Optimization and Degradation Studies on Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX) with Selected Indigenous Microbes under Aerobic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Microbial Culture
2.3. Experimental Setup
2.4. Analysis
3. Results and Discussion
3.1. Degradation of RDX
3.2. Release of Nitrite during RDX Degradation
3.3. Degradation Pathway
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sheremata, T.W.; Halasz, A.; Paquet, L.; Thiboutot, S.; Ampleman, G.; Hawari, J. The fate of the cyclic nitramine explosive RDX in natural soil. Environ. Sci. Technol. 2001, 35, 1037–1040. [Google Scholar] [CrossRef]
- Chatterjee, S.; Deb, U.; Datta, S.; Walther, C.; Gupta, D.K. Common explosives (TNT, RDX, HMX) and their fate in the environment: Emphasizing bioremediation. Chemosphere 2017, 184, 438–451. [Google Scholar] [CrossRef]
- Sisco, E.; Najarro, M.; Bridge, C.; Aranda, I.V.R. Quantifying the degradation of TNT and RDX in a saline environment with and without UV-exposure. Forensic Sci. Int. 2015, 251, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Tucker, W.A.; Murphy, G.J.; Arenberg, E.D. Adsorption of RDX to soil with low organic carbon: Laboratory results, field observations, remedial implications. Soil Sediment Contam. 2002, 11, 809–826. [Google Scholar] [CrossRef]
- Lapointe, M.C.; Martel, R.; Diaz, E. A conceptual model of fate and transport processes for RDX deposited to surface soils of North American active demolition sites. J. Environ. Qual. 2017, 46, 1444–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Environmental Protection Agency (EPA). Office of Drinking Water Health Advisories, Drinking Water Health Advisory Table; EPA 822-F-18–001; Environmental Protection Agency: Washington, DC, USA, 2018.
- Environmental Protection Agency (EPA). Office of Land and Emergency (5106P); EPA 505-F-17–008; Environmental Protection Agency: Washington, DC, USA, 2017.
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for RDX. 2012. Available online: www.atsdr.cdc.gov/toxprofiles/tp78.pdf (accessed on 5 February 2021).
- Environmental Protection Agency (EPA). Handbook on the Management of Munitions Response Actions; EPA 505-B-01–001; Environmental Protection Agency: Washington, DC, USA, 2005. Available online: Nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100304J.txt (accessed on 5 February 2021).
- Hazardous Substance Data Bank (HSDB). 2016. Available online: https://www.nlm.nih.gov/databases/download/hsdb.html (accessed on 5 February 2021).
- Gust, K.A.; Wilbanks, M.S.; Guan, X.; Pirooznia, M.; Habib, T.; Yoo, L.; Wintz, H.; Vulpe, C.D.; Perkins, E.J. Investigations of transcript expression in fathead minnow (Pimephales promelas) brain tissue reveal toxicological impacts of RDX exposure. Aquat. Toxicol. 2011, 101, 135–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinn, M.J., Jr.; Bazar, M.A.; McFarland, C.A.; Perkins, E.J.; Gust, K.A.; Johnson, M.S. Sub lethal effects of sub-acute exposure to RDX (1,3,5-trinitro-1,3,5-triazine) in the northern bob white (Colinus virginianus). Environ. Toxicol. Chem. Int. J. 2009, 28, 1266–1270. [Google Scholar] [CrossRef]
- Williams, L.R.; Wong, K.; Stewart, A.; Suciu, C.; Gaikwad, S.; Wu, N.; DiLeo, J.; Grossman, L.; Cachat, J.; Hart, P.; et al. Behavioral and physiological effects of RDX on adult zebrafish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2012, 155, 33–38. [Google Scholar] [CrossRef]
- Zhang, B.; Pan, X. RDX induces aberrant expression of microRNAs in mouse brain and liver. Environ. Health Perspect. 2009, 117, 231–240. [Google Scholar] [CrossRef]
- Lee, S.H.; Jeong, W.Y.; Nyande, B.W.; Park, J.S.; Moon, I.; Oh, M. CFD simulation for demilitarization of RDX in a rotary kiln by thermal decomposition. J. Eng. Sci. Technol. 2017, 12, 1662–1676. [Google Scholar]
- Bulusu, S.; Behrens, R., Jr. A Review of the Thermal Decomposition Pathways in RDX, HMX and Other Closely Related Cyclic Nitramines. Def. Sci. J. 1996, 46, 347. [Google Scholar] [CrossRef]
- Mahbub, P.; Nesterenko, P.N. Application of photo degradation for remediation of cyclic nitramine and nitroaromatic explosives. RSC Adv. 2016, 6, 77603–77621. [Google Scholar] [CrossRef] [Green Version]
- Wildman, M.J.; Alvarez, P.J. RDX degradation using an integrated Fe(0)-microbial treatment approach. Water Sci. Technol. 2001, 43, 25–33. [Google Scholar] [CrossRef]
- Zhao, J.S.; Halasz, A.; Paquet, L.; Beaulieu, C.; Hawari, J. Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine and its mononitroso derivative hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine by Klebsiella pneumoniae strain SCZ-1 isolated from an anaerobic sludge. Appl. Environ. Microbiol. 2002, 68, 5336–5341. [Google Scholar] [CrossRef] [Green Version]
- Stahl, J.D.; Aken, B.V.; Cameron, M.D.; Aust, S.D. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) biodegradation in liquid and solid-state matrices by Phanerochaete Chrysosporium. Bioremed. J. 2001, 5, 13–25. [Google Scholar] [CrossRef]
- Fournier, D.; Halasz, A.; Spain, J.; Spanggord, R.J.; Bottaro, J.C.; Hawari, J. Biodegradation of the hexahydro-1,3,5-trinitro-1,3,5-triazine ring cleavage product 4-nitro-2,4-diazabutanal by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 2004, 70, 1123–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.S.; Paquet, L.; Halasz, A.; Hawari, J. Metabolism of hexahydro-1,3,5-trinitro-1,3,5-triazine through initial reduction to hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine followed by denitration in Clostridium bifermentans HAW-1. Appl. Microbiol. Biotechnol. 2003, 63, 187–193. [Google Scholar] [CrossRef]
- Makela, M. Experimental design and response surface methodology in energy applications: A tutorial review. Energy Convers. Manag. 2017, 151, 630–640. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Draper, N.R.; John, J.A. Response-surface designs for quantitative and qualitative variables. Technometrics 1998, 30, 423–428. [Google Scholar] [CrossRef]
- Sharma, K.; Sharma, P.; Celin, S.M.; Rai, P.K.; Sangwan, P. Degradation of high energetic material hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a microbial consortium using response surface methodological approach. SN Appl. Sci. 2021, 3, 1–8. [Google Scholar] [CrossRef]
- Meda, A.; Sangwan, P.; Bala, K. Optimization of process parameters for degradation of HMX with Bacillus toyonensis using response surface methodology. Int. J. Environ. Sci. Technol. 2020, 17, 4601–4610. [Google Scholar] [CrossRef]
- Sangwan, P.; Mary, C.S.; Hooda, L. Response surface methodological approach for optimizing process variables for biodegradation of 2, 4, 6-trinitrotoluene using Acinetobacter noscomialis. Eur. J. Adv. Eng. Technol. 2015, 2, 51–56. [Google Scholar]
- Kiran, B.; Kaushik, A.; Kaushik, C.P. Response surface methodological approach for optimizing removal of Cr (VI) from aqueous solution using immobilized cyanobacterium. Chem. Eng. J. 2007, 126, 147–153. [Google Scholar] [CrossRef]
- Cook, A.M.; Huetter, R. s-Triazines as nitrogen sources for bacteria. J. Agric. Food Chem. 1981, 29, 1135–1143. [Google Scholar] [CrossRef] [Green Version]
- Lamba, J.; Anand, S.; Dutta, J.; Chatterjee, S.; Nagar, S.; Celin, S.M.; Rai, P.K. Study on aerobic degradation of 2,4,6-trinitrotoluene (TNT) using Pseudarthrobacter chlorophenolicus collected from the contaminated site. Environ. Monit. Assess. 2021, 193, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Nagar, S.; Shaw, A.K.; Anand, S.; Celin, S.M.; Rai, P.K. Aerobic biodegradation of HMX by Planomicrobium flavidum. 3 Biotech 2018, 3, 455. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Agency (EPA). Validated Method 8330A: Nitroaromatics, Nitramines, and Nitrate Esters by High Performance Liquid Chromatography (HPLC); Environmental Protection Agency: Washington, DC, USA, 2007.
- Mercimek, H.A.; Dincer, S.; Guzeldag, G.; Ozsavli, A.; Matyar, F. Aerobic biodegradation of 2,4,6-trinitrotoluene (TNT) by Bacillus cereus isolated from contaminated soil. Microb. Ecol. 2013, 66, 512–521. [Google Scholar] [CrossRef]
- Fuller, M.E.; Perreault, N.; Hawari, J. Microaerophilic degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by three Rhodococcus strains. Lett. Appl. Microbiol. 2010, 51, 313–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagar, S.; Shaw, A.K.; Anand, S.; Celin, S.M.; Rai, P.K. Biodegradation of octogen and hexogen by Pelomonas aquatica strain WS2-R2A-65 under aerobic condition. Environ. Technol. 2020, 1–10. [Google Scholar] [CrossRef]
- Mohanty, S.S.; Jena, H.M. Process optimization of butachlor bioremediation by Enterobacter cloacae using Plackett Burman design and response surface methodology. Process Saf. Environ. Prot. 2018, 119, 198–206. [Google Scholar] [CrossRef]
- Fournier, D.; Halasz, A.; Spain, J.; Fiurasek, P.; Hawari, J. Determination of key metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine with Rhodococcus sp. strain DN22. Appl. Environ. Microbiol. 2002, 68, 166–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Soni, P.; Kumar, P.; Purohit, S.; Singh, A. Biodegradation of high explosive production effluent containing RDX and HMX by denitrifying bacteria. World J. Microbiol. Biotechnol. 2009, 25, 269–275. [Google Scholar] [CrossRef]
- Zoh, K.D.; Stenstrom, M.K. Fenton oxidation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). Water Res. 2002, 36, 1331–1341. [Google Scholar] [CrossRef]
- Chaudhary, P.; Beniwal, V.; Kaur, R.; Kumar, R.; Kumar, A.; Chhokar, V. Efficacy of Aspergillus fumigatus MCC 1175 for bioremediation of Tannery Wastewater. Clean Soil Air Water 2019, 47, 1900131. [Google Scholar] [CrossRef]
- Garg, S.K.; Tripathi, M.; Lal, N. Response surface methodology for optimization of process variable for reactive orange 4 dye discoloration by Pseudomonas putida SKG-1 strain and bioreactor trial for its possible use in large-scale bioremediation. Desalin. Water Treat. 2015, 54, 3122–3133. [Google Scholar] [CrossRef]
- Indest, K.J.; Jung, C.M.; Chen, H.P.; Hancock, D.; Florizone, C.; Eltis, L.D.; Crocker, F.H. Functional characterization of pGKT2, a 182-kilobase plasmid containing the xpl A B gene, which are involved in the degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia sp. strain KTR9. Appl. Environ. Microbiol. 2010, 76, 6329–6337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatt, M.; Zhao, J.S.; Halasz, A.; Hawari, J. Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine by novel fungi isolated from unexploded ordnance contaminated marine sediment. J. Ind. Microbiol. Biotechnol. 2006, 33, 850. [Google Scholar] [CrossRef] [PubMed]
- Sheremata, T.W.; Hawari, J. Mineralization of RDX by the white rot fungus Phanerochaete chrysosporium to carbon dioxide and nitrous oxide. Environ. Sci. Technol. 2000, 34, 3384–3388. [Google Scholar] [CrossRef]
- Thompson, K.T.; Crocker, F.H.; Fredrickson, H.L. Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia and Williamsia spp. Appl. Environ. Microbiol. 2005, 71, 8265–8272. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, A.; Ronen, Z. Biodegradation of the explosives TNT, RDX and HMX. In Microbial Degradation of Xenobiotics; Springer: Berlin/Heidelberg, Germany, 2012; pp. 135–176. [Google Scholar]
- Halasz, A.; Hawari, J. Degradation routes of RDX in various redox systems. In Aquatic Redox Chemistry, American Chemical Society; ACS Publications: Washington, DC, USA, 2011; pp. 441–462. [Google Scholar]
RDX Concentration (mg/L) | Inoculation Volume (%) | Time (Days) |
---|---|---|
20 | 2 | 10 |
20 | 4 | 5 |
20 | 4 | 15 |
20 | 6 | 10 |
40 | 2 | 5 |
40 | 2 | 15 |
40 | 4 | 10 |
40 | 4 | 10 |
40 | 4 | 10 |
40 | 4 | 10 |
40 | 4 | 10 |
40 | 6 | 5 |
40 | 6 | 15 |
60 | 2 | 10 |
60 | 4 | 5 |
60 | 4 | 15 |
60 | 6 | 10 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 1103.52 | 9 | 122.61 | 23.64 | 0.0002 | Significant |
A-RDX concentration | 30.11 | 1 | 30.11 | 5.81 | 0.0468 | |
B-Inoculation volume | 7.47 | 1 | 7.47 | 1.44 | 0.2692 | |
C-Time | 870.49 | 1 | 870.49 | 167.83 | <0.0001 | |
AB | 14.18 | 1 | 14.18 | 2.73 | 0.1423 | |
AC | 44.02 | 1 | 44.02 | 8.49 | 0.0226 | |
BC | 4.62 | 1 | 4.62 | 0.8912 | 0.3766 | |
A2 | 17.14 | 1 | 17.14 | 3.30 | 0.1119 | |
B2 | 78.58 | 1 | 78.58 | 15.15 | 0.0060 | |
C2 | 24.86 | 1 | 24.86 | 4.79 | 0.0647 | |
Residual | 36.31 | 7 | 5.19 | |||
Lack of Fit | 36.31 | 3 | 12.10 | |||
Pure Error | 0.0000 | 4 | 0.0000 | |||
Cor Total | 1139.83 | 16 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 2489.85 | 9 | 276.65 | 21.68 | 0.0003 | Significant |
A-RDX concentration | 32.76 | 1 | 32.76 | 2.57 | 0.1531 | |
B-Inoculation volume | 31.72 | 1 | 31.72 | 2.49 | 0.1588 | |
C-Time | 2032.03 | 1 | 2032.03 | 159.28 | <0.0001 | |
AB | 3.88 | 1 | 3.88 | 0.3042 | 0.5984 | |
AC | 0.6162 | 1 | 0.6162 | 0.0483 | 0.8323 | |
BC | 2.27 | 1 | 2.27 | 0.1775 | 0.6861 | |
A2 | 105.79 | 1 | 105.79 | 8.29 | 0.0237 | |
B2 | 251.75 | 1 | 251.75 | 19.73 | 0.0030 | |
C2 | 49.25 | 1 | 49.25 | 3.86 | 0.0902 | |
Residual | 89.30 | 7 | 12.76 | |||
Lack of Fit | 89.30 | 3 | 29.77 | |||
Pure Error | 0.0000 | 4 | 0.0000 | |||
Cor Total | 2579.15 | 16 |
Factor | Bacillus toyonensis | Paenibacillus dendritiformis |
---|---|---|
p-value | <0.0001 | 0.0009 |
F-value | 34.52 | 14.88 |
R2 | 0.97 | 0.95 |
Cor-total | 0.0624 | 0.0236 |
Std.dev | 0.0140 | 0.0130 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meda, A.; Sangwan, P.; Bala, K. Optimization and Degradation Studies on Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX) with Selected Indigenous Microbes under Aerobic Conditions. Water 2021, 13, 1257. https://doi.org/10.3390/w13091257
Meda A, Sangwan P, Bala K. Optimization and Degradation Studies on Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX) with Selected Indigenous Microbes under Aerobic Conditions. Water. 2021; 13(9):1257. https://doi.org/10.3390/w13091257
Chicago/Turabian StyleMeda, Arjun, Pritam Sangwan, and Kiran Bala. 2021. "Optimization and Degradation Studies on Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX) with Selected Indigenous Microbes under Aerobic Conditions" Water 13, no. 9: 1257. https://doi.org/10.3390/w13091257