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Abstract: Hydrologic models are essential tools for understanding hydrologic processes, such as
precipitation, which is a fundamental component of the water cycle. For an improved understanding
and the evaluation of different precipitation datasets, especially their applicability for hydrologic
modelling, three kinds of precipitation products, CMADS, TMPA-3B42V7 and gauge-interpolated
datasets, are compared. Two hydrologic models (IHACRES and Sacramento) are applied to study
the accuracy of the three types of precipitation products on the daily streamflow of the Lijiang
River, which is located in southern China. The models are calibrated separately with different
precipitation products, with the results showing that the CMADS product performs best based on
the Nash–Sutcliffe efficiency, including a much better accuracy and better skill in capturing the
streamflow peaks than the other precipitation products. The TMPA-3B42V7 product shows a small
improvement on the gauge-interpolated product. Compared to TMPA-3B42V7, CMADS shows better
agreement with the ground-observation data through a pixel-to-point comparison. The comparison
of the two hydrologic models shows that both the IHACRES and Sacramento models perform
well. The IHACRES model however displays less uncertainty and a higher applicability than the
Sacramento model in the Lijiang River basin.

Keywords: precipitation; TMPA-3B42V7; CMADS; hydrologic model; uncertainty

1. Introduction

Hydrologic models are essential tools for understanding processes of the hydrologic cycle and
provide useful information for sustainable water-resource management [1]. Precipitation is the main
driving factor of hydrologic processes. Accurate estimation of precipitation is crucial for reliable
hydrologic predictions [2]. Traditionally, precipitation data from a ground observational network
have been used as the source of areal precipitation estimates used in watershed modelling. However,
ground-based precipitation observation networks are sparsely distributed and may be unable to
represent the spatial variability of the precipitation completely. Moreover, precipitation measurements
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are frequently missing because of malfunctioning of devices [3]. Remote sensing [4] and modelling [5]
of precipitation have become viable approaches to address these problems effectively and are often
used as input data to hydrologic models.

With regard to the development of remote-sensing technology, satellite-derived precipitation data
are an attractive alternative in data-sparse regions because of the relatively high resolution and complete
spatial coverage. A number of such remotely sensed precipitation products are currently available.
These include, for example, the Climate Prediction Center morphing method (CMORPH, [6]), the Global
Satellite Mapping of Precipitation (GSMaP) project [7], the Tropical Rainfall Measuring Mission (TRMM)
Multi-satellite Precipitation Analysis (TMPA) [8] and the Global Precipitation Measurement (GPM)
products [9]. Among them, the TMPA products developed by the National Aeronautics and Space
Administration (NASA) Goddard Space Flight Center (GSFC), with a spatial resolution of 0.25◦ × 0.25◦

for multiple timescales (3 hourly, daily and monthly), has received much more attention [10]; the latest
research product of TMPA for post-real-time research (3B42) is version 7. Most of the applications
using the TMPA-3B42V7 product indicate an excellent potential to supply reasonably high spatial and
temporal resolution data for hydrometeorological applications [10–13]. However, remotely sensed
precipitation data suffer from uncertainty in their retrieval algorithms and observation errors [14] due
to the inference of rainfall based on observations of the conditions at the top of clouds.

While precipitation modelling is fairly accurate for coarse-scale (global-scale), organized,
synoptic systems, the modelling accuracy decreases rapidly for more localized events as spatial
and temporal features cannot be explicitly resolved by global models [2]. Reanalysis datasets,
which are produced by assimilating multi-source data into a climate model, are a viable option
of deriving reliable precipitation estimates [5]. Commonly used reanalysis datasets include the Climate
Forecast System Reanalysis (CFSR) [15] from National Center for Environmental Prediction (NCEP),
the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis from September
1957 to August 2002 (ERA-40 [16]) and the ECMWF Reanalysis-Interim (ERA-Interim [17]) products.
While these reanalysis datasets provide important basic data for global researchers for the analysis
of climate–water cycles, the spatial resolution of global reanalysis datasets is often too coarse to
be used reliably in local-scale studies. Hydrologic modelling forced by reanalysis datasets has
been conducted by, for example, Andreadis et al. (2017) [5], who reproduced flooding over large
scales by using the Twentieth Century Reanalysis (20CRv2, [18]) dataset and downscaling techniques.
Fuka et al. (2014) found the CFSR precipitation product provides a relatively reliable precipitation
input for the hydrologic modelling of large-area basins.

Given the strongly underconstrained nature of precipitation inversion, data assimilation
based on the large number of stations on regional scales has the potential to resolve fine-scale
structures and microphysical processes with more details. The China Meteorological Assimilation
Driving Datasets for the Soil and Water Assessment Tool (SWAT) model (CMADS,) developed
by Dr. Xianyong Meng from the China Agricultural University (CAU), has received worldwide
attention [19,20]. CMADS incorporate Space and Time Mesoscale Analysis System (STMAS)
assimilation techniques [21,22] and multiple other techniques, such as loop nesting of data, projection
of resampling models and bilinear interpolation. The precipitation data of the CMADS product
is generated by the assimilation of multi-satellite data and precipitation from ground stations.
Using CMORPH satellite products as the background field, the CMADS product assimilates hourly
precipitation products of nearly 40,000 regional automatic stations and 2421 national automatic stations
in China. Relative studies found the CMADS product significantly reduces the uncertainties of
precipitation input for the hydrologic modelling [19]. CMADS has been verified in several basins in
China and Korea [20,23–29]. However, reanalysis datasets are limited by the quality of precipitation
observations and the uncertainty from the assimilation model.

A number of spatial-interpolation methods [30] are commonly used for estimating precipitation
based on ground-observation data, even in data-sparse regions [31,32]. Conventional interpolation
methods, such as the Thiessen polygon [33,34] and inverse-distance weighting [35], are widely used
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for precipitation interpolation [32]. Ordinary kriging [36] is a geostatistical technique requiring
prior calibration of a semivariogram for its parameters (range, nugget and sill). These methods
are suitable for application over relatively flat areas. These methods assume that other potential
drivers (particularly topography) of the spatial variation in rainfall is captured by the gauge data and
information on other drivers is not needed. In data-sparse regions this is not correct and methods that
explicitly include the topography are preferred. Hutchinson found that the interpolating accuracy
of a precipitation surface would be enhanced significantly with an appropriate digital elevation
model (DEM) [37–39]. The advantages of the ANUSPLIN package (Hutchinson and Xu, 2013) over
kriging are its simplicity and there is no requirement of a separate calibration of the spatial-covariance
structure. The ANUSPLIN interpolation technique has been applied in a number of studies, proving to
be one of the best techniques for interpolating point precipitation data [40–42]. However, if the
meteorological stations are very sparse, obtaining an accurate distribution of precipitation values
through interpolation is impossible. The low density of precipitation stations is a major uncertainty
source, which potentially impacts the result. Moreover, interpolation of precipitation data is unable to
capture some extreme weather conditions. All interpolation techniques have difficulty in simulating
sharply varying climate transitions.

Spatially distributed precipitation datasets incorporate uncertainties or errors resulting from the
interpolation and retrieval algorithms, the quality of precipitation observations and the uncertainty
from the assimilation model. As different precipitation datasets are limited by quantitative inaccuracies,
they exhibit significant bias [43]. Smith and Kummerow [44] analyzed the water budgets of
precipitation datasets from in situ, reanalysis and satellite data over the upper Colorado River basin and
found the reanalysis datasets tend to overestimate in situ data, while satellite-derived precipitation data
underestimate in situ data. Pfeifroth et al. [45] evaluated satellite-based and reanalysis precipitation
data in the tropical Pacific and found reanalysis products overestimate small and medium precipitation
amounts but underestimate high amounts. Some studies have found that runoff-generation is highly
sensitive to the spatial and temporal variability of precipitation data, as a result this is found to be
the main source of uncertainty in rainfall–runoff modelling [46]. Therefore, assessing the accuracy
of different precipitation products and their applicability and uncertainty for hydrologic models
is of great importance; the uncertainties associated with hydrologic models also play a role in the
performance of hydrologic simulations [47].

Our main objective here is to assess and evaluate three general precipitation datasets in terms of
their accuracy and efficacy, including the CMADS, TMPA-3B42V7 and gauge-interpolated product.
The assessment is based on the simulation results from two well-known hydrologic models (IHACRES
and Sacramento models). In addition, the precipitation detection capability of TRMA-3B42V7 and
CMADS datasets is also evaluated through their pixel-to-point comparison to the ground-based
data. The applicability of these two models is assessed. Moreover, the parameter uncertainty of each
hydrologic model is also explored as this is another source of uncertainty in modelling streamflow.
This research will provide more insight into precipitation analyses and hydrologic modelling.

2. Material and Methods

2.1. Study Area

The Lijiang River basin (25◦12′–25◦55′ N, 110◦5′–110◦40′ E) is located in the northeastern Guangxi
Zhuang Autonomous Region of China and belongs to the upper reaches of the Guijiang River in the
Pearl River system, with an area of 2591 km2. The basin is an important headwater for the downstream
Guilin City and has a sparse and unevenly distributed meteorological observation network.

The climate in this area is mainly sub-tropical monsoonal, with the wet season from March
to August and the dry season from September to February. From 1961 to 2016, the average
daily temperature was 19.10 ± 0.06 ◦C and the yearly average precipitation was 1900 ± 50 mm,
varying between 1253.6 and 3011 mm. With elevation ranging from 32 m to 2037 m (Figure 1),
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the terrain is high in the north and low in the south, with highly complex topography consisting of
steep mountains and floodplains.Water 2018, 10, x 4 of 27 
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Figure 1. Location of Lijiang River basin, China and meteorological stations for the ANUSPLIN
interpolation technique.

The basin is one of the most famous karst areas in the world but suffers from the fragile ecology
of the karst geomorphology. The rapid development of tourism and urbanization has promoted the
economy, while also causing serious environmental issues. Therefore, the development of hydrologic
models in the basin is important for aiding understanding of the hydrologic processes and the
formulation of scientific strategies for the management of its water resources.

2.2. Dataset Acquisition

Assessment and analysis have been conducted using three kinds of precipitation data, including
in situ measurements, remote-sensing products and reanalysis data. The in situ measurements
of daily precipitation from 13 meteorological stations of the national weather station network are
interpolated with the ANUSPLIN technique. The mean density of meteorological stations (number
of gauges per 104 km2) is 0.91 (calculated using the kernel-density estimation for a search radius of
100 km; see Supplementary Materials for more details). The remote-sensing products are using the
TRMM–TMPA product (also denoted TMPA-3B42V7) available from the National Aeronautics and
Space Administration (NASA) official website (https://pmm.nasa.gov/trmm). The reanalysis data
originate from the CMADS V1.0 product available from World Data System for Cold and Arid Regions
(CARD) official website (http://westdc.westgis.ac.cn). The precipitation and maximum temperature
values from 13 national meteorological stations are available from the Meteorological Data network
(http://data.cma.cn/).

The ANUSPLIN method interpolates meteorological data from the station to the grid scale at
the surface. Precipitation and maximum temperature data from meteorological stations, as well as
precipitation from CMADS grid points, are interpolated to the surface grid by use of the ANUSPLIN
package version 4.4, which interpolates precipitation and temperature as a function of latitude,

https://pmm.nasa.gov/trmm
http://westdc.westgis.ac.cn
http://data.cma.cn/
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longitude and elevation, while accounting for the effect of topography [37–39,48]. This method
interpolates precipitation and the maximum temperature to grids of size of 0.01◦ × 0.01◦ (≈1 km ×
1 km), before combination with a digital elevation model (DEM) of the same resolution. The DEM for
integration of the final climate grid products is derived from Global Multi-resolution Terrain Elevation
Data 2010 (GMTED2010) 7.5-arc-second dataset using the Australian National University Digital
Elevation Model version 5.3 (ANUDEM5.3) [49–51]. This the latest and possibly best global-terrain
product to date, since it uses ground surface elevation rather than a canopy top surface as found
in some satellite terrain products. Due to the smoother nature of climate surfaces relative to the
underlying topography, a rebuilt 1-km resolution DEM has been used to generate the resulting climate
surfaces, yielding climate grids with more realistic spatial-distribution patterns. Cross-validation
statistics were calculated to evaluate the overall predictive error of the ANUSPLIN precipitation data
from meteorological stations, with results demonstrating that the distributed precipitation interpolated
to the surface grid by the ANUSPLIN method provides a reliable precipitation distribution for input
into hydrologic models (see Supplementary Materials for more details).

The latest research product of TMPA for post-real-time research version 7 (TMPA-3B42V7),
which has a spatial resolution of 0.25◦, is used here. With a spatial resolution of the CMADS1.0 product
of 1/3◦, this study includes 16 CMADS grid points within and around the basin (Figure 1).

The daily discharge data of the Guilin hydrologic station from 2008 to 2016 (9 years) is provided
by the Hydrological Bureau of the Guangxi Zhuang Autonomous Region. Time series of streamflow,
maximum temperature and rainfall were used as input for hydrologic models. The spatial distributions
of annual precipitation derived from CMADS, TRMM and ground-observation and maximum
temperature are shown in Figure 2 (the annual average precipitation and average daily maximum
temperature were calculated based on grid data from 2008 to 2016). The spatial distribution of
observed precipitation and maximum temperature is interpolated from meteorological stations shown
in Figure 1 using the ANUSPLIN interpolation technique. The annual precipitation estimation for
CMADS, TRMM and ground-observation have similar spatial distribution patterns, with a decreasing
pattern from south to north and from west to east. The average daily maximum temperature is higher
in the south than in the north.

2.3. Rainfall–Runoff Models

We used two well-known conceptual rainfall–runoff models with different complexities ranging
from 6–13 parameters (Table 1) to assess if the performance of the model improved with greater
complexity, as well as their applicability in streamflow prediction in the Lijiang River basin.

Water 2018, 10, x 5 of 27 

 

Elevation Data 2010 (GMTED2010) 7.5-arc-second dataset using the Australian National University 
Digital Elevation Model version 5.3 (ANUDEM5.3) [49–51]. This the latest and possibly best global-
terrain product to date, since it uses ground surface elevation rather than a canopy top surface as 
found in some satellite terrain products. Due to the smoother nature of climate surfaces relative to 
the underlying topography, a rebuilt 1-km resolution DEM has been used to generate the resulting 
climate surfaces, yielding climate grids with more realistic spatial-distribution patterns. Cross-
validation statistics were calculated to evaluate the overall predictive error of the ANUSPLIN 
precipitation data from meteorological stations, with results demonstrating that the distributed 
precipitation interpolated to the surface grid by the ANUSPLIN method provides a reliable 
precipitation distribution for input into hydrologic models (see Supplementary Materials for more 
details). 

The latest research product of TMPA for post-real-time research version 7 (TMPA-3B42V7), 
which has a spatial resolution of 0.25°, is used here. With a spatial resolution of the CMADS1.0 
product of 1/3°, this study includes 16 CMADS grid points within and around the basin (Figure 1). 

The daily discharge data of the Guilin hydrologic station from 2008 to 2016 (9 years) is provided 
by the Hydrological Bureau of the Guangxi Zhuang Autonomous Region. Time series of streamflow, 
maximum temperature and rainfall were used as input for hydrologic models. The spatial 
distributions of annual precipitation derived from CMADS, TRMM and ground-observation and 
maximum temperature are shown in Figure 2 (the annual average precipitation and average daily 
maximum temperature were calculated based on grid data from 2008 to 2016). The spatial 
distribution of observed precipitation and maximum temperature is interpolated from 
meteorological stations shown in Figure 1 using the ANUSPLIN interpolation technique. The annual 
precipitation estimation for CMADS, TRMM and ground-observation have similar spatial 
distribution patterns, with a decreasing pattern from south to north and from west to east. The 
average daily maximum temperature is higher in the south than in the north. 

  
(a) Precipitation of CMADS (mm) (b) Precipitation of TRMM (mm) 

Figure 2. Cont.



Water 2018, 10, 1611 6 of 26Water 2018, 10, x 6 of 27 

 

  
(c) Precipitation of ground-observation (mm) (d) maximum temperature of ground-

observation (degrees Celsius) 

Figure 2. Spatial distribution of annual precipitation and maximum temperature estimation. 

2.3. Rainfall–Runoff Models 

We used two well-known conceptual rainfall–runoff models with different complexities ranging 
from 6–13 parameters (Table 1) to assess if the performance of the model improved with greater 
complexity, as well as their applicability in streamflow prediction in the Lijiang River basin. 

The IHACRES model (which has been used in various studies [52–54]) catchment moisture 
deficit (CMD) version [55] is used here as it has more consistent physical meaning for the parameters. 
There are two stores in the IHACRES model: the nonlinear store for the generation of effective 
rainfall, which uses a nonlinear function to deal with the raw rainfall, as well as using accounting 
equations to calculate the CMD output, and the linear store which converts the effective rainfall into 
quick and slow flow using unit hydrographs. 

The Sacramento model, which has been used in many studies [56,57], has five runoff 
components: a direct runoff from an impervious area, surface runoff, interflow, supplementary base 
flow and primary base flow, with the 13-parameter version of the Sacramento model used here [58]. 
Briefly, excess rainfall becomes runoff through a unit hygrograph, with the rest of the rainfall filling 
various depths of interconnected soil-moisture stores. Loss through evapotranspiration occurs at the 
soil stores, with the remaining water becoming interflow and groundwater; the summation of the 
surface and lateral flow forms the streamflow. 

Table 1 gives a description of the parameters of the two rainfall–runoff models. We used the 
Hydrological Model Assessment and Development (Hydromad) [59] modelling package to help us 
construct the hydrologic models. Hydromad is an open-source software package in R and is available 
at http://hydromad.catchment.org. It provides a modelling framework for environmental hydrology 
and supports simulation, estimation, assessment and visualization of flow response to time series of 
rainfall and other drivers. 
  

Figure 2. Spatial distribution of annual precipitation and maximum temperature estimation.

The IHACRES model (which has been used in various studies [52–54]) catchment moisture
deficit (CMD) version [55] is used here as it has more consistent physical meaning for the parameters.
There are two stores in the IHACRES model: the nonlinear store for the generation of effective rainfall,
which uses a nonlinear function to deal with the raw rainfall, as well as using accounting equations
to calculate the CMD output, and the linear store which converts the effective rainfall into quick and
slow flow using unit hydrographs.

The Sacramento model, which has been used in many studies [56,57], has five runoff components:
a direct runoff from an impervious area, surface runoff, interflow, supplementary base flow and
primary base flow, with the 13-parameter version of the Sacramento model used here [58]. Briefly,
excess rainfall becomes runoff through a unit hygrograph, with the rest of the rainfall filling various
depths of interconnected soil-moisture stores. Loss through evapotranspiration occurs at the soil stores,
with the remaining water becoming interflow and groundwater; the summation of the surface and
lateral flow forms the streamflow.

Table 1 gives a description of the parameters of the two rainfall–runoff models. We used the
Hydrological Model Assessment and Development (Hydromad) [59] modelling package to help us
construct the hydrologic models. Hydromad is an open-source software package in R and is available
at http://hydromad.catchment.org. It provides a modelling framework for environmental hydrology
and supports simulation, estimation, assessment and visualization of flow response to time series of
rainfall and other drivers.

2.4. Model Performance Evaluation Criteria

The Nash–Sutcliffe efficiency (NSE) performance measure [60] is a form of the mean squared
error widely used in hydrology as a criterion for assessing hydrologic-model performance. The NSE
objective function focuses on fitting high flowrates [61]. Here, it is also computed in terms of
square-root-transformed and logarithmic-transformed flows (denoted NSEsq and NSElog hereafter),
which makes it possible to assess the model efficiency for low flowrates [62]. The use of these three
criteria (NSE, NSEsq and NSElog) gives a more general overview of the model efficiency and are
defined as

NSE = 1− ∑n
i=1(obsi − simi)

2

∑n
i=1

(
obsi − obs

)2 , (1)

http://hydromad.catchment.org
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NSEsq = 1− ∑n
i=1

(√
obsi −

√
simi

)2

∑n
i=1

(√
obsi −

√
obs

)2 , (2)

NSElog = 1− ∑n
i=1(log(obsi + ε)− log(simi + ε))2

∑n
i=1

(
log(obsi + ε)− log(obs + ε)

)2 , (3)

respectively. The relative bias (rel.bias [mm]) is also used as a model-performance criterion, with the
optimal value of zero and is defined as

rel.bias = ∑n
i=1(simi − obsi)

∑n
i=1 obsi

, (4)

where i is the index for individual days in the period, n the total number of days, sim denotes the
simulated runoff, obs the observed runoff and obs the mean observed runoff averaged over the period.

Table 1. Parameters for each model.

Parameter Name Unit Range Description

IHACRES-CMD
f - 0.01–3 CMD stress threshold as a proportion of d
e - 0.01–1.5 Temperature to potential evapotranspiration (PET) conversion factor
d mm 50–550 CMD threshold for producing flow

tau_s day 30–600 Time constant for slow flow store
tau_q day 1–10 Time constant for quick flow store
v_s - 0.1–1 Fractional volume for slow flow

Sacramento
UZTWM mm 1–150 Upper zone tension water maximum capacity
UZFWM mm 1–150 Upper zone free water maximum capacity

UZK 1/day 0.1–0.5 Upper zone free water lateral depletion rate
PCTIM - 0.000001–0.1 Fraction of the impervious area
ADIMP - 0–0.4 Fraction of the additional impervious area
ZPERC - 1–250 Maximum percolation rate coefficient
REXP - 0–5 Exponent of the percolation equation

LZTWM mm 1–500 Lower zone tension water maximum capacity
LZFSM mm 1–1000 Lower zone supplementary free water maximum capacity
LZFPM mm 1–1000 Lower zone primary free water maximum capacity
LZSK 1/day 0.01–0.25 Lower zone supplementary free water depletion rate
LZPK 1/day 0.0001–0.25 Lower zone primary free water depletion rate

PFREE - 0–0.6 Fraction percolating from upper to lower zone free water storage

The optimization evolutionary technique used to calibrate parameter values is the Shuffled
Complex Evolution (SCE) [63] algorithm, which is a popular method for parameter calibration and
has proven to be both effective and relatively efficient, providing a similar performance to other
evolutionary optimization algorithms [64]. The value of the objective functions for the calibration of
parameters can be used as model-performance statistics.

2.5. Performance of Precipitation Detection

The expression for these statistical measures are based on a contingency table (Table 2).

Table 2. Contingency table for the ground observations and the Satellite/reanalysis estimate with a
threshold of 1.0 mm.

Satellite/Reanalysis Estimate
Ground Observation

Observation ≥ 1.0 mm Observation < 1.0 mm

Estimate ≥ 1.0 mm H F
Estimate < 1.0 mm M Z
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Where H, F, M and Z represent the number of hits (true positives), the number of misses
(false positives), the number of false alarms (false negatives) and true negatives respectively, based on
a threshold of 1.0 mm. The precipitation detection capability of TRMA-3B42V7 and CMADS datasets
is evaluated through their pixel-to-point comparison with the ground-based data. We use six statistical
measures, including the Proportion Correct (PC), Probability of Detection (POD), Frequency Bias Index
(FBI), False Alarm Ratio (FAR), Critical Success Index (CSI) and Heidke skill score (HSS) to estimate
their precipitation detection capability. Those statistical measures are defined in Table 3 [14,43].

Table 3. Statistical measures for validation of precipitation detection capability.

Metric Formula Range Optimal Value

Proportion Correct PC = H+Z
N

0–1 1

Probability of Detection POD = H
H+M

0–1 1

Frequency Bias Index FBI = H+F
H+M

0–+∞ 1

False Alarm Ratio FAR = F
F+H

0–1 0

Critical Success Index CSI = H
M+H+F

0–1 1

Heidke Skill Score HSS =
2∗(Z∗H−F∗M)

(Z+F)∗(F+H)+(M+H)∗(Z+M)
−∞–1 1

Note: N = H + F + M + Z.

The PC, POD, FBI and FAR were used to measure the misdetection and false alarms from
satellite/reanalysis data. CSI and HSS are more comprehensive contingency metric were used to
evaluate the strength of the correlation between the ground observations and the satellite/reanalysis
estimate. CSI combines the advantages of both POD and FAR. HSS can safely be compared on different
datasets and also measures the overall detection skill accounting for matches due to random chance.

2.6. Generalized Likelihood Uncertainty Estimation Method

Precipitation input and the uncertainties in the parameter values of a hydrologic model are the
two major factors affecting the performance of hydrologic and water-resource modelling in a basin.
These are assessed here using the generalized likelihood uncertainty estimation (GLUE) method [65,66],
which is a stochastic method for quantifying the uncertainty of model predictions. It can be summarized
in the following steps:

(1) A large number of models are run with randomly chosen parameter sets selected
from a probability distribution; here, 100,000 group parameters are chosen obeying a
uniform distribution.

(2) Definition of the “likelihood” function (here, the performance measures NSE and NSElog) and
calculation of likelihood values corresponding to each parameter set.

(3) Definition of a cut-off threshold value for the likelihood function to distinguish between the
“behavioral” parameter sets and the “non-behavioral” parameter sets.

(4) Rescaling of the cumulative likelihood values of all behavioral models to unity.
(5) Calculation of the percentiles of the cumulative distribution of the likelihood measure. The GLUE

method integrates the outputs of all behavioral models in an ensemble prediction. For each
timestep of the simulation, the output prediction is obtained as the median of the distribution of
all ensemble members, with its uncertainty bounds estimated as the 5% and 95% percentiles of
the distribution.
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3. Results

3.1. Evaluation of Model Performance

By setting one year as the warm-up period, with 2008–2012 as the calibration period and NSE as the
objective function, the shuffled complex evolution algorithm is used to calibrate the parameter values
of the two hydrologic models. Using the resulting calibrated parameters, the overall performance
(NSE) of observed and simulated values for the precipitation datasets and models for the period
2008–2016 is shown in Table 4. Tables 5 and 6 depict the calibrated optimal parameters sets and daily
NSE for each precipitation dataset applied respectively to the IHACRES model and Sacramento model
(2008–2012).

Table 4. Overall performance (daily NSE (monthly NSE)) of precipitation datasets for models using
NSE as the objective function for calibration.

IHACRES Sacramento

Gauged 0.57 (0.83) 0.52 (0.80)
TRMM 0.56 (0.89) 0.56 (0.87)

CMADS 0.69 (0.93) 0.70 (0.92)

Table 5. Calibrated optimal parameters sets and daily NSE for each precipitation dataset applied to the
IHACRES model (2008 to 2012).

Datasets f e d tau_q tau_s v_s NSE

Gauged 1.132 0.05149 80.55 2.420 30.00 0.10 0.61
TRMM 1.060 0.06742 147.45 5.061 30.00 0.10 0.52

CMDAS 3.000 0.08322 50.00 3.055 30.00 0.10 0.69

Table 6. Calibrated optimal parameter sets and daily NSE values for each precipitation dataset applied
to the Sacramento model (2008–2012).

Datasets uztwm uzfwm uzk pctim adimp zperc rexp

Gauged 1.000 93.5 0.322 0.0499 0.0656 149.7 3.420
TRMM 1.000 140.1 0.102 1.01 × 10−6 1.76 × 10−8 140.8 1.205

CMDAS 1.002 150.0 0.158 0.0509 9.48 × 10−8 159.4 4.844

Datasets lztwm lzfsm lzfpm lzsk lzpk pfree NSE

Gauged 1.000 998.9 944.7 0.250 0.250 0.0100 0.57
TRMM 1.320 1000.0 119.1 0.152 0.212 0.2156 0.51

CMDAS 1.963 1000.0 1.00 0.227 0.228 0.0842 0.68

Selecting the years 2008–2012 as the calibration period and the years 2012–2016 as the validation
period, the daily and monthly performance of the IHACRES model for different precipitation products
are shown in Table 7, with daily and monthly observed and modelled flow and rainfall shown
in Figure 3. The additive merit of NSEsq and NSElog is also calculated. Since NSEsq and NSElog
shift the focus from high flows to progressively lower flows, using NSEsq and NSElog help us judge
the performance of the models in simulating over a broader range of flows. The performance of the
IHACRES model shows that the CMADS dataset has the best performance among all three precipitation
products during the calibration period. The TMPA-3B42V7 and gauge-interpolated product have
a similar performance but perform slightly worse than the CMADS dataset. During the validation
period, the NSE, NSEsq and NSElog values when using the CMADS dataset show a better performance
than other precipitation datasets, which indicates the CMADS dataset performs better than other
precipitation datasets in simulating both high flow and low flows. Overall, all the three precipitation
datasets perform well, with the CMADS dataset performing slightly better.
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Table 7. Model performance of the IHACRES model (calibrated using NSE) for the calibration period
and validation periods.

Datasets Daily rel.bias DailyNSE DailyNSEsq Daily NSElog Monthly NSE

Calibration period Gauged −0.18 0.61 0.63 0.51 0.86
Validation period Gauged −0.13 0.52 0.54 0.45 0.81
Calibration period TMPA-3B42V7 −0.12 0.52 0.62 0.56 0.89
Validation period TMPA-3B42V7 −0.15 0.61 0.59 0.49 0.89
Calibration period CMADS −0.21 0.69 0.57 0.32 0.93
Validation period CMADS −0.07 0.70 0.63 0.49 0.93
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Figure 3. Observed and IHACRES-model-simulated daily and monthly runoffs for (a) Gauge-
interpolated, (b) TMPA-3B42V7 and (c) CMDAS rainfall datasets (for the IHACRES model calibrated
using NSE as the objective function).

The daily and monthly model performance of the Sacramento model for different precipitation
products are shown in Table 8, with time series plotted in Figure 4. Again, the performance of the
Sacramento model show that the precipitation product of the CMADS dataset performs best for both
the calibration and validation periods, followed by the TMPA-3B42V7 datasets, with the performance
of the gauge-interpolated product slightly worse.
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Table 8. Model performance of the Sacramento model (calibrated using NSE) for the calibration and
verification periods.

Datasets Daily rel.bias DailyNSE DailyNSEsq Daily NSElog Monthly NSE

Calibration period Gauged −0.12 0.57 0.56 0.41 0.84
Validation period Gauged −0.11 0.47 0.41 0.29 0.77
Calibration period TMPA-3B42V7 0.02 0.51 0.56 0.47 0.86
Validation period TMPA-3B42V7 −0.06 0.61 0.54 0.42 0.89
Calibration period CMADS −0.05 0.68 0.63 0.46 0.93
Validation period CMADS 0.01 0.71 0.57 0.40 0.91

Water 2018, 10, x 14 of 27 

 

Table 8. Model performance of the Sacramento model (calibrated using NSE) for the calibration and 
verification periods. 

 Datasets Daily rel.bias DailyNSE DailyNSEsq Daily NSElog Monthly 
NSE 

Calibration period Gauged −0.12 0.57 0.56 0.41 0.84 
Validation period Gauged −0.11 0.47 0.41 0.29 0.77 
Calibration period TMPA-3B42V7 0.02 0.51 0.56 0.47 0.86 
Validation period TMPA-3B42V7 −0.06 0.61 0.54 0.42 0.89 
Calibration period CMADS −0.05 0.68 0.63 0.46 0.93 
Validation period CMADS 0.01 0.71 0.57 0.40 0.91 

 

 

 
(a) Gauge-interpolated 

0

50

100

150

200

250

300

350

4000

20

40

60

80

100

120

140

160

180

2009/1/1 2010/1/1 2011/1/1 2012/1/1 2013/1/1 2014/1/1 2015/1/1 2016/1/1

R
ai

nf
al

l 
(m

m
/d

ay
)

S
tr

ea
m

fl
ow

 (
m

m
/d

ay
)

Daily NSE = 0.52

Gauge-interpolated Observed Modelled

0

5

10

15

20

25

30

35

40

45

500

5

10

15

20

25

30

35

2009/01 2010/01 2011/01 2012/01 2013/01 2014/01 2015/01 2016/01

R
ai

nf
al

l 
(m

m
/d

ay
)

S
tr

ea
m

fl
ow

 (
m

m
/d

ay
)

Monthly NSE = 0.80

Gauge-interpolated Observed Modelled

Figure 4. Cont.



Water 2018, 10, 1611 14 of 26

Water 2018, 10, x 15 of 27 

 

 

 
(b) TMPA-3B42V7 

0

50

100

150

200

250

300

350

4000

20

40

60

80

100

120

140

160

180

2009/1/1 2010/1/1 2011/1/1 2012/1/1 2013/1/1 2014/1/1 2015/1/1 2016/1/1

R
ai

nf
al

l 
(m

m
/d

ay
)

S
tr

ea
m

fl
ow

 (
m

m
/d

ay
)

Daily NSE = 0.56

TMPA-3B42V7 Observed Modelled

0

5

10

15

20

25

30

35

40

45

500

5

10

15

20

25

30

35

2009/01 2010/01 2011/01 2012/01 2013/01 2014/01 2015/01 2016/01

R
ai

nf
al

l 
(m

m
/d

ay
)

S
tr

ea
m

fl
ow

 (
m

m
/d

ay
)

Monthly NSE = 0.87

TMPA-3B42V7 Observed Modelled

Figure 4. Cont.



Water 2018, 10, 1611 15 of 26

Water 2018, 10, x 16 of 27 

 

 

 
(c) CMDAS V1.0 

Figure 4. Observed and Sacramento-model-simulated daily and monthly runoffs for (a) Gauge-
interpolated, (b) TMPA-3B42V7 and (c) CMDAS rainfall datasets (for the Sacramento model 
calibrated using NSE as the objective function). 

These results show that, among the three precipitation datasets considered here for the Lijiang 
River basin, the CMADS precipitation datasets have a higher accuracy and better applicability in 
calibrating and validating the rainfall–runoff models. The reason that the gauge-interpolated rainfall 
always provides the worst result in flow simulations is due to the meteorological stations available 
in the Lijiang river basin being too sparsely distributed to permit reliable interpolation. 
  

0

50

100

150

200

250

300

350

4000

20

40

60

80

100

120

140

160

180

2009/1/1 2010/1/1 2011/1/1 2012/1/1 2013/1/1 2014/1/1 2015/1/1 2016/1/1

R
ai

nf
al

l 
(m

m
/d

ay
)

S
tr

ea
m

fl
ow

 (
m

m
/d

ay
)

Daily NSE = 0.70

CMADS Observed Modelled

0

5

10

15

20

25

30

35

40

45

500

5

10

15

20

25

30

35

2009/01 2010/01 2011/01 2012/01 2013/01 2014/01 2015/01 2016/01

R
ai

nf
al

l 
(m

m
/d

ay
)

S
tr

ea
m

fl
ow

 (
m

m
/d

ay
)

Monthly NSE = 0.92

CMADS Observed Modelled

Figure 4. Cont.

Figure 4. Observed and Sacramento-model-simulated daily and monthly runoffs for (a) Gauge-
interpolated, (b) TMPA-3B42V7 and (c) CMDAS rainfall datasets (for the Sacramento model calibrated
using NSE as the objective function).

These results show that, among the three precipitation datasets considered here for the Lijiang
River basin, the CMADS precipitation datasets have a higher accuracy and better applicability in
calibrating and validating the rainfall–runoff models. The reason that the gauge-interpolated rainfall
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always provides the worst result in flow simulations is due to the meteorological stations available in
the Lijiang river basin being too sparsely distributed to permit reliable interpolation.

3.2. Precipitation Detection

We examined the performance of TRMA-3B42V7 and CMADS using the six statistical measures
(PC, POD, FBI, FAR, CSI and HSS) through the pixel-to-point comparison with the ground-based
data. Following the studies of Dai [67] and Vu et al. [24], a minimum precipitation threshold of
1.0 mm per day was used for the precipitation and non-precipitation event for ground observation and
satellite/reanalysis estimate. The contingency statistics of TRMA-3B42V7 and CMADS were evaluated
each year through the precipitation datasets from 2008 to 2016. Figure 5 shows the contingency
statistics calculated for the TRMA-3B42V7 and CMADS.
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Figure 5. The box plots for the contingency statistics of (a) Proportion Correct (PC), (b) Probability
of Detection (POD), (c) Frequency Bias Index (FBI), (d) False Alarm Ratio (FAR), (e) Critical Success
Index (CSI), (f) Heidke Skill Score (HSS). The labelled asterisk dot represent the mean value and the
middle line in the box represent the median value. Each box ranges from the lower (25th) to upper
quartile (75th).
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For the statistics PC, POD and CSI, the CMADS scheme (with an average of 0.83, 0.79 and
0.61) shows higher values than TRMM (with an average of 0.74, 0.51 and 0.40). For the statistic
FBI, CMADS gives a mean of 1.1 (ranging from 1.03 to 1.16) and is closer to the perfect score than
the FBI of TRMM with a mean of 0.8 (ranging from 0.69 to 0.9). With respect to the FAR statistic,
CMADS has a smaller FAR with an average of 0.28 (ranging from 0.23 to 0.31) than TRMM with an
average of 0.36 (ranging from 0.30 to 0.42). Finally, the HSS statistic for CMADS has a larger value
with a mean of 0.63 (ranging 0.56 to 0.67) than TRMM with a mean of 0.39 (ranging from 0.33 to 0.45).
These results indicate that the CMADS scheme shows better performance than TRMA-3B42V7 for all
the six contingency statistics. Overall, compared to TRMM data, CMADS show better agreement with
the ground observation data in Lijiang river basin.

3.3. Uncertainty Analysis

All precipitation products are limited by quantitative inaccuracies and they can exhibit significant
bias and errors in spatial and temporal variability. As the runoff-generation is highly sensitive to
the spatial and temporal variability of precipitation data, the spatial and temporal variability of
precipitation is one of the main source of uncertainty in rainfall–runoff modelling.

Parameter uncertainty is another source of uncertainty in rainfall-runoff modelling. The parameter
uncertainty of each hydrologic model has been explored in this study. A GLUE uncertainty analysis is
applied to assess parameter uncertainty of hydrologic models here.

In the first case, for the IHACRES model, 100,000 samples are chosen from a uniform distribution
for each parameter and the performance measures NSE and NSElog are used as the “likelihood”
functions. Using a threshold value of NSE > 0.67 (or NSElog > 0.78) for the CMADS product, the GLUE
algorithm finds 2000 (1416) behavioral solutions in 100,000 simulations with the IHACRES model.
Using a threshold value of NSE > 0.56 (or NSElog > 0.69) for the TMPA-3B42V7 product, the GLUE
algorithm finds 3180 (2819) behavioral solutions in 100,000 simulations with the IHACRES model.

The red (blue) dots and lines in Figure 6 represent the distribution and boundary of behavioral
parameters when using NSElog (NSE) as the likelihood function, with the calibrated parameter set
for each rainfall dataset indicated. From the distribution of behavioral parameter sets, we see
the parameters d, f and tau_s have behavioral values distributed across the full parameter range,
indicating these have the greatest uncertainty. In comparison, the distribution of v_s for behavioral
parameter sets is constricted to smaller values (<~0.5), particularly when using considering NSE.
The values of tau_q are more constrained when considering NSE, due to the focus NSE gives to
high flows compared to NSElog. Generally, there is little interaction between most of the parameters.
The main exception is the e and f parameters. The value of the e parameter is constrained to <~0.1
providing f > ~1, increasing rapidly for smaller values of f. This indicates a highly non-linear interaction
between these parameters. It should also be noted that the optimal value of the e parameter is
considerably smaller than that found in Australia (0.166) found by Chapman (2001) [68], due to the
influence of other factors (e.g., atmospheric transmissivity).

A similar analysis is applied for the Sacramento model, where 100,000 samples are chosen
obeying a uniform distribution, and NSE and NSElog are again defined as the likelihood functions.
Using a threshold value of NSE > 0.45 (or NSElog > 0.53), the GLUE algorithm finds 929 (359) behavioral
solutions in 100,000 simulations for the CMADS product with the Sacramento model. Using a threshold
value of NSE > 0.32 (or NSElog > 0.43), the GLUE algorithm finds 1294 (140) behavioral solutions
in 100,000 simulations for the TMPA-3B42V7 product with the Sacramento model. The pairwise
correlation of behavioral parameters for the Sacramento model is shown in Figure 7.
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Figure 6. Two-dimensional projections of pairwise correlation of behavioral parameters for the
IHACRES model using the CMADS (above diagonal) and TMPA-3B42V7 (below diagonal) precipitation
datasets. The heavy dots represent the location of the best objective function value obtained from the
GLUE sample.

The meaning of the red (blue) dot and line in Figure 7 is similar to that in Figure 6. From the
distribution of behavioral parameters, we can see the parameters uztwm, adimp and lztwm show less
uncertainties overall. When NSE is selected as the likelihood function, the distribution of parameters
lzwm, uztwm and adimp are relatively low, while the distributions of parameters lzpk and lzsk are
relatively high; when NSElog is selected as the likelihood function, the distribution of the parameters
uztwm, lztwm and adimp is relatively low and the distribution of the parameter pfree is relatively high,
which indicates that these parameters may be more sensitive and less uncertain.
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Figure 7. Two-dimensional projections of the pairwise correlation of behavioral parameters for the
Sacramento model using CMADS (above diagonal) and TMPA-3B42V7 (below diagonal) precipitation
datasets. The heavy dots represent the location of the best objective function value obtained from the
GLUE sample.

In the second case, model performance is considered satisfactory when NSE is greater than
0.5 [69,70], with likelihood-function values > 0.5 defined as behavioral parameter sets. The behavioral
parameter space may be used as further criteria for the evaluation of different precipitation products.
The behavioral parameter space describes the number (and percentage) of behavioral solutions in
100,000 simulations, with 100,000 parameter sets generated by the same Monte Carlo random sampling
method, with the same criteria of acceptability employed (i.e., the same threshold value and the
objective function) for the different precipitation datasets. The statistics of the number and percentage
of behavioral parameter sets for different precipitation schemes driving the IHACRES model are
shown in Table 9.
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Table 9. Number (percentage) of behavioral parameter sets for the IHACRES model.

NSE NSElog

Gauged 576 (0.58%) 9144 (9.14%)
TMPA-3B42V7 1056 (1.06%) 9929 (9.93%)

CMADS 5186 (5.19%) 12,095 (12.10%)

Using a threshold value of NSE > 0.5 (or NSElog > 0.5), the GLUE algorithm finds 5186 (12,095)
behavioral solutions in 100,000 simulations for the CMADS precipitation product with the IHACRES
model, while the GLUE algorithm achieves 1056 (9929) and 576 (9144) behavioral solutions in
100,000 simulations for the TMPA-3B42V7 and gauge-interpolated products with the IHACRES
model. Therefore, the behavioral parameter space of the IHACRES model driven by the CMADS
precipitation is larger than the behavioral parameter space driven by the other two precipitation inputs.
The CMADS product gives a better performance than the TMPA-3B42V7 and gauge-interpolated
products, because CMADS assimilated datasets are based on the large number of stations (nearly
40,000 regional automatic stations and 2421 national automatic stations in China), which gives it any
priority in reflecting the actual processes of areal precipitation.

A similar analysis is applied for the Sacramento model as well. The statistics of the number and
percentage of behavioral parameter sets for different precipitation schemes driving the Sacramento
model are shown in Table 10. For the Sacramento model, the behavioral parameter space is very
sparse when using the GLUE method for the Lijiang River basin. Using a threshold value of NSE > 0.5
(or NSElog > 0.5), the GLUE algorithm finds 32 (60) behavioral solutions in 100,000 simulations for the
CMADS precipitation dataset within the Sacramento model, while the GLUE algorithm achieves 0 (11)
and 0 (5) behavioral solutions in 100,000 simulations for the TMPA-3B42V7 and gauge-interpolated
products with the Sacramento model. Similar to their performance with the IHACRES model,
the behavioral parameter space of the Sacramento model driven by the CMADS precipitation dataset is
larger than the behavioral parameter space driven by the other two precipitation inputs. The CMADS
product shows a better performance than the TMPA-3B42V7 and gauge-interpolated products, which,
as mentioned before, is probably because the CMADS assimilated datasets are based on the strongly
underconstrained large number of stations.

Table 10. Number (percentage) of behavioral parameter sets for the Sacramento model.

NSE NSElog

Gauged 0(0.00%) 5(0.01%)
TMPA-3B42V7 0(0.00%) 11(0.01%)

CMADS 32(0.03%) 60(0.06%)

4. Discussion

Our work presents a comparative analysis for different precipitation datasets and their
applicability for hydrologic modelling, including gauge-interpolated datasets, TMPA-3B42V7 and
CMADS precipitation products. Two hydrologic models; IHACRES and Sacramento, are evaluated
in the Lijiang River basin, as well as the accuracy of different precipitation datasets for
hydrologic modelling.

The results show that the IHACRES and Sacramento models demonstrate a good and similar
performance in the Lijiang River basin. Driven by the CMADS precipitation, the NSE values of the
IHACRES (Sacramento) model are 0.69 (0.68) and 0.70 (0.71) for the calibration and validation periods,
respectively. Figure 6 shows there are three sensitive parameters (f, e and v_s) for the IHACRES model.
Figure 7 shows there are three sensitive parameters (uztwm, adimp and lztwm) for the Sacramento model.
The number of effective parameters is similar in both Sacramento model (with more parameters) and
IHACRES model (with less parameters), consistent with sensitivity results in Shin et al. [64].
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The uncertainty analysis carried out for the IHACRES and Sacramento models show that the
uncertainty in the model predictions is greater for the Sacramento model. To sum up, IHACRES and
Sacramento perform similarly in terms of simulation performance and number of effective parameters,
the latter model having far more insensitive parameters. What’s more, the IHACRES model has a
reduced uncertainty compared with the Sacramento model. Based on these analyses, the authors
conclude that IHACRES generally outperforms Sacramento in Lijiang river basin. It confirms previous
findings (e.g., Orth et al. [71]) that more parameters may lead to over-fitting without an improved
performance of the hydrologic model.

Of the three precipitation datasets (gauge-interpolated product, TMPA-3B42V7 and CMADS
products), the CMADS product gives the best performance in simulating the rainfall–runoff process
in the Lijiang River basin. The overall performance (based on DailyNSE values) of the CMADS
product is 0.69 and 0.70 for the IHACRES and Sacramento models, respectively, with the overall
performance of the TMPA-3B42V7 (0.56 and 0.56) and gauge-interpolated (0.57 and 0.52) products
correspondingly much lower. From the analysis of Figures 3 and 4, the hydrologic model driven by the
CMADS product shows a superior skill in capturing the flow peaks because the CMADS reanalysis
data are based on a large number of stations. However, these datasets overestimate the simulated
flood peak and underestimate low flowrates, which is probably because the models are calibrated
using the performance measure NSE, being an objective function that puts more emphasis on high
flowrates. The model calibrated using Nash–Sutcliffe efficiency on transformed streamflow NSElog,
which gives more emphasis to low flowrates, is presented in the Supplementary Materials, as well as
the model performance calibrated using NSElog as an objective function. Similar conclusions can be
reached with the models calibrated using the performance measure NSElog as the objective function.
The CMADS precipitation datasets perform best in all three precipitation datasets, followed by
the TMPA-3B42V7 precipitation and then the gauge-interpolated product. Comparing the model
performance using NSElog and NSE as the objective functions for calibration, the model calibrated
using the performance measure NSE performed better in simulating peak flows, while underestimating
low flowrates. In contrast, the model calibrated using the performance measure NSElog performs well
in simulating low flowrates but underestimates the flood peak in the simulations.

The GLUE pairwise correlation of behavioral parameters (Figures 5 and 6) give us an intuitional
view of parameter uncertainties. From the distribution of behavioral parameters for the IHACRES
model (Figure 5), we see the parameters d, tau_s and tau_q have the greatest uncertainties overall.
Further analysis reveals that different precipitation products reshape the distribution of tau_q greatly.
The parameter tau_q, which represents the time constant for quick flow store, is very sensitive to the
precipitation input. For the Sacramento model (Figure 6), the parameters uztwm, adimp and lztwm
show less uncertainties overall than other parameters.

The superiority of the CMADS product can also be found in the number of GLUE behavioral
parameters (or their occupation percentage among all the uniformly distributed parameter sets), as well
as their GLUE relative measurements coverage. From Tables 7 and 8, we find the CMADS driven
hydrologic models are responsible for more behavioral parameters than the hydrologic models driven
by the other two precipitation datasets.

Although the two hydrologic models introduced here are widely used, the precipitation input
data are basin-averaged precipitation. The comparison and applicability of different precipitation
datasets maybe be affected by this “average” precipitation, since the spatial distribution and variability
of different precipitation datasets may be weakened by the effect of spatial averaging. The improved
accuracy of the CMADS precipitation dataset may be more obvious with the simulation of a distributed
or semi-distributed model as the rainfall input. Moreover, different uncertainty-analysis methods may
affect the efficiency of the uncertainty analysis, which thus requires further research.
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5. Conclusions

Precipitation is a fundamental component of the global water cycle. Precipitation datasets range
from conventional ground-based datasets to remote-sensing products and reanalysis datasets, such as
the gauge-interpolated product, the TMPA-3B42V7 precipitation products and the CMADS datasets
invoked here. The two hydrologic models (IHACRES and Sacramento) are introduced to evaluate
their applicability in the basin, the impact of model complexity and the applicability of different
precipitation datasets on the hydrologic modelling.

CMADS gives best results when used in IHACRES and Sacramento to simulate flow in the
Lijiang River basin. The CMADS precipitation datasets (DailyNSE = 0.69 for the IHACRES model;
DailyNSE = 0.70 for the Sacramento model) give improved applicability and accuracy compared with
the gauge-interpolated datasets (DailyNSE = 0.57 for the IHACRES model; DailyNSE = 0.52 for the
Sacramento model) and TMPA-3B42V7 datasets (DailyNSE = 0.56 for the IHACRES model; DailyNSE
= 0.56 for the Sacramento model) in the Lijiang River basin. From the analysis of Figures 3 and 4,
we conclude that the CMADS precipitation-driven hydrologic models give better skill in capturing
the streamflow peaks. Interpolation of gauge data performed worst, reflecting the impact of low
gauge density

The precipitation detection ability of TRMA-3B42V7 and CMADS is also evaluated using six
statistical measures (PC, POD, FBI, FAR, CSI and HSS) through a pixel-to-point comparison to the
ground-based data. CMADS (with an average of 0.83, 0.79, 1.1, 0.28, 0.61 and 0.63) shows better
performance and is closer to the perfect score than TRMM (with an average of 0.74, 0.51, 0.80, 0.36, 0.4
and 0.39).

Based on the analysis of Table 7, for the IHACRES model and using NSE as the likelihood
function, the number and percentage of behavioral parameters for the CMADS, TMPA-3B42V7 and
gauge-interpolated product are 5186 (5.19%), 1056 (1.06%) and 576 (0.58%). Using NSElog as the
likelihood function, the number and percentage of behavioral parameters for the corresponding
precipitation datasets are 12,095 (12.1%), 9929 (9.93%) and 9144 (9.14%). Similar phenomena can
be found with the same analysis of the Sacramento model in Table 8 but the behavioral parameter
sets for that model are very sparse. We conclude that the CMADS precipitation-driven hydrologic
models are more accurate, as they are responsible for more behavioral parameters than the hydrologic
models driven by the other two precipitation datasets. The TMPA-3B42V7 datasets show slightly better
performance than the gauge-interpolated product in this case study, indicating that global datasets are
particularly useful in poorly gauged areas.

The performance of the IHACRES model (DailyNSE = 0.69 driven by the CMADS product)
and Sacramento model (DailyNSE = 0.70 driven by the CMADS product) give respectable results.
While both models work well, IHACRES gives lower predictive uncertainty compared to Sacramento,
which implies that the general applicability of the IHACRES model is preferable to the Sacramento
model in the Lijiang River basin.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/10/11/
1611/s1, Figure S1: Density map of precipitation stations over the region (units: gauges per km2)), Table S1:
Mean absolute error (MAE), root mean square error (RMSE) and relative error of cross-validation for daily
interpolated precipitation grids, Table S2: Overall performance (daily NSElog (monthly NSE)) of precipitation
datasets for models using NSElog as the objective function for calibration, Table S3 Model performance of
IHACRES model (calibrated using NSElog) for the calibration period and validation periods, Table S4 Model
performance of Sacramento model (calibrated using NSElog) for the calibration period and validation periods,
Figure S2: Observed and IHACRES-model-simulated daily and monthly runoffs for (a) Gauge-interpolated,
(b) TMPA-3B42V7 and (c) CMDAS rainfall datasets (for the IHACRES model calibrated using NSElog as the
objective function), Figure S3: Observed and Sacramento-model-simulated daily and monthly runoffs for (a)
Gauge-interpolated, (b) TMPA-3B42V7 and (c) CMDAS rainfall datasets (for the Sacramento model calibrated
using NSElog as the objective function)).
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