequences with haplogroup classification were extracted from Ian Logan’s
website (http://www.ianlogan.co.uk/sequences_by_group/haplogroup_select.htm, ac-
cessed on 18 June 2024) which is regularly updated.

2.2. Statistical Analysis, Phylogeography, and Phylogeny

The frequency distribution of mtDNA (sub)haplogroups, determined by both HVS-
I and HVS-II sequences, were extracted from the published data, pooled together, and
assessed for each geographic region. Choropleth maps were generated using the R statistical
programming language (version 4.1.2) [37]. Ethnic groups with distributions across national
state borders were not visualized on the map. Geospatial polygons that represent countries

http://www.ianlogan.co.uk/sequences_by_group/haplogroup_select.htm
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and regional boundaries were obtained from the “rnaturalearth” package (version 0.1.0) [38]
and merged to represent the geographical regions from the published data using the “sp”
R package (version 1.5.1) [39,40]. Choropleth maps were plotted using the “ggplot2” R
package (version 3.3.6) [41].

Genetic diversity in different geographical regions (Balkan Peninsula, Apennine Penin-
sula, Iberian Peninsula, Eastern Europe, Central Europe, Western Europe, Northern Europe,
Near East, Asia—without Near East and Africa) was assessed by measuring parameters of
genetic diversity based on the variability of HVS-I/HVS-II sequences of the haplotypes be-
longing to the (sub)haplogroups R0a, N1a, N1b, I5, W, and X2that originated from specified
geographical regions. Calculations were performed using Arlequin ver. 3.5.2.2 [42].

Phylogeographic analysis based on the variability of HVS-I and HVS-II sequences was
performed by constructing a median-joining network using Network ver. 10.2.0.0 (http:
//www.fluxusengineering.com/network_terms.htm, accessed on 9 May 2024). Different
weights were assigned to observed substitutions based on their evolutionary rates [43].
Postprocessing MP calculations were performed, and the resulting networks were manually
assembled for visualization. Point indels located between nps 16,180–16,193 and 303–315
were not used for these analyses.

Phylogeny reconstruction was performed for the available complete mitogenomes
classified into the appropriate (sub)haplogroups using mtPhyl v4.015 software (https:
//sites.google.com/site/mtphyl/home, accessed on 18 January 2024). The program was
manually updated to follow the mtDNA phylogeny available in the PhyloTree build 17, and
the following literature [9,22,23,44–50]. New subclades were defined when they comprised
at least two different mitogenomes with at least one shared mutation not characterized as a
hotspot [32]. The length variations at nps 303–315, 522–524, 573–576, and 16,180–16,193, the
polymorphism at np 16,519, and A–C transversions at nps 16,182 and 16,183 were excluded
from phylogenetic analysis.

3. Results
3.1. Subhaplogroup R0a

The R0a subclade is the most frequent in Yemenis (17.33%) and Bedouins (14.77%)
(Figure 1 and Table S1). We observed the highest values for the analyzed genetic diversity
parameters in the Near East, the Apennine, and Balkan Peninsulas (Table S2, Supplementary
Results).

A haplotype network for the subhaplogroup R0a was constructed using 217 HVS-
I/HVS-II haplotypes detected in 613 individuals (Figure 2). In the Serbian population,
subclade R0a is represented by a single haplotype found in sample 98_Sb [24]. This
haplotype differs from the founder HVS-I/HVS-II haplotype, which is predominantly
detected in the Balkan and Arabian Peninsulas, by a transition at np 16,248 (Figure 2,
Table S3, Supplementary Results).

Phylogeny based on the 71 available complete mitogenomes showed that the sample
98_Sb, together with two haplotypes from Bulgaria, belongs to the newly identified branch,
R0a1a5, defined by the transitions at the nps 11,914, 12,189, and 1458 (Figure S1). This newly
defined branch is estimated to have evolved 1.54–1.8 thousand years ago (kya) (Figure S1).

http://www.fluxusengineering.com/network_terms.htm
http://www.fluxusengineering.com/network_terms.htm
https://sites.google.com/site/mtphyl/home
https://sites.google.com/site/mtphyl/home
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Figure 1. Choropleth map of R0a (A), N1a (B), N1b (C), and I5 (D) subhaplogroups’ frequency
distribution. Frequency distribution in analyzed countries and regions is presented in Table S1. The
grey color represents the missing data for HVS-I/HVS-II haplotype distribution.

3.2. Subhaplogroup N1a

The N1a subhaplogroup is most prevalent in Kuwait, while the highest frequency in
Europe can be detected in Estonia (Figure 1, Table S1). As a European region, the Balkan
Peninsula shows the highest occurrence of N1a (Figure 1, Table S1). The highest values
of its genetic diversity parameters were detected in Asia and the Near East (Table S2,
Supplementary Results).
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Figure 2. Phylogeographic network for R0a subhaplogroup based on 217 HVS-I/HVS-II haplotypes
detected in 613 individuals. Differences from the Revised Cambridge Reference Sequence (rCRS)
(NC_012920) are marked with red numbers representing nucleotide positions where the transitions
occurred. Red rhomboids are the hypothetical haplotypes not detected in the analyzed sample
(marked as mv1-17). The sizes of the circles are proportional to the number of detected haplotypes as
depicted in the legend. The geographical origin of the analyzed samples is presented in the legend.

A haplotype network representing the N1a subhaplogroup was constructed using
172 HVS-I/HVS-II haplotypes detected in 327 individuals (Figure 3). In the Serbian popula-
tion, the N1a subclade is represented by eight different HVS-I/HVS-II haplotypes (Figure 3
and Table S4). Two of the haplotypes (sample 154_Sb [24] and Ser_04 [51]) were charac-
terized by the 16,147A transversion and accordingly classified into the European branch
of subhaplogroup N1a [52]. On the other hand, four haplotypes (33_Sb [24], VP87 [53],
Ser_03 [51] and 232_Sb [24]), are characterized by the 16,147G transversion and classified
into the African/South Asian branch of subhaplogroup N1a [52] (Figure 3, Table S4). In-
terestingly, a new branch with a back mutation at np 16,147 is identified and samples
242_Sb [24] and Nish8 [5] belong to this branch (Figure 3).

Phylogeny reconstruction based on 81 complete mitogenomes classified the 154_Sb
haplotype into the N1a1a1a1 subclade that emerged around 4.45–4.38 kya (Figure S2). This
haplotype is identical to three haplotypes from Eastern Europe (Russian and Estonian) and
one from the Balkan Peninsula (Bulgarian), while other N1a1a1a1 mitogenomes originate
from various populations of Eastern and Central Europe, the Balkan Peninsula, and some
Central Asian populations (Figure S2). The 242_Sb haplotype and the mitogenome from
Russia form a new branch N1a1a1a1b, dated to 2.71 kya and defined by the transition at np
11,167 (Figure S2). The Serbian haplotype also has back mutations at nps 16,172 and 16,147,
differentiating it from the haplotype found in the Russian individual (Figure S2).
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Figure 3. Phylogeographic network for N1a subhaplogroup based on 172 HVS-I/HVS-II haplotypes
detected in 327 individuals, including 24 archaeological remains. Differences from rCRS are marked
with red numbers representing nucleotide positions where the transitions occurred; transversions
are marked with a red number and suffix representing the nucleotide change. Red rhomboids are
the hypothetical haplotypes not detected in the analyzed sample (marked with mv1-25). The sizes
of the circles are proportional to the number of detected haplotypes, as depicted in the legend. The
geographical origin of the samples is presented in the legend.

Complete mitogenomes of samples 33_Sb and 232_Sb belong to the N1a1a2 branch
(1.97–2.31 kya) along with one haplotype from Russia and one haplotype of unknown
origin (Figure S3).

3.3. Subhaplogroup N1b

Subhaplogroup N1b is mostly present in the Near East, with a frequency of up to 5.67%
in Lebanon (Figure 1 and Table S1). It is scarce in Europe, exhibiting the highest frequencies
in Sicily (3.85%) and Romania (2.10%) (Figure 1, Table S1). Although the highest number
of N1b haplotype carriers is found in the Near East, the highest haplotype and nucleotide
diversity values were observed for the Balkan Peninsula (Table S2, Supplementary Results).

A haplotype network for the subhaplogroup N1b was constructed using 154 HVS-
I/HVS-II haplotypes detected in 396 individuals (Figure 4). Six HVS-I/HVS-II haplotypes
belonging to subhaplogroup N1b were detected in the Serbian population (Figure 4). The
haplotype found in sample 143_Sb [9] was identical to four haplotypes from the Balkan
and the Apennine Peninsulas (Figure 4, Table S5). Together with another Serbian haplotype
Nish9 [5], it is positioned in the branch defined by 16,716A transversion that includes
haplotypes originating from the Near East (Ashkenazi Jews), Central Europe, the Balkan,
and the Apennine Peninsulas (Figure 4, Table S5).



Genes 2025, 16, 106 8 of 22

Genes 2025, 16, x FOR PEER REVIEW 8 of 22 
 

 

and the Apennine Peninsulas (Figure 4, Table S5). Together with another Serbian 
haplotype Nish9 [5], it is positioned in the branch defined by 16,716A transversion that 
includes haplotypes originating from the Near East (Ashkenazi Jews), Central Europe, the 
Balkan, and the Apennine Peninsulas (Figure 4, Table S5). 

 

Figure 4. Phylogeographic network for N1b subhaplogroup based on 154 HVS-I/HVS-II haplotypes 
detected in 396 individuals, including 9 archaeological remains. Differences from rCRS are marked 
with red numbers representing nucleotide positions where the transitions occurred; transversions 
are marked with a red number and suffix representing the nucleotide change. Red rhomboids are 
the hypothetical haplotypes not detected in the analyzed sample (marked with mv1-15). The sizes 
of the circles are proportional to the number of detected haplotypes, as depicted in the legend. The 
geographical origin of the samples is presented in the legend. 

Three different HVS-I/HVS-II haplotypes found in the Serbian population (samples 
51_Sb [9], Studenica20 [5], VP88 [53], and SS22 [47]) were positioned within the branch 
defined by the transition at the np 152 and as a majority of haplotypes in N1b network, 
they have 16,176G transversion (Figure 4). The haplotype detected in sample Nish33 [5] is 
identical to three haplotypes found in the Caucasus region in Armenia belonging to the 
branch differentiated from the ancestral haplotype by the transition at the np 185 (Figure 
4, Table S5). 

Phylogeny reconstruction based on 109 complete mitogenomes, with two complete 
Serbian mitogenomes, allowed us to identify the new subclade N1b1a9, defined by the 
transition at np 14,323 and dated to 6.3–9.4 kya. This subclade groups haplotype detected 
in individual 51_Sb and the haplotypes from Sardinia (Figure S4, Table S5). Within this 
novel subclade, two branches could be identified: N1b1a9a defined by transitions at nps 
146, 152, 14,097, and 16,244, and N1b1a9b defined by transition at np 9064. The haplotype 
detected in individual 143_Sb is positioned in the N1b1a7′8 paragroup, defined by the 
transition at fast mutating np 195 (Figure S4). 

  

Figure 4. Phylogeographic network for N1b subhaplogroup based on 154 HVS-I/HVS-II haplotypes
detected in 396 individuals, including 9 archaeological remains. Differences from rCRS are marked
with red numbers representing nucleotide positions where the transitions occurred; transversions
are marked with a red number and suffix representing the nucleotide change. Red rhomboids are
the hypothetical haplotypes not detected in the analyzed sample (marked with mv1-15). The sizes
of the circles are proportional to the number of detected haplotypes, as depicted in the legend. The
geographical origin of the samples is presented in the legend.

Three different HVS-I/HVS-II haplotypes found in the Serbian population (samples
51_Sb [9], Studenica20 [5], VP88 [53], and SS22 [47]) were positioned within the branch
defined by the transition at the np 152 and as a majority of haplotypes in N1b network,
they have 16,176G transversion (Figure 4). The haplotype detected in sample Nish33 [5] is
identical to three haplotypes found in the Caucasus region in Armenia belonging to the
branch differentiated from the ancestral haplotype by the transition at the np 185 (Figure 4,
Table S5).

Phylogeny reconstruction based on 109 complete mitogenomes, with two complete
Serbian mitogenomes, allowed us to identify the new subclade N1b1a9, defined by the
transition at np 14,323 and dated to 6.3–9.4 kya. This subclade groups haplotype detected
in individual 51_Sb and the haplotypes from Sardinia (Figure S4, Table S5). Within this
novel subclade, two branches could be identified: N1b1a9a defined by transitions at nps
146, 152, 14,097, and 16,244, and N1b1a9b defined by transition at np 9064. The haplotype
detected in individual 143_Sb is positioned in the N1b1a7′8 paragroup, defined by the
transition at fast mutating np 195 (Figure S4).

3.4. Subhaplogroup I5

Subhaplogroup I5 is the second most frequent I subclade [54]. Worldwide, it is the
most frequent in the northeastern part of Poland (2.74%) and the Greek population of
Cyprus (2.2%) (Figure 1, Table S1). The greatest number of I5 subhaplogroup carriers was
detected in the Near East, the Balkan, and the Apennine Peninsulas (Table S2), with the
latter two regions exhibiting the highest frequencies of this subhaplogroup (Table S1). The



Genes 2025, 16, 106 9 of 22

highest value for HD parameter was detected in the Balkan Peninsula, where high values
of all other genetic diversity parameters were also observed (Table S2). In the Serbian
population, subhaplogroup I5 is represented by two haplotypes detected in samples 173_Sb
and 256_Sb [24].

A haplotype network representing the subhaplogroup I5 was constructed using
72 HVS-I/HVS-II haplotypes detected in 168 individuals (Figure 5). The haplotype found
in sample 173_Sb belongs to the branch defined by the 16,391 transition from the ancestral
HVS-I/HVS-II haplotype (Figure 5). This branch comprises haplotypes found predomi-
nantly in the Balkan Peninsula (five haplotypes) as well as the Apennine Peninsula (one
haplotype), along with a haplotype detected in one individual of Jewish origin from Mo-
rocco (Table S6, Figure 5). The HVS-I/HVS-II haplotype of sample 256_Sb, together with
two haplotypes from Iran and one from France, is located in the branch defined by the back
mutation at the np 199 (Table S6, Figure 5).
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detected in 168 individuals, including 5 archaeological remains. Differences from rCRS are marked
with red numbers representing nucleotide positions where the transitions occurred. Red rhomboids
are the hypothetical haplotypes not detected in the analyzed sample (marked with mv1-12). The
sizes of the circles are proportional to the number of detected haplotypes, as depicted in the legend.
The geographical origin of the samples is presented in the legend.

Phylogeny reconstruction based on 92 complete mitogenomes allowed us to classify
the Serbian haplotypes in greater detail. The haplotype detected in sample 173_Sb was
classified into the I5a1 subhaplogroup (Figure S5). This subhaplogroup, which evolved
between 9.12 and 14.07 kya (Figure S5), contains haplotypes found mostly in European
populations. One haplotype found in the sample from late 10th century CE Hungary
(Anc10, [55]) is classified as I5a1a (Figure S5). A haplotype found in the individual 256_Sb
and four haplotypes from Central Europe form a new subclade, I5d (12.61–14.75 kya),
defined by transitions at nps 4532, 9156, 13,368, and 16,354 (Figure S6). Within this sub-
clade, a new branch I5d1 (2.63–8.27 kya) is defined by a transition at np 7211 containing
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Serbian, German, and Polish haplotypes (Figure S6). Interestingly, in the HVS-I/HVS-II
network (Figure 5), back mutation at the np 16,148 distances the 256_Sb haplotype from
the haplotypes it is phylogenetically expected to be closer to according to the complete
mitogenomes phylogeny (Figure S6). This disparity in genealogical relationships arises
from the higher resolution of phylogenies based on complete mitogenomes, along with dif-
ferences in sample size. The sample size is larger for the HVS-I/HVS-II-based haplotypes,
which can offer varying perspectives on their genealogical relationships.

3.5. Haplogroup W

Haplogroup W is a rare haplogroup with the highest frequencies in the Georgian
(9.42%) and Kurdish populations (6.67%) (Table S1). In Europe, it is most frequent in the
Albanian (5.42%) and Finnish (5.36%) populations (Table S1, Figure 6). The highest numbers
of haplogroup W carriers were found in Central Europe, the Near East, Northern Europe,
and the Balkan Peninsula (Table S2), and accordingly, the highest haplogroup frequencies
were recorded in the Caucasus region of the Near East (5.06%) and Central Europe (2.96%)
(Table S1). High values of the genetic diversity parameters detected in the Balkan and
the Apennine Peninsulas and Central Europe suggest that these regions could represent
modern centers of diversity for haplogroup W (Table S2, Supplementary Results).
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A haplotype network representing the haplogroup W was constructed using 480 HVS-
I/HVS-II haplotypes detected in 1026 individuals (Figure 7). Ten haplotypes classified into
haplogroup W were detected among 20 individuals from the Serbian population (Figure 7,
Table S7). Detected haplotypes were classified into the following subclades: W1, W1c, W1h,
W1e1, W3, and W5.
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3.5.1. Subclade W1

The HVS-I/HVS-II haplotype classified into subhaplogroup W1-G143A was found in
seven individuals from the Serbian population, namely in individuals 13_Sb, 216_Sb [24],
Ser_06 [51], Nish71 [5], and three individuals denoted as VP83 [53] (Table S7, Figure S7). It
is also recorded in two individuals from the neighboring countries of North Macedonia,
and Bosnia and Herzegovina. Several branches (defined by transitions at nps 143, 263,
16,295 and 16,311 with 16,256) diverge from this node (Figure S7). Most haplotypes in these
branches are differentiated by one or two mutation steps from this “Balkan specific” node.
They are found in the Balkan, the Apennine, and the Iberian Peninsulas (Figures 7 and S7).

Based on the complete mitogenome phylogeny, reconstructed using 210 sequences,
we defined a new young subclade, W1j, defined by the transition at np 16,311 and dated to
1.8–3.07 kya, which groups haplotypes from Serbia (13_Sb and 216_Sb) and Italy (Figure S8).

3.5.2. Subclade W1c

The HVS-I/HVS-II haplotype found in samples SS21 [47] and Nish43 [5] in the Serbian
population was also found in six individuals from the Balkan Peninsula and one from
Central Europe (Slovakia) (Table S7, Figure S9). Another haplotype, differentiated by
transitions at nps 185 and 16,325 from the previous, was detected in individual 229_Sb [24]
(Figure S9). The haplotype found in sample Nish116 [5] is differentiated from its ancestral
haplotype by a back mutation at np 16,223, and grouped with two samples from the Balkan
Peninsula and one individual from the Caucasus region (Figure S9, Table S7), which were
all classified into subhaplogroup W1c. Subhaplogroup W1c has a diagnostic transition at
the np 119 and is dispersed throughout Europe.
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By phylogeny reconstruction based on 73 complete mitogenomes, we identified a
new subclade, W1c2, defined by the transitions at nps 152 and 16,193. This subclade,
which evolved around 3.26 kya, groups haplotypes found mostly in the Balkan Peninsula,
including the 229_Sb (Figure S10).

3.5.3. Subclade W1h and W1e1

Subhaplogroup W1h, defined by the transition at np 16,145, was represented in the
Serbian population by the HVS-I/HVS-II haplotype found in sample Ser_05 [51], which
is identical to that found in an individual from Slovenia (Table S7). They form a branch
characterized by transitions at nps 16,145 and 152, with haplotypes predominantly found
in the Apennine and Balkan Peninsulas (Figure S7).

The haplotype found in sample Nish4 [5] belongs to the W1e1a branch, defined
by the transition at np 16,324 from the ancestral HVS-I/HVS-II haplotype W1e1 which
is characterized by the transition at np 16,295 (Figure S7). The W1e1a branch contains
haplotypes found mostly in Central Europe and the South European peninsulas (Table S7,
Figure S7).

3.5.4. Subclade W3

The HVS-I/HVS-II haplotype detected in the Serbian sample 257_Sb is classified into
the subhaplogroup W3a and together with another haplotype from the Balkan Peninsula
(Albanian from Vojvodina, [53]) creates a branch defined by the transitions at nps 333 and
16,176 (Table S7, Figure S11). The ancestral haplotype for this branch was detected in
30 individuals of various geographical origins, including one ancient sample from Sardinia
dated to the end of the 5th century BCE (MS10581, [56]). The HVS-I/HVS-II haplotype
found in sample 24_Sb [9] was also detected in 20 individuals mostly originating from
the Balkan Peninsula (Table S7, Figure S11). Another Serbian haplotype, 183_Sb [24],
differs from this predominantly Balkan node by the transitions at nps 199 and 263. Both
haplotypes, 24_Sb and 183_Sb, were classified into subhaplogroup W3b2.

Phylogeny based on 56 complete mitogenomes allowed us to classify sample 257_Sb
into the W3a1d subclade that emerged 5.77–9.63 kya (Figure S12). 24_Sb and 183_Sb haplo-
types and three Bulgarian haplotypes form a new subclade, W3b2, defined by transitions
at nps 210, 14,767, 16,172, and 16,231, with an estimated age of 2.71–4.61 kya (Figure S13).
This W subclade may have originated in the Balkan Peninsula.

3.5.5. Subclade W5

The HVS-I/HVS-II haplotype found in samples 27_Sb [9] and Brestovac11 (2 indi-
viduals) [5] was also detected among 34 individuals originating from different regions
of Europe, Northern Africa, and the Arabian Peninsula (Table S7, Figure S11). Several
haplotypes were derived from this relatively frequent haplotype, including haplotype VP81
from the Serbian population [53], defined by the transition at np 16,093 (Figure S11).

Based on the phylogenetic analysis of 52 complete mitogenomes, sample 27_Sb belongs
to the W5 subhaplogroup, which emerged 11.43–21.54 kya (Figure S14). According to
available data on complete mitogenomes, 51 samples of various geographical affiliations
are classified into this subhaplogroup (Figure S14).

3.6. Subhaplogroup X2

Subhaplogroup X2 is relatively rare, with the highest frequencies in the Near East
among the Jewish, Druze, and Lebanese populations (Table S1 and Figure 6). In Europe,
the highest prevalence of this haplogroup has been observed in the Balkan Peninsula, with
the Romani population from Macedonia showing the highest frequency (Table S1, Figure 6).
The highest number of X2 haplogroup carriers can be found in the Near East, followed by
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the Apennine Peninsula and Central Europe (Table S2). High HD values were detected in
all analyzed regions, with the Balkan Peninsula showing the highest.

A haplotype network representing the subhalpogroup X2 was constructed using
458 HVS-I/HVS-II haplotypes detected in 969 individuals (Figure 8). In the Serbian popu-
lation, subhaplogroup X2 is represented with nine haplotypes found in nine individuals
(Figures 8 and S15–S21). These haplotypes were classified into the following subclades: X2,
X2b+226, X2m’n, X2m, and X2n.
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3.6.1. Subclade X2

The X2 subclade gathers haplotypes of various geographical origins, including hap-
lotypes found in three individuals from Serbia: 185_Sb [24], Nish 16, and Nish27 [5]
(Figures S15 and S16). The HVS-I/HVS-II haplotype detected in individual 185_Sb, along
with samples from Croatia and Bosnia and Herzegovina, belongs to a branch diverged from
its ancestral haplotype by transition at np 16,294 (Figure S15). This ancestral haplotype has
been identified in other populations from the Balkan Peninsula, the Apennine and Iberian
Peninsulas, the Near East, and Central Asia. The haplotypes detected in individual Nish27
and one Bulgarian sample belong to the branch predominantly found in the Near East
(Figure S15). The haplotype found in individual Nish16 differentiates from the ancestral
haplotype present in the South European peninsulas, the Near East, and Central Asia due
to transitions at nps 195, 16,264, and 16,376 (Figure S16).

Phylogeny based on 434 complete mitogenomes allowed us to classify sample 185_Sb
into the X2q1a subclade previously described by Sarac et al. [22] (Figure S17). This subclade
of possible Balkan origin emerged between 1.54 and 1.8 kya.
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3.6.2. Subclade X2b+226

The HVS-I/HVS-II haplotypes found in samples 36_Sb [24] and VP85 [53] are classified
in the X2b subclade (Table S8, Figure S18). The 36_Sb haplotype is widespread across the
European continent and is ancestral to the one detected in sample VP85 (Figure S18).
Sample VP85 belongs to the branch defined by the transversion at the np 16,184 which
gathers haplotypes from Poland, Slovakia, and Russia (Table S8, Figure S18).

Based on the analysis of complete mitogenomes, sample 36_Sb is classified in the
X2b paragroup, defined by the transition 226 that evolved between 9.88 and 11.1 kya
(Figure S19). An identical sequence was detected in the United Kingdom along with three
samples of unknown origin.

3.6.3. Subclades X2m’n, X2m, and X2n

Four HVS-I/HVS-II haplotypes observed in samples Nish58 [5], 137_Sb [24], VP86 [53],
and Nish104 [5] were classified into subclades X2m’n, X2m1, and X2n, respectively (Table
S8, Figures S18 and S20). The haplotype found in sample Nish58 differentiates from
the ancestral haplotype detected in Northern Europe by the transitions at nps 185, 188,
and 16,376 (Figure S20). Haplotypes detected in samples 137_Sb and VP86 belong to the
X2m1 branch together with samples from the Apennine, Balkan, and Iberian Peninsulas,
and Central Europe (Figure S18). The haplotype of sample Nish104 belongs to the X2n
subclade, which is defined by a transition at np 16,266 and the back mutation at np 263. It
encompasses the haplotypes from the Balkan and Apennine Peninsulas, Central Europe
(Poland and Slovakia), and the Caucasus (Georgia) (Table S8, Figure S20).

Using complete mitogenomes to reconstruct the phylogeny of the X2m1 subclade,
we identified a new branch, X2m1a, defined by a transition at np 16,192, which emerged
between 7.88 and 9.22 kya (Figure S21). This branch gathers the Serbian haplotype and
two haplotypes from the Apennine Peninsula (Figure S21).

4. Discussion
Phylogeographic analyses of the haplotypes belonging to the (sub)haplogroups seldom

found in contemporary populations provide valuable insights into gene flow potentially
linked to migrations from specific populations. Furthermore, for rare (sub)haplogroups,
identifying geographic regions with increased levels of genetic diversity is particularly
informative, as these areas may represent centers of origin for specific (sub)haplogroups,
while populations inhabiting these regions during certain periods could be identified as
source populations for those haplotypes. This information is crucial for inferring and
understanding gene flow between populations.

Here, we discuss the prevalence, evolution, and origin of haplotypes belonging to
rare subhaplogroups R0a, N1a, N1b, X2, I5, and W detected in the contemporary Serbian
population. Subhaplogroups R0a, N1a, N1b, and X2 are characteristic for Near Eastern
populations and Southwestern Asia [25,26,57] while I5 and W exhibit higher frequencies in
European populations compared to the populations from the Near East [26,54]. All these
rare (sub)haplogroups reflect the dynamic population history of the Balkan populations
and numerous backward and forward migration events.

4.1. Subhaplogroup R0a

Both phylogeographic and founder analysis of subhaplogroup R0a, particularly its
subclade R0a2r, suggest that its dispersal from the Arabian Peninsula to Southeastern
Europe and the Mediterranean occurred by the end of the Pleistocene or during the early
Holocene [25]. The HVS-I/HVS-II haplotype ancestral to the haplotype from the Serbian
population is predominantly present in the Balkan and Arabian Peninsulas (Figure 2).
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Relatively high values of the genetic diversity parameters for R0a in the Balkan Peninsula
(Table S2) and the presence of haplotypes exclusively from the Balkan Peninsula in the
newly defined R0a1a5 subclade (Figure S1) suggest that this subclade may have originated
in the Balkans. The presence of an ancestral HVS-I/HVS-II haplotype in Southern Europe
and the Arabian Peninsula and an estimated age of 1.54–1.8 kya for the R0a1a5 subclade
suggest that this ancestral haplotype may have reached Southern Europe from the Near
East during the Roman Empire’s control over the Mediterranean. This conclusion is further
supported by the discovery of the R0a1a haplotype in the ancient remains from the Roman
period’s necropolis of Viminacium in Serbia, dated between the 2nd and 3rd century CE
(I15500, [20]).

4.2. Subhaplogroup N1a

The subhaplogroup N1a contains two major branches, European–Central Asian and
African–South Asian, characterized by transversions 16,147A and 16,147G, respectively [52].
The 16,147A branch of N1a was widespread in the Central European Neolithic farmer
populations [27] and is associated with the expansion of the first farmers into Central
Europe [31–33,52].

The haplotypes belonging to the 16,147G branch of N1a were found in two Late
Bronze Age individuals who lived near the Black Sea in the territory of modern-day Russia
(RISE555 [13] and Kal1 [58]). These haplotypes are present in the modern populations
of the Balkan Peninsula and Central and Eastern Europe as well (Figure 3). Complete
genome analysis from ancient remains revealed that the Early Bronze Age migrations of
the Yamnaya culture nomadic herders from the Pontic-Caspian steppe into Central and
Northern Europe significantly impacted the formation of the genetic pool of contemporary
European populations [13]. In the study by Haak et al. [15] the authors further demon-
strated the importance of these migrations in shaping modern European genetic diversity
and spreading Indo-European languages across Europe. Additionally, Yamnaya-related
genetic components were identified in two Bronze Age individuals from the Balkan Penin-
sula (RISE595 and RISE596) [13]. Both branches of subhaplogroup N1a are present in
Serbian and other Balkan populations, suggesting a possibility that these lineages arrived
in the Balkan Peninsula in two instances: the 16,147A branch arrived with the Neolithic
farmer populations during the Neolithic expansion and the 16,147G branch arrived with
the nomadic herders, carriers of Yamnaya culture, during the Bronze Age migrations. In
addition to these ancient migrations, the age of subclades of most likely Slavic origin,
N1a1a2, N1a1a1a1b, and N1a1a1a1c (Figures S2 and S3), suggest their arrival in the Balkan
region later in history, and most likely during the Migration Period.

4.3. Subhaplogroup N1b

Subhaplogroup N1b has the highest frequencies in Southwestern Asia while its occur-
rence in Europe is sporadic, mostly in the Central and Eastern Mediterranean [26]. Founder
analysis of the HVS-I region variability suggests that this subhaplogroup spread through
Europe during the Late Glacial period, before the Neolithic, thus making it possible that
younger subclades like N1b2 evolved in situ in Europe [26]. Considering that HD parameter
values for N1b are highest in the Near East, followed by the Balkans where high ND values
were also observed (Table S2), it could be possible that the carriers of subhaplogroup N1b
arrived in Europe through the Balkan Peninsula during the Late Glacial period. N1b HVS-
I/HVS-II haplotypes from the Serbian population were grouped with the other haplotypes
from the Balkan Peninsula and haplotypes sporadically present in the Apennine Peninsula,
Central, and Eastern Europe (Figure 4). Only the haplotype found in sample Nish33 was
identical to those found outside the European continent (Figure 4). The majority of the
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haplotypes detected in the Serbian population belong to the subclades characteristic for the
Balkans which could have evolved from the ancestral haplotypes after the migrations from
the Near East around 15 kya, i.e., during the Late Glacial period. Reconstructed complete
mitogenome phylogenies further support this idea since two samples from Serbia belong
to the N1b1a7′8 (estimated age 8.44–15.04 kya) and younger N1b1a9 subclade (6.3–9.4 kya)
which is predominantly found in Sardinia (Figure S4). A newly identified subclade N1b1a9a
with an age estimate of 1.8–3.07 kya suggests the possible arrival of this subclade to the
Balkan Peninsula from Sardinia during or after the Bronze Age.

4.4. Subhaplgroup I5

Although haplogroup I is the most common in Northern Europe, the highest values of
the genetic diversity parameters were observed in the Near East and Southeastern Europe,
indicating its Near Eastern origin [26,54]. Within the Serbian population, haplogroup I
is represented by subhaplogroup I5 whose subclades I5a2a and I5b are specific for the
Near East while I5a1 is European-specific [54]. Subhaplogroup I5 evolved around 18 kya
in the Near East and spread throughout Europe around 10–11 kya [54]. Its carriers have
been identified in Bronze Age populations of Southern [59] and Eastern Europe, as well as
in the Caucasus [13]. They have also been observed in medieval populations of Central
Europe [60]. The HVS-I/HVS-II haplotype of sample 173_Sb was grouped with haplotypes
found in Southern Europe, mostly from the Balkans (Figure 5), suggesting that it likely
evolved in the Balkan Peninsula. However, phylogeny reconstruction based on complete
mitogenomes did not provide more details apart from classifying this haplotype into the
I5a1 subclade (Figure S5). This highlights the need for more complete mitogenomic data
from the Balkan Peninsula to better understand the evolution of this branch. The haplotype
detected in sample 256_Sb was classified into the newly identified subclade I5d1 that most
likely originated in Central Europe and spread into the Balkan Peninsula, presumably
during the Migration Period.

4.5. Haplogroup W

The haplogroup W has a very complex evolutionary and migratory history. It exhibits
the highest diversity of the HVS-I region in Southeastern Europe, northwestern Africa, and
the Arabian Peninsula [26]. Based on the HVS-I haplotype network and the inclusion of
Near Eastern lineages within primarily European subclades, [26] suggested that haplogroup
W likely originated in Europe. On the other hand, Olivieri et al. [54] have suggested that
this haplogroup evolved in the Near East during the Late Glacial, later rapidly spreading
throughout Europe. Most W subclades, such as W3, W4, and W5, dispersed into Europe
during the Late Glacial, while W1 expanded in the immediate postglacial period [54]. Some
W lineages that had already been residing in Europe since the end of the ice age have
expanded locally during the Neolithic period [26].

The analysis of the genetic diversity parameters indicates that Central Europe, the
Apennine, and the Balkan Peninsulas represent centers of diversity for haplogroup W
in Europe (Table S2). HVS-I/HVS-II haplotypes found in the Serbian population are
predominantly classified into the branches specific to Central Europe, the Balkan, and
Apennine Peninsulas (branches in the subclades W1c, W1h, W1e1, and W3b). Phylogeny
reconstruction allowed a more detailed classification of some Serbian haplotypes into
several new subclades W1j, W1c2, and W3b2, or the already defined subclade W3a1d.
Our analysis indicates that the origin of some of these subclades is in Central Europe
(W3a1d) and the Balkans (W1c2, W3b2). Interestingly, the W1e1 subclade was discovered
in ancient samples from medieval England and Finland and has a wide distribution in
Europe although it is rarely found in Eastern Europe [61,62]. Unlike W1e1, haplotypes
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belonging to subclade W1c were found among Central European ancient samples from the
Neolithic period [32,63].

Although results indicate that the majority of haplogroup W lineages from the Serbian
population evolved in the Balkan Peninsula, we cannot exclude the possibility that some
of the lineages (e.g., W3a1d) reached this region during the Bronze Age or Migration
Period from Central and Eastern Europe. Additionally, subclade W3b, due to the high
representation in the Near East, could have reached the Balkans from that region. As in
the case of subclade I5, more available complete mitogenome sequences are necessary to
accurately determine the origin of these lineages in the Serbian population.

4.6. Subhaplogroup X2

Haplogroup X displays a relict distribution across the Near East, reaching considerable
frequencies and high diversity, suggesting that the Near East represents a contemporary
refugium or reservoir of ancient diversity [64]. Subhaplogroup X2 is the most spread
and frequent X subhaplogroup, although it has lower frequencies than more common
haplogroups [26]. Our analysis estimated that subhaplogroup X2 evolved between 13.02
and 22.16 kya, which is aligned with the estimates of [26]. Some of the basal X2 branches
are restricted to the Near East, the Caucasus, and Northern Africa, and the branch defined
by the transition at np 225 includes Near Eastern, North African, and European-specific
subclades, as well as the Native Americans’ X2a subclade [26].

The Balkan Peninsula has the highest X2 frequencies and values of the genetic diversity
parameters in Europe, followed by other South European peninsulas (Table S2). These
results might reflect these regions’ role as glacial refugia, suggesting that the spread of
some X2 subclades into Europe predates the Neolithic expansion. The origin of X2 haplo-
types in the Serbian population is quite diverse and indicates different migratory events.
Considering that the majority of haplotypes observed in the Serbian population belong to
the subclades X2b, X2m’n, X2m, and X2n, which are also mostly found in Southern Europe,
it is possible that some of these lineages evolved in the South European peninsulas, and
that their ancestral haplotypes arrived in this region before or during the Neolithic expan-
sion. X2m lineage found in the Serbian population may have originated in the Apennine
or Balkan Peninsula while X2n might have evolved in the Balkan Peninsula. However,
more complete mitogenome data for populations underrepresented in mtDNA studies is
warranted to draw some reliable conclusions. Interestingly, the current distribution of HVS-
I/HVS-II haplotype, ancestral to the sample VP85, suggests its Slavic origin and possible
arrival in the Balkans in the Early Middle Ages during the Migration Period. Furthermore,
both the HVS-I/HVS-II phylogeographic analysis and complete mitogenome phylogeny of
X2q1 and its subclade X2q1a, observed exclusively in the South Slavic-speaking people of
the Balkan Peninsula, demonstrate that this region was a place of local micro-differentiation
processes, as previously reported by [22].

5. Limitations of the Study
Complete mitogenomes of contemporary and ancient humans, available nowadays

in several databases such as GenBank [65], EMPOP (https://empop.online/, accessed 10
January 2025 [66]), Ian Logan webpage, and gnomAD [67], have inevitably contributed
towards improving our understanding of the processes that have shaped the maternal
landscape of the human populations. However, these high-resolution markers are still
less abundant in comparison to HVS-I and HVS-II sequences, which are available for all
the populations/regions here considered. Therefore, the trade-off due to the usage of
lower resolution markers which are available for the populations/regions of interest indeed
represents a limitation of our study. The same holds for the hypermutating sites frequently

https://empop.online/
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observed in heteroplasmic states which are present in HVS-I and HVS-II sequences and
known to hamper the interpretation of phylogenies and haplotype networks. While further
studies will provide complete mitogenomes from populations/regions of interest and thus
improve our findings based on HVS-I and HVS-II sequences, hypermutating sites in HVS-I
and HVS-II sequences prone to recurrent and back mutations have been omitted from
both phylogenetic and phylogeographic analyses. Furthermore, whenever possible, we
corroborated our inferences based on low-resolution markers by phylogeny reconstructions
of rare mtDNA subhaplogroups using available complete mitogenome data. It is worth
mentioning that although characterized by a lower resolution in comparison to complete
mitogenomes, HVS-I, HVS-II, and HVS-III are still regarded as the standard genetic markers
in forensic application and human identification (https://www.gednap.org, accessed 10
January 2025 [68,69]).

6. Conclusions
Phylogeographic and phylogeny analysis of rare mtDNA (sub)haplogroups performed

in this study enabled us to gain new insights into how different migrations shaped the
present-day mtDNA gene pool of the Serbian population. Our results add to the growing
evidence pointing to the Balkan Peninsula as one of the glacial refugia from which the
postglacial recolonization of Europe started. It also confirmed the Balkan Peninsula is an
important center of mtDNA haplogroup diversity. Our data further corroborate previous
findings that the mtDNA gene pool of the contemporary Serbian population was shaped
by several ancient migration events, starting from the Neolithic through the Bronze Age
and the Early Middle Ages to the present day.
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