Performance Assessment of GSMaP and GPM IMERG Products during Typhoon Mangkhut
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Rainfall Datasets
2.2.1. Gauge Precipitation Observation
2.2.2. Satellite Precipitation
2.3. Statistical Metrics
3. Results
3.1. Spatial Analysis
3.2. Contingency Scores
3.3. Probability Distribution
3.4. Mean Hourly Rainfall
4. Summary and Conclusions
- (1)
- Spatially, GSMaP_Gauge outperforms the IMERG_FRCal estimates in each region according to CCs and displays lower FSEs and RMSEs. IMERG_FRCal performs better than GSMaP over the rainfall centers in mainland China and southern China.
- (2)
- GSMaP products have higher PODs and CSIs and lower FARs over various regions than IMERG products. GSMaP_Gauge has a higher POD and CSI and lower FAR when the rain rate is 1 mm/h, while gauge-corrected IMERG_FRCal does not significantly improve the detection accuracy of precipitation events.
- (3)
- For PDFc and PDFv, GSMaP products agree better with the gauge and the IMERG products have difficulty estimating the heavy rainfall rates. All of the satellite-only products overestimate the occurrence of light precipitation while underestimating the occurrence of moderate precipitation over rainfall centers in mainland China and southern China.
- (4)
- According to the time-series analysis, GSMaP products perform better than IMERG products in the rainfall centers over mainland China and southern China while IMERG products show better performance in the rainfall center over eastern China. The bias-adjusted products GSMaP_Gauge and IMERG_FRCal have a high CC and a low RMSE.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, J.; Li, L.; Zhao, K.; Wang, P.; Wang, D.; Sou, I.M.; Yang, Z.; Hu, J.; Tang, X.; Mok, K.M. A Comparative Study of Typhoon Hato (2017) and Typhoon Mangkhut (2018)–Their Impacts on Coastal Inundation in Macau. J. Geophys. Res. Ocean. 2019, 124, 9590–9619. [Google Scholar] [CrossRef]
- Experts Say Typhoon Mangkhut Is Not the Strongest Typhoon Made Landfall in Guangdong Province. Available online: http://news.weather.com.cn/2018/09/2937054.shtml (accessed on 18 September 2018).
- The King of the Typhoon Mangkhut Is the Largest Typhoon Since 2018! With a Diameter of More Than 1000 Kilometers, It Can Fit Guangdong and Hainan into It. Available online: http://www.fishfirst.cn/article.php?aid=105485 (accessed on 14 September 2018).
- Guo, H.; Chen, S.; Bao, A.; Hu, J.; Gebregiorgis, A.S.; Xue, X.; Zhang, X. Inter-Comparison of High-Resolution Satellite Precipitation Products over Central Asia. Remote Sens. 2015, 7, 7181–7211. [Google Scholar] [CrossRef] [Green Version]
- Sorooshian, S.; Hsu, K.-L.; Gao, X.; Gupta, H.V.; Imam, B.; Braithwaite, D. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Am. Meteorol. Soc. 2000, 81, 2035–2046. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Hsu, K.-L.; Sorooshian, S.; Gao, X. Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteorol. 2004, 43, 1834–1853. [Google Scholar] [CrossRef] [Green Version]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Tan, J.; Petersen, W.A.; Kirstetter, P.-E.; Tian, Y. Performance of IMERG as a function of spatiotemporal scale. J. Hydrometeorol. 2017, 18, 307–319. [Google Scholar] [CrossRef]
- Kubota, T.; Shige, S.; Hashizume, H.; Aonashi, K.; Takahashi, N.; Seto, S.; Hirose, M.; Takayabu, Y.N.; Ushio, T.; Nakagawa, K. Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2259–2275. [Google Scholar] [CrossRef]
- Chen, S.; Hu, J.; Zhang, Z.; Behrangi, A.; Hong, Y.; Gebregiorgis, A.S.; Cao, J.; Hu, B.; Xue, X.; Zhang, X. Hydrologic evaluation of the TRMM multisatellite precipitation analysis over Ganjiang Basin in humid southeastern China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4568–4580. [Google Scholar] [CrossRef]
- Gosset, M.; Viarre, J.; Quantin, G.; Alcoba, M. Evaluation of several rainfall products used for hydrological applications over West Africa using two high-resolution gauge networks. Q. J. R. Meteorol. Soc. 2013, 139, 923–940. [Google Scholar] [CrossRef]
- Sobel, A.H.; Yuter, S.E.; Bretherton, C.S.; Kiladis, G.N. Large-scale meteorology and deep convection during TRMM KWAJEX. Mon. Weather Rev. 2004, 132, 422–444. [Google Scholar] [CrossRef] [Green Version]
- Zhong, R.; Chen, X.; Lai, C.; Wang, Z.; Lian, Y.; Yu, H.; Wu, X. Drought monitoring utility of satellite-based precipitation products across mainland China. J. Hydrol. 2019, 568, 343–359. [Google Scholar] [CrossRef]
- Hong, Y.; Adler, R.F.; Negri, A.; Huffman, G.J. Flood and landslide applications of near real-time satellite rainfall products. Nat. Hazards 2007, 43, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Padhee, S.K.; Nikam, B.R.; Dutta, S.; Aggarwal, S.P. Using satellite-based soil moisture to detect and monitor spatiotemporal traces of agricultural drought over Bundelkhand region of India. Gisci. Remote Sens. 2017, 54, 144–166. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Tan, M.; Duan, Z. Assessment of GPM and TRMM Precipitation Products over Singapore. Remote Sens. 2017, 9, 720. [Google Scholar] [CrossRef] [Green Version]
- Anjum, M.N.; Ding, Y.; Shangguan, D.; Ahmad, I.; Ijaz, M.W.; Farid, H.U.; Yagoub, Y.E.; Zaman, M.; Adnan, M. Performance evaluation of latest integrated multi-satellite retrievals for Global Precipitation Measurement (IMERG) over the northern highlands of Pakistan. Atmos. Res. 2018, 205, 134–146. [Google Scholar] [CrossRef]
- Liu, Z. Comparison of integrated multisatellite retrievals for GPM (IMERG) and TRMM multisatellite precipitation analysis (TMPA) monthly precipitation products: Initial results. J. Hydrometeorol. 2016, 17, 777–790. [Google Scholar] [CrossRef]
- Sungmin, O.; Foelsche, U.; Kirchengast, G.; Fuchsberger, J.; Tan, J.; Petersen, W.A. Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria. Hydrol. Earth Syst. Sci. 2017, 21. [Google Scholar] [CrossRef] [Green Version]
- Prakash, S.; Mitra, A.K.; Rajagopal, E.; Pai, D. Assessment of TRMM-based TMPA-3B42 and GSMaP precipitation products over India for the peak southwest monsoon season. Int. J. Climatol. 2016, 36, 1614–1631. [Google Scholar] [CrossRef]
- Chen, S.; Hu, J.; Zhang, A.; Min, C.; Huang, C.; Liang, Z. Performance of near real-time Global Satellite Mapping of Precipitation estimates during heavy precipitation events over northern China. Theor. Appl. Climatol. 2018, 135, 877–891. [Google Scholar] [CrossRef]
- Morrissey, M.L.; Maliekal, J.A.; Greene, J.S.; Wang, J. The uncertainty of simple spatial averages using rain gauge networks. Water Resour. Res. 1995, 31, 2011–2017. [Google Scholar] [CrossRef]
- Villarini, G.; Mandapaka, P.V.; Krajewski, W.F.; Moore, R.J. Rainfall and sampling uncertainties: A rain gauge perspective. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Guo, H.; Chen, S.; Bao, A.; Hu, J.; Stepanian, P.M. Comprehensive Evaluation of High-Resolution Satellite-Based Precipitation Products over China. Atmosphere 2015, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Yang, H.; Cao, Q.; Gourley, J.J.; Kirstetter, P.E.; Yong, B.; Tian, Y.; Zhang, Z.; Yan, S.; Hu, J. Similarity and Difference of the Two Successive V6 and V7 TRMM Multisatellite Precipitation Analysis Performance over China. J. Geophys. Res. Atmos. 2013, 118, 13060–13074. [Google Scholar] [CrossRef]
- Zhang, A.; Xiao, L.; Min, C.; Chen, S.; Kulie, M.; Huang, C.; Liang, Z. Evaluation of latest GPM-Era high-resolution satellite precipitation products during the May 2017 Guangdong extreme rainfall event. Atmos. Res. 2019, 216, 76–85. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, P.; Pan, Y.; Yu, J. A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res. Atmos. 2014, 119, 3063–3075. [Google Scholar] [CrossRef]
- Chen, S.; Behrangi, A.; Tian, Y.; Hu, J.; Hong, Y.; Tang, Q.; Hu, X.-M.; Stepanian, P.M.; Hu, B.; Zhang, X. Precipitation spectra analysis over China with high-resolution measurements from optimally-merged satellite/gauge observations—part II: Diurnal variability analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2979–2988. [Google Scholar] [CrossRef]
- Huang, C.; Hu, J.; Chen, S.; Zhang, A.; Liang, Z.; Tong, X.; Xiao, L.; Min, C.; Zhang, Z. How Well Can IMERG Products Capture Typhoon Extreme Precipitation Events over Southern China? Remote Sens. 2019, 11, 70. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.; Ma, Y.; Long, D.; Zhong, L.; Hong, Y. Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. J. Hydrol. 2016, 533, 152–167. [Google Scholar] [CrossRef]
- Li, R.; Wang, K.; Qi, D. Validating the integrated multisatellite retrievals for global precipitation measurement in terms of diurnal variability with hourly gauge observations collected at 50,000 stations in China. J. Geophys. Res. Atmos. 2018, 123, 10,423–10,442. [Google Scholar] [CrossRef]
- Shige, S.; Yamamoto, T.; Tsukiyama, T.; Kida, S.; Ashiwake, H.; Kubota, T.; Seto, S.; Aonashi, K.; Okamoto, K.i. The GSMaP precipitation retrieval algorithm for microwave sounders—Part I: Over-ocean algorithm. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3084–3097. [Google Scholar] [CrossRef]
- Global Satellite Mapping of Precipitation (GSMaP) for GPM Algorithm Theoretical Basis Document (ATBD) Algorithm Ver.6. Available online: https://www.eorc.jaxa.jp/GPM/doc/algorithm/GSMaPforGPM_20140902_E.pdf (accessed on 19 January 2021).
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Tan, J. Integrated Multi-Satellite Retrievals for GPM (IMERG) Technical Documentation; Project, G., Ed.; NASA/GSFC: Greenbelt, MD, USA, 2019.
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Tan, J.; Xie, P. Algorithm Theoretical Basis Document (ATBD) Version 06 for the NASA Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG); Project, G., Ed.; NASA/GSFC: Greenbelt, MD, USA, 2019.
- Chen, S.; Hong, Y.; Cao, Q.; Kirstetter, P.-E.; Gourley, J.J.; Qi, Y.; Zhang, J.; Howard, K.; Hu, J.; Wang, J. Performance evaluation of radar and satellite rainfalls for Typhoon Morakot over Taiwan: Are remote-sensing products ready for gauge denial scenario of extreme events? J. Hydrol. 2013, 506, 4–13. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Ebert, E.E.; Janowiak, J.E.; Kidd, C. Comparison of Near-Real-Time Precipitation Estimates from Satellite Observations and Numerical Models. Bull. Am. Meteorol. Soc. 2007, 88, 47–64. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Kirstetter, P.; Hong, Y.; Gourley, J.; Tian, Y.; Qi, Y.; Cao, Q.; Zhang, J.; Howard, K.; Hu, J. Evaluation of spatial errors of precipitation rates and types from TRMM spaceborne radar over the southern CONUS. J. Hydrometeorol. 2013, 14, 1884–1896. [Google Scholar] [CrossRef]
- You, Y.; Wang, N.-Y.; Kubota, T.; Aonashi, K.; Shige, S.; Kachi, M.; Kummerow, C.; Randel, D.; Ferraro, R.; Braun, S. Comparison of TRMM Microwave Imager Rainfall Datasets from NASA and JAXA. J. Hydrometeorol. 2020, 21, 377–397. [Google Scholar] [CrossRef]
- Xia, Q.; Zhang, W.; Chen, H.; Lee, W.-C.; Han, L.; Ma, Y.; Liu, X. Quantification of Precipitation Using Polarimetric Radar Measurements during Several Typhoon Events in Southern China. Remote Sens. 2020, 12, 2058. [Google Scholar] [CrossRef]
Name | Input Data | Space/ Time Scales | Spatial Domain | Latency |
---|---|---|---|---|
GSMaP_NRT | IR, PMW, DPR/GMI | 0.1°/hourly | 60° N-S | 4 h |
GSMaP_MVK | IR, PMW, DPR/GMI | 0.1°/hourly | 60° N-S | 3 days |
GSMaP_Gauge | IR, PMW, DPR/GMI, Daily gauges (CPC) | 0.1°/hourly | 60° N-S | 3 days |
IMERG_ERUnCal | IR, PMW, DPR/GMI | 0.1°/0.5 h | 90° N-S | 4 h |
IMERG_FRUnCal | IR, PMW, DPR/GMI | 0.1°/0.5 h | 90° N-S | 3.5 months |
IMERG_FRCal | IR, PMW, DPR/GMI, Monthly gauges (GPCC) | 0.1°/0.5 h | 90° N-S | 3.5 months |
Metrics | Formula | Perfect Value |
---|---|---|
RB (%) | 0 | |
CC | 1 | |
RMSE (mm) | 0 | |
FSE | 0 | |
POD | 1 | |
FAR | 0 | |
CSI | 1 |
A | B | |
C | D |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Chen, S.; Liang, Z.; Huang, C.; Li, Z.; Hu, B. Performance Assessment of GSMaP and GPM IMERG Products during Typhoon Mangkhut. Atmosphere 2021, 12, 134. https://doi.org/10.3390/atmos12020134
Li X, Chen S, Liang Z, Huang C, Li Z, Hu B. Performance Assessment of GSMaP and GPM IMERG Products during Typhoon Mangkhut. Atmosphere. 2021; 12(2):134. https://doi.org/10.3390/atmos12020134
Chicago/Turabian StyleLi, Xiaoyu, Sheng Chen, Zhenqing Liang, Chaoying Huang, Zhi Li, and Baoqing Hu. 2021. "Performance Assessment of GSMaP and GPM IMERG Products during Typhoon Mangkhut" Atmosphere 12, no. 2: 134. https://doi.org/10.3390/atmos12020134