Spatio-Temporal Characteristics of Climate Extremes in Sub-Saharan Africa and Potential Impact of Oceanic Teleconnections
Abstract
:1. Introduction
2. Data and Methodology
2.1. Meteorological Reanalysis Data
2.2. Ranking of CHIRPS and ERA5 Dataset Performance
2.3. Modes of Climate Variability
Climate Mode | Index Name | Methods | Reference |
---|---|---|---|
El Niño− Southern Oscillation | ENSO | First EOF of SST (20° S–20° N and 160° W–80° W) | [28] |
Indian Ocean Dipole | IOD | Calculated as the monthly difference between the western (10° S–10° N, 50°–70° E) and eastern Indian Ocean (10° S–0°, 90°–108° E) SST averages | [26] |
Tropical Atlantic variability | TAV | Differences between SST anomalies in the tropical Atlantic between 5.5° N–23.5° N, 15° W–57.5° W and 0–20° S, and 10° E–30° W | [28] |
2.4. Extreme Precipitation and Air Temperature Indices
2.5. Maximum Lag Correlation
3. Results
3.1. Performance of Datasets
3.2. Spatial Analysis of Performance of Chirps Dataset and ERA 5 in Relation to CPC
3.3. Monthly Precipitation Climatology in Congo, West Coast, Central East Coast and Orange River Basins of Sub-Saharan Africa
3.4. Spatial Distribution of Extreme Weather Indices for Precipitation (Based on CHIRPS Data) and Temperature (Based on CPC Data) in Sub-Saharan Africa
3.5. Trend Analysis of CHIRPS and CPC Data
3.6. Role of ENSO, IOD, and TAV on Precipitation Extremes
3.7. Role of ENSO, IOD and TAV on Temperature Extremes (TNn, TNx, TXx, TXn)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Serdeczny, O.; Adams, S.; Baarsch, F.; Coumou, D.; Robinson, A.; Hare, W.; Schaeffer, M.; Perrette, M.; Reinhardt, J. Climate change impacts in Sub-Saharan Africa: From physical changes to their social repercussions. Reg. Environ. Chang. 2017, 17, 1585–1600. [Google Scholar] [CrossRef]
- UNFPA, United Nations Population Fund. World Population Situation Report: 8 Billion Lives, Infinite Possibilities: Defending Rights and Choices. Precipitation over West Africa; United Nations Population Fund: Brasília, Brazil, 2023; Volume 1, p. 1. Available online: https://brazil.unfpa.org/pt-br/publications/situacao-da-populacao-mundial-2023-8-bilhoes-de-vidas-infinitas-possibilidades (accessed on 10 January 2024).
- UNFPA, United Nations Population Fund. World Population Situation Report: Seeing the Invisible: Advocating for Action on the Neglected Crisis of Unintended Pregnancy; United Nations Population Fund: Brasília, Brazil, 2022; Volume 1, p. 1. Available online: https://brazil.unfpa.org/pt-br/publications/situacao-da-populacao-mundial-2022 (accessed on 12 November 2023).
- Masson-Delmotte, V.; Chen, Y.; Matthews, J.; Yelekçi, O.; Lonnoy, E.; Leitzell, K.; Connors, S.L.; Goldfarb, L.; Berger, S.; Yu, R.; et al. Mudança do Clima 2021: A Base Científica: Sumário para Formuladores de Políticas; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Rother, H.A.; Etzel, R.A.; Shelton, M.; Paulson, J.A.; Hayward, R.A.; Theron, L.C. Impact of extreme weather events on Sub-Saharan African child and adolescent mental health: A protocol for a systematic review. Atmosphere 2020, 11, 493. [Google Scholar] [CrossRef]
- Nhamo, G.; Chikodzi, D. Floods in the midst of drought: Impact of tropical cyclone idai on water security in south-Eastern Zimbabwe. In Cyclones in Southern Africa: Volume 1: Interfacing the Catastrophic Impact of Cyclone Idai with SDGs in Zimbabwe; Springer: Berlin/Heidelberg, Germany, 2021; pp. 119–132. [Google Scholar]
- Ogolo, E.O.; Matthew, O.J. Spatial and temporal analysis of observed trends in extreme precipitation events in different climatic zones of Nigeria. Theor. Appl. Climatol. 2022, 148, 1335–1351. [Google Scholar] [CrossRef]
- Le, J.A.; El-Askary, H.M.; Allali, M.; Sayed, E.; Sweliem, H.; Piechota, T.C.; Struppa, D.C. Characterizing el Niño-southern oscillation effects on the blue Nile yield and the Nile river basin precipitation using empirical mode decomposition. Earth Syst. Environ. 2020, 4, 699–711. [Google Scholar] [CrossRef]
- Slemr, F.; Brenninkmeijer, C.A.; Rauthe-Schöch, A.; Weigelt, A.; Ebinghaus, R.; Brunke, E.G.; Martin, L.; Spain, T.G.; O’Doherty, S. El Niño-Southern Oscillation influence on tropospheric mercury concentrations. Geophys. Res. Lett. 2016, 43, 1766–1771. [Google Scholar] [CrossRef]
- Fer, I.; Tietjen, B.; Jeltsch, F.; Wolff, C. The influence of El Niño-Southern Oscillation regimes on eastern African vegetation and its future implications under the RCP8. 5 warming scenario. Biogeosciences 2017, 14, 4355–4374. [Google Scholar] [CrossRef]
- Sazib, N.; Mladenova, L.E.; Bolten, J.D. Assessing the impact of ENSO on agriculture over Africa using earth observation data. Front. Sustain. Food Syst. 2020, 4, 509914. [Google Scholar] [CrossRef]
- Deser, C.; Alexander, M.A.; Xie, S.P.; Phillips, A.S. Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci. 2010, 2, 115–143. [Google Scholar] [CrossRef]
- Cabos, W.; de la Vara, A.; Koseki, S. Tropical Atlantic variability: Observations and modeling. Atmosphere 2019, 10, 502. [Google Scholar] [CrossRef]
- Todd, M.C.; Washington, R. Climate variability in central equatorial Africa: Influence from the Atlantic sector. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhou, L.; Roundy, P.E.; Hua, W.; Raghavendra, A. Increasing influence of Indian Ocean dipole on precipitation over central equatorial Africa. Geophys. Res. Lett. 2021, 48, e2020GL092370. [Google Scholar] [CrossRef]
- Blau, M.; Ha, K.J. The Indian Ocean dipole and its impact on East African short rains in two CMIP5 historical scenarios with and without anthropogenic influence. J. Geophys. Res. Atmos. 2020, 125, e2020JD033121. [Google Scholar] [CrossRef]
- Stacey, J.; Salmon, K.; Janes, T.; Colman, A.; Colledge, F.; Bett, P.; Srinivasan, G.; Pai, D. Diverse skill of seasonal dynamical models in forecasting South Asian monsoon precipitation and the influence of ENSO and IOD. Clim. Dyn. 2023, 61, 3857–3874. [Google Scholar] [CrossRef]
- Ogwang, B.; Ongoma, V.; Shilenje, Z.; Ramotubei, T.; Letuma, M.; Ngaina, J.N. Influence of Indian Ocean dipole on rainfall variability and extremes over southern Africa. Mausam 2020, 71, 637–648. [Google Scholar]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2015, 2, 1–21. [Google Scholar] [CrossRef]
- Chen, M.; Shi, W.; Xie, P.; Silva, V.B.; Kousky, V.E.; Wayne Higgins, R.; Janowiak, J.E. Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar]
- Franco, V.d.S.; da Costa, C.P.W.; Santos, F.d.; Gomes, H. Recomendação de Bases de Dados de Precipitação para Estudos Climáticos No Corredor Norte da Vale (Relatório Técnico ITV DS); Instituto Tecnológico Vale: Belém, Brazil, 2022. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.; Balsamo, G.; Bauer, d.P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Zuluaga, C.F.; Avila-Diaz, A.; Justino, F.B.; Wilson, A.B. Climatology and trends of downward shortwave radiation over Brazil. Atmos. Res. 2021, 250, 105347. [Google Scholar] [CrossRef]
- Song, H.; Tian, J.; Huang, J.; Guo, P.; Zhang, Z.; Wang, J. Hybrid causality analysis of enso’s global impacts on climate variables based on data-driven analytics and climate model simulation. Front. Earth Sci. 2019, 7, 233. [Google Scholar] [CrossRef]
- Saji, N.; Goswami, B.N.; Vinayachandran, P.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef]
- Black, E. The relationship between Indian Ocean sea-surface temperature and East African rainfall. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2005, 363, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Justino, F.; Bromwich, D.H.; Wang, S.H.; Althoff, D.; Schumacher, V.; da Silva, A. Influence of local scale and oceanic teleconnections on regional fire danger and wildfire trends. Sci. Total Environ. 2023, 883, 163397. [Google Scholar] [CrossRef]
- Enfield, D.B.; Mestas-Nuñez, A.M.; Mayer, D.A.; Cid-Serrano, L. How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures? J. Geophys. Res. Ocean. 1999, 104, 7841–7848. [Google Scholar] [CrossRef]
- Avila-Diaz, A.; Bromwich, D.H.; Wilson, A.B.; Justino, F.; Wang, S.H. Climate extremes across the North American Arctic in modern reanalyses. J. Clim. 2021, 34, 2385–2410. [Google Scholar] [CrossRef]
- Chaney, N.W.; Sheffield, J.; Villarini, G.; Wood, E.F. Development of a high-resolution gridded daily meteorological dataset over sub-Saharan Africa: Spatial analysis of trends in climate extremes. J. Clim. 2014, 27, 5815–5835. [Google Scholar] [CrossRef]
- Dunning, C.M.; Black, E.C.; Allan, R.P. The onset and cessation of seasonal rainfall over Africa. J. Geophys. Res. Atmos. 2016, 121, 11–405. [Google Scholar] [CrossRef]
- Dosio, A.; Pinto, I.; Lennard, C.; Sylla, M.B.; Jack, C.; Nikulin, G. What can we know about recent past precipitation over Africa? Daily characteristics of African precipitation from a large ensemble of observational products for model evaluation. Earth Space Sci. 2021, 8, e2020EA001466. [Google Scholar] [CrossRef]
- Steinkopf, J.; Engelbrecht, F. Verification of ERA5 and ERA-Interim precipitation over Africa at intra-annual and interannual timescales. Atmos. Res. 2022, 280, 106427. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef]
- Dinku, T.; Funk, C.; Peterson, P.; Maidment, R.; Tadesse, T.; Gadain, H.; Ceccato, P. Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Q. J. R. Meteorol. Soc. 2018, 144, 292–312. [Google Scholar] [CrossRef]
- Tesfamariam, B.G.; Melgani, F.; Gessesse, B. Rainfall retrieval and drought monitoring skill of satellite rainfall estimates in the Ethiopian Rift Valley Lakes Basin. J. Appl. Remote. Sens. 2019, 13, 014522. [Google Scholar] [CrossRef]
- Sonkoué, D.; Monkam, D.; Fotso-Nguemo, T.C.; Yepdo, Z.D.; Vondou, D.A. Evaluation and projected changes in daily rainfall characteristics over Central Africa based on a multi-model ensemble mean of CMIP5 simulations. Theor. Appl. Climatol. 2019, 137, 2167–2186. [Google Scholar] [CrossRef]
- Quenum, G.M.L.D.; Nkrumah, F.; Klutse, N.A.B.; Sylla, M.B. Spatiotemporal changes in temperature and precipitation in West Africa. Part i: Analysis with the CMIP6 historical dataset. Water 2021, 13, 3506. [Google Scholar] [CrossRef]
- Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Analysis of climate variability and droughts in East Africa using high-resolution climate data products. Glob. Planet. Chang. 2020, 186, 103130. [Google Scholar] [CrossRef]
- Wood, R.R.; Lehner, F.; Pendergrass, A.G.; Schlunegger, S. Changes in precipitation variability across time scales in multiple global climate model large ensembles. Environ. Res. Lett. 2021, 16, 084022. [Google Scholar] [CrossRef]
- Williams, C.A.; Hanan, N. ENSO and IOD teleconnections for African ecosystems: Evidence of destructive interference between climate oscillations. Biogeosciences 2011, 8, 27–40. [Google Scholar] [CrossRef]
- Carton, J.A.; Huang, B. Warm events in the tropical Atlantic. J. Phys. Oceanogr. 1994, 24, 888–903. [Google Scholar] [CrossRef]
- Ayanlade, A.; Howard, M.T. Land surface temperature and heat fluxes over three cities in Niger Delta. J. Afr. Earth Sci. 2019, 151, 54–66. [Google Scholar] [CrossRef]
- Ficchi, A.; Cloke, H.; Neves, C.; Woolnough, S.; de Perez, E.C.; Zsoter, E.; Pinto, I.; Meque, A.; Stephens, E. Beyond El Niño: Unsung climate modes drive African floods. Weather Clim. Extrem. 2021, 33, 100345. [Google Scholar] [CrossRef]
- Russo, S.; Marchese, A.F.; Sillmann, J.; Immé, G. When will unusual heat waves become normal in a warming Africa? Environ. Res. Lett. 2016, 11, 054016. [Google Scholar] [CrossRef]
- Chawanda, C.J.; Nkwasa, A.; Thiery, W.; van Griensven, A. Combined impacts of climate and land-use change on future water resources in Africa. Hydrol. Earth Syst. Sci. Discuss. 2023, 2023, 1–32. [Google Scholar] [CrossRef]
- Cattani, E.; Merino, A.; Guijarro, J.; Levizzani, A. East Africa rainfall trends and variability 1983-2015 using three long-term satellite products. Remote Sens. 2018, 10, 931. [Google Scholar] [CrossRef]
- Ongoma, V.; Chen, H.; Omony, G.W. Variability of extreme weather events over the equatorial East Africa, a case study of rainfall in Kenya and Uganda. Theor. Appl. Climatol. 2018, 131, 295–308. [Google Scholar] [CrossRef]
- Odoulami, R.C.; Abiodun, B.J.; Ajayi, A.E. Modelling the potential impacts of afforestation on extreme precipitation over West Africa. Clim. Dyn. 2019, 52, 2185–2198. [Google Scholar] [CrossRef]
Characteristics | CPC | CHIRPS | ERA5 |
---|---|---|---|
Time Interval | 1979−present | 1981−present | 1979−present |
Domain | Global | Global | Global |
Model Resolution | TL550 (55 km) | TL100 (5 km) | TL639 (31 km) |
Spatial resolution | 0. 5° × 0.5° | 0.05° × 0.05° | 0.25° × 0.25° |
Vertical Levels | Hybrid sigma (60 levels) | Hybrid sigma (137 levels) | |
Assimilation Scheme | 4D-Var | 4D-Var | 4D-Var |
Method | Analysis | Analysis | Reanalysis |
Reference | [19,21] | [23] | [22] |
Characteristics | Index | Definitions | Units |
---|---|---|---|
Intensity | PRCPTOT | Total precipitation index−annual total precipitation in wet days | mm |
Frequence | Rx1day | Annual maximum 1-day precipitation | mm/day |
Rx5day | Annual maximum consecutive 5-day precipitation | mm/days | |
Time | CWD | Number of consecutive wet days | days |
CDD | Number of consecutive dry days | ||
Intensity | TXx | Maximum value of daily maximum temperature | °C |
TXn | Minimum value of daily maximum temperature | ||
TNx | Maximum value of daily minimum temperature | ||
TNn | Minimum value of daily minimum temperature |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zita, L.E.; Justino, F.; Gurjão, C.; Adamu, J.; Talacuece, M. Spatio-Temporal Characteristics of Climate Extremes in Sub-Saharan Africa and Potential Impact of Oceanic Teleconnections. Atmosphere 2025, 16, 86. https://doi.org/10.3390/atmos16010086
Zita LE, Justino F, Gurjão C, Adamu J, Talacuece M. Spatio-Temporal Characteristics of Climate Extremes in Sub-Saharan Africa and Potential Impact of Oceanic Teleconnections. Atmosphere. 2025; 16(1):86. https://doi.org/10.3390/atmos16010086
Chicago/Turabian StyleZita, Lormido Ernesto, Flávio Justino, Carlos Gurjão, James Adamu, and Manuel Talacuece. 2025. "Spatio-Temporal Characteristics of Climate Extremes in Sub-Saharan Africa and Potential Impact of Oceanic Teleconnections" Atmosphere 16, no. 1: 86. https://doi.org/10.3390/atmos16010086
APA StyleZita, L. E., Justino, F., Gurjão, C., Adamu, J., & Talacuece, M. (2025). Spatio-Temporal Characteristics of Climate Extremes in Sub-Saharan Africa and Potential Impact of Oceanic Teleconnections. Atmosphere, 16(1), 86. https://doi.org/10.3390/atmos16010086