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Abstract: Sea surface temperature (SST) prediction plays an important role in scientific research,
environmental protection, and other marine-related fields. However, most of the current prediction
methods are not effective enough to utilize the spatial correlation of SSTs, which limits the improve-
ment of SST prediction accuracy. Therefore, this paper first explores spatial correlation mining
methods, including regular boundary division, convolutional sliding translation, and clustering
neural networks. Then, spatial correlation mining through a graph convolutional neural network
(GCN) is proposed, which solves the problem of the dependency on regular Euclidian space and
the lack of spatial correlation around the boundary of groups for the above three methods. Based
on that, this paper combines the spatial advantages of the GCN and the temporal advantages of the
long short-term memory network (LSTM) and proposes a spatiotemporal fusion model (GCN-LSTM)
for SST prediction. The proposed model can capture SST features in both the spatial and temporal
dimensions more effectively and complete the SST prediction by spatiotemporal fusion. The experi-
ments prove that the proposed model greatly improves the prediction accuracy and is an effective
model for SST prediction.

Keywords: SST prediction; spatial correlation; GCN; spatiotemporal fusion

1. Introduction

Sea surface temperature (SST) changes have significant impacts on marine biology [1,2],
the global climate [3,4], and extreme weather events [5], such as decreasing marine species
diversity, altering global wind patterns, and increasing the incidence of floods. It also
creates challenges for the ecosystem and for human life [6]. Through SST prediction, we
can effectively understand ocean dynamics, which will enable us to adequately prepare for
such challenges. However, the existing numerical prediction models require a profound
understanding of and the ability to replicate the physical evolution of SST [7] to build
a complicated model; these rely heavily on the accuracy of initial parameters, and it is
difficult to capture the complex physical evolution accurately, which limits the development
and accuracy of SST prediction. Along with the continuous advancement of deep learning
technology, the data-driven modeling strategy has emerged as a powerful complement to
numerical prediction models. It can learn and capture the patterns and features from a large
amount of SST data without knowing the physical principles and identify the optimized
parameters and weights for models in an iterative way. Thus, this strategy overcomes
the limitation of numerical prediction models and has been effectively propelling the
development of SST prediction technology. Therefore, deep learning-based SST prediction
occupies an important position in the field of marine science.
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Gaussian processes [8,9], support vector machines [10,11], genetic algorithms [12,13],
and other machine learning algorithms have been commonly adopted for predicting SSTs.
As machine learning, artificial neural networks, and deep learning techniques continue
to evolve, these methods, models, and technologies have become widely used in the
research on SST prediction [14]. However, the advantages of neural networks and deep
learning technologies can only be fully utilized for SST prediction when there are sufficient
amounts of data. With the rapid development of remote sensing technology [15,16], a large
amount of SST data has been collected and stored. So, it is possible to more accurately
and comprehensively mine rules from these SST data, which will result in better accuracy
of SST prediction. Therefore, in recent years, prediction methods based on deep learning
have rapidly developed and become the main research field of SST prediction. Artificial
neural network models such as the feedforward neural network [17,18], which only has
forward propagation with fully connected layers; the long short-term memory network
(LSTM) [19,20], which can better process long time-series data by introducing a gate control
mechanism; gated recurrent units (GRUs) [21,22], which optimize LSTM by simplifying the
gate control; and the convolutional neural network (CNN) [23,24], which is able to better
capture spatial features; as well as deep learning models composed of these different neural
networks, are becoming the popular approach for SST prediction.

Choi et al. [25] proposed a method for predicting high-temperature events of SSTs
using the LSTM model on time-series data from the Korean Peninsula. Usharani et al. [26]
introduced an improved loss function for the LSTM model and achieved a better accuracy
of SST prediction for six different locations in the Indian Ocean. Zhang et al. [27] proposed
a hybrid model combining LSTM with a fully connected layer to address the regression
problem of SST time series. Xiao et al. [28] combined LSTM and the AdaBoost ensemble
learning model to more accurately predict the short and mid-term daily SST in the East
China Sea. Yang et al. [29] developed a two-layer deep learning model consisting of a
fully connected LSTM layer and a CNN layer for SST prediction along the coast of China.
Xu et al. [30] proposed an encoder-based LSTM architecture to extract temporal and spatial
information on SSTs, utilizing feature transformation and a decoder to predict the SST,
and this achieved better accuracy in SST prediction. Ali et al. [31] used a two-layer deep
learning model composed of GRUs and fully connected layers to predict SST with data
from the Korea Hydrographic and Oceanographic Agency. Xu et al. [32] introduced the
regional convolution LSTM (RC-LSTM) model, which leveraged the spatial advantages
of the CNN to improve the SST prediction accuracy. Hao et al. [33] predicted the SST for
the South China Sea using a convolutional long short-term memory (ConvLSTM) network
and analyzed the impact of different input lengths, prediction lengths, and the number
of hidden units on prediction accuracy. Yu et al. [34] integrated GRUs with the CNN to
propose the DGCnetwork (deep gated recurrent unit and convolutional network) model
for SST prediction in the East and South China Seas and achieved better accuracy than the
GRUs. Xie et al. [35] significantly improved the SST prediction accuracy by integrating
an encoder–decoder with GRUs. Xu et al. [36] combined the improved version of the
LSTM and MIM (memory in memory) models with variational mode decomposition to
detect change patterns for the SST. Qiao et al. [37] utilized a three-dimensional CNN to
capture spatial features and LSTM to extract temporal dependencies, and they leveraged
the attention mechanism to assign weights to each time step of the LSTM model, which
enhanced the SST prediction accuracy. Sun et al. [38] proposed a temporal graph neural
network for SST prediction in the northwestern Pacific Ocean; this used LSTM to capture the
temporal features and a graph neural network to capture the spatial features. Yang et al. [39]
designed a hierarchical clustering generator to cluster SST patterns with similarities, using
a graph convolutional neural network to learn spatial correlations among clusters and
feeding these into an RNN for SST prediction.

However, most of the existing studies on SST prediction capture spatial features
through spatial partitioning, convolutional neural networks (CNNs), or unsupervised
clustering. The spatial partitioning and CNNs depend on regular Euclidean space. The
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unsupervised clustering cannot deal well with the spatial correlation between spatial
points around the boundary of different clusters. Because the correlation between spatial
points in the marine space is irregular and complicated, these methods limit the correlation
expression and reflection between spatial points and also impact the accuracy improvement
of SST prediction. So, it is necessary to explore more reasonable methods for spatial
correlation discovery and mining. Recently, the graph convolutional network (GCN),
which has more powerful spatial processing capabilities, has been commonly adopted
in many fields, such as document classification [40], unsupervised learning [41], and
image classification [42]. In order to address the above problems, this paper proposes a
spatiotemporal fusion method for SST prediction that builds a graph convolutional neural
network (GCN), constructs the graph data structure of SST data as input for the GCN,
and designs the spatiotemporal fusion model (GCN-LSTM) based on the GCN and LSTM
models. This GCN-LSTM model combines the spatial advantages of the GCN and the
temporal expertise of the LSTM, so it can more effectively capture the spatiotemporal SST
features and further improve the accuracy of SST prediction.

2. Materials and Methods

This paper explores the spatial correlation discovery and mining of SST data from four
aspects, which include the regular boundary division for spatial interference elimination,
convolutional sliding translation for spatial feature focusing, the clustering neural network
for spatial feature extraction, and the graph convolutional neural network (GCN). The
GCN part will also build the graph convolutional neural network, construct the graph
structure of SST data, and, on this basis, design a spatiotemporal fusion prediction model
(GCN-LSTM) by combining the GCN and LSTM approaches to improve the accuracy of
SST prediction.

2.1. Regular Boundary Division for Spatial Interference Elimination

The regular boundary division [43] is realized by grouping spatial points in the sea
area with close latitude and longitude into the same group, which reduces the interference
caused by big differences between different groups and thus improves the effect of SST
prediction. Within a group, there will be different spatial points where a different division
method is used. Next, we will analyze three different division methods, which include
horizontal rectangular division, square division, and vertical rectangular division. For
a given sea area, using the same latitude resolution and longitude resolution, all spatial
points in the sea area will be the set used for the regular boundary division.

The first method is the horizontal rectangular division. The assumption is that the SST
difference in the longitudinal dimension is smaller than the difference in the latitudinal
dimension over the same distance, so a flatter shape is used for division. The second method
is vertical rectangle division. The assumption of this method is that the SST difference
in the longitudinal dimension is greater than the difference in the latitudinal dimension
over the same distance, so the vertically flatter shape is selected for division. The third
method is the square division. The square division method assumes that the differences
in the longitudinal and latitudinal dimensions over the same distance are similar, so the
square shape is used for division.

Different regular division methods will lead to different data differences and the
degree of spatial interference elimination will also be different, which will bring different
effects for training and prediction.

2.2. Convolutional Sliding Translation for Spatial Feature Focusing

The convolution operation of the convolutional neural network is similar to the divi-
sion mode in Section 2.1, and no explicit division operation is required. The convolutional
neural network will arrange the spatial information according to certain convolutional
windows and integrate and refine the data in each window through the sliding translation
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of the convolutional window, so as to further realize spatial feature focusing and mine
more feature information to improve the accuracy of SST prediction.

The two core concepts of the convolutional neural network are the convolution kernel
K and the size of the convolution step S, which include the size of the horizontal and
vertical directions, defined as Kh, Kv, Sh, and Sv, respectively. The convolution kernel is the
window of the convolution operation. The convolution step indicates how the convolution
kernel window moves and the distance of each move. The shape of the SST data is set as
(Ph, Pv, X), where Ph is the number of horizontal spatial points, Pv is the number of vertical
spatial points, and X is the size of dimension for the SST data. The convolutional operation
of a convolutional neural network will operate on a two-dimensional plane (Ph, Pv).

With the definition of the convolution kernel and step size, the size of the output in
the horizontal and vertical directions after the convolution operation can be calculated. The
equation for calculating the output size in the horizontal direction is Equation (1).

Oh = (Ph − Kh)/Sh + 1 (1)

where Oh is the size of the horizontal output dimension, Ph is the number of horizontal
spatial points in the selected sea area, Kh is the size of the horizontal direction of the
convolution kernel, and Sh is the size of the horizontal convolution step. The equation for
calculating the output size in the vertical direction is Equation (2).

Ov = (Pv − Kv)/Sv + 1 (2)

Finally, the output shape of the SST data (Ph, Pv, X) after passing through the convolu-
tional neural network will be (Oh, Ov, F), where F is the number of the convolution kernel.
The convolutional neural network fully processes and explores the input data in the spatial
dimension. The output of the convolutional neural network can be fed into the LSTM
model for further training in the temporal dimension on the basis of the spatial feature
extraction, which is a powerful supplement to the spatial dimension for LSTM. Thus, the
accuracy of SST prediction will be improved.

2.3. Spatial Feature Extraction by the Clustering Neural Network

Although the regular boundary division and convolutional sliding translation can
play certain roles in improving SST prediction, they still have limitations because they are
only based on the spatial points near each other, while there will be similarities and similar
rules among the spatial points far away from each other. The clustering neural network can
solve this problem to a certain extent. It will analyze and mine the data of spatial points to
extract their spatial features and divide the spatial points into different groups according
to the captured rules and similarities. Clustering is an unsupervised training mode that
does not need to provide labels, which is in line with the need to find a better method for
mining spatial correlations.

Self-organizing mapping [44] (SOM) is a commonly used unsupervised neural network
for clustering. Each input of the input layer maps to a node of the hidden layer, while the
output neurons compete with each other to be activated, and the neurons generate the final
result in a self-organizing way, so it is called self-organizing mapping.

The SOM network consists of four main parts: initialization, competition, cooperation,
and adaptation. Given an M-dimensional input X = {xi: i = 1, 2, . . ., M}, the connection
weight between the node i of the input layer and the neuron j of the computing layer can be
expressed as Wj = {wji: j = 1, 2, . . ., N}, where N is the number of neurons in the computational
layer. The first initialization section initializes Wj to a relatively small connection weight
tensor randomly. The competition process will find the neuron that matches the input using
the Euclidean distance discriminant function, which is Equation (3).

dj(X) = ∑M
i=1

(
xi − wji

)2 (3)
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The neuron whose weight tensor is closest to the input tensor will be chosen as the
winner. Once one neuron is selected, the probability of its neighboring neuron being
selected is greatly increased. By setting I(X) as the index of the winning neuron, the
topological neighbors of I(X) can be identified by Equation (4).

Tj,I(X) = exp(− S2
j,I(X)/2σ2

)
(4)

where Sj,I(X) represents the distance between neuron j and the winning neuron I(X), and
the parameter σ is the neighbor radius used to control the neighbor scope. The following
adaptation process adjusts the weights of the winners and their topological neighbors. The
weight adjustment equation is Equation (5).

∆wij = η(t) · Tj,I(X)(t) · (xi − wji) (5)

where t represents an epoch, and η(t) represents the learning rate of epoch t. The weight
update of each epoch makes the weights of the winning neuron and its neighbors closer to
the input tensor, and the process is repeated until convergence is achieved.

For spatial feature extraction by the clustering neural network, the SOM neural net-
work is first used to cluster the spatial points of the SST data and to divide them into
multiple groups. Compared with other points in the sea area, the SST data of spatial points
within each group have stronger similarity.

Next, clustering results can be used as the spatial correlation to improve SST prediction,
which can be implemented in two ways. Taking LSTM as an example, the first way is to
input the clustering results as a new feature into the LSTM model with SST data. The second
way is to use LSTM to train each group. The first approach focuses on providing the LSTM
model with more spatial information in the spatiotemporal dimensions. The second method
aims to reduce the influence of the spatial points with weak correlations, make the LSTM
model focus on the points with strong correlations in the spatial dimension, and mine the
values and rules of SST data in the temporal dimension so as to improve the SST prediction.

2.4. Graph Convolutional Neural Network

Although spatial feature extraction by the clustering neural network solves the prob-
lem of not being able to handle non-adjacent nodes, it still has obvious boundaries between
groups, and the connections between nodes in different groups are ignored to a certain
extent. Therefore, a new model is needed that not only has the advantages of spatial feature
focusing and spatial feature extraction but that can also mine the information between
nodes in remote or different groups. It will further improve the effect of spatial correlation
and, finally, optimize and improve the accuracy of SST prediction.

As long as there is a strong connection between two nodes, an edge can be added.
The graph convolutional neural network (GCN) divides the interconnected points into
a group, so it does not require explicit division and also does not depend on the regular
Euclidian space. In other words, it uses an edge to replace the concept of a group. Any two
nodes with a strong connection will have an edge, so there is no explicit boundary between
groups, which addresses the problem of the lack of spatial correlation around the boundary
of groups. Therefore, the GCN is a more perfect mechanism for mining spatial correlations.

The graph data structure mainly includes nodes, node data, the adjacency matrix, and
the degree matrix. The node represents a spatial point in the graph, the node data are
the dataset of each node, the adjacency matrix is used to indicate whether there are edges
between any given two nodes, and the degree matrix represents the number of edges of
each node. Because of the equivalence between two different spatial points in the sea, the
graph discussed in this paper is undirected. Next, we will show how the GCN is built
through the graph data structure described above.

Given a graph G, with node number N and node data X ∈ RN×M, where M is the
dimension of the node data, the adjacency matrix is A ∈ RN×N, and the degree matrix is
D ∈ RN×N. Because the node of a graph does not have an edge to itself, the diagonal values
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of the adjacency matrix A from the top left to the bottom right are zero. In the field of neural
networks, the nodes themselves also play a crucial role, so each node should have an edge
to itself. Therefore, in order to apply the graph data structure to the neural network, it is
necessary to add the identity matrix IN to the adjacency matrix A to form a new adjacency
matrix, and at the same time, the identity matrix IN should also be added to the degree
matrix to form a new degree matrix. The new A and D can be expressed by Equation (6).

Ã = A + IN , D̃ = D + IN (6)

If there is an edge between two nodes, it indicates that there is a correlation between
them. According to the idea of convolution, the information of the nodes with correlation
to a node can be merged into this node, so that there is more relevant information for the
neural network to learn. Merging information from other nodes into the node itself can
be obtained by multiplying Ã by X, i.e., ÃX. Because the information from the associated
nodes is added to the node, the data values of the node with a large degree may become
large, while the data values of the node with a small degree are relatively small. The neural
network is sensitive to the size differences in the input data, which may cause gradient
explosion or gradient disappearance.

Thus, the sum operation can be replaced by an average operation, and the degree of a
node represents the number of its associated nodes, so it can be converted to an average
value via dividing it by the value of its degree. For the entire graph, the degree matrix can
be used here to solve the problem. The average values of the nodes of the entire graph can
be realized by left multiplying ÃX by the inverse matrix D̃−1 of the degree matrix. This can
be represented by Equation (7).

X′ = D̃−1 ÃX (7)

As we can see from Equation (7), D̃−1 Ã is the normalization for the rows of the
adjacency matrix Ã by dividing the value of each node in the row i by D̃ii, and Ã is a
symmetric matrix, so it should have the same operation for column in order to obtain better
results. This can be achieved by right multiplying Ã by the inverse matrix D̃−1, as shown
in Equation (8).

X′′ = D̃−1 ÃD̃−1X (8)

At this time, another problem emerges: for the element Ãij of adjacency matrix Ã, it is
normalized twice, that is, Ãij is divided by D̃iiD̃jj, which will certainly affect the predictive

effect. To solve this problem, we can change D̃iiD̃jj to
√

D̃ii

√
D̃jj. In the matrix form, this

changes D̃−1 to D̃−1/2. After the change, Ãij will be only normalized once. So far, for the
entire graph, how the neighbor information of each node is aggregated to itself can be
represented by Equation (9).

X′′′ = D̃−1/2 ÃD̃−1/2X (9)

From the perspective of the graph convolutional neural network, for a hidden layer Hl,
the feature transfer between the nodes of the layer Hl can be realized through Equation (9),
and the features of the neighbors of the nodes can be passed to the nodes themselves to realize
the convolution operation. On the basis of Equation (9), adding an activation function and
trainable weight for nonlinear transformation will allow the next hidden layer Hl+1 to be
obtained. Therefore, the propagation rule for the hidden layer of the graph convolutional
neural network is expressed as Equation (10).

Hl+1 = σ(D̃−1/2 ÃD̃−1/2HlW l) (10)

where σ is the activation function, and Wl is the trainable weight parameter.
From the above analysis, it can be seen that the graph convolutional neural network

can process irregular data shapes, that is, the graph data structure, and integrate the
features of the connected nodes through the convolution operation to fully explore the
rules in the spatial dimension, thus breaking the limitations of regular boundary division,
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convolutional sliding translation, and clustering neural network. Therefore, the graph
convolutional neural network is more suitable for training and prediction using SST data
and is able to improve SST prediction.

2.5. Construction of the Graph Data Structure for SST Data

In order to use the graph convolutional neural network for training and SST prediction,
it is necessary to form the SST data into a graph structure. As described in Section 2.4,
the three most important components of the graph structure are the nodes, the node data,
and the edges. The data part is the time-series data of SST. Next, the nodes and the edges
between the nodes will be constructed.

The approach assumes that the selected sea area contains P spatial points, and the
time-series data include the data of D days. These P points are the nodes of the graph
structure, and each node will contain SST time-series data. The data of the entire sea area
and the schematic diagram represented by nodes with their data are shown in Figure 1.
Taking one data feature as an example, if there are multiple data features, it is only required
to change the data of each node from one dimension to multiple dimensions.
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For the nodes in Figure 1, as long connections are added between the nodes, that is,
the edges in the graph, it can transform the SST data into a graph data structure. In graph
data structures, edges are represented by an adjacency matrix. Therefore, we need to find a
way to generate the adjacency matrix. The purpose of this paper is to explore the law of
spatial correlation and to integrate the information for the connected spatial points during
model training and prediction so as to improve the prediction accuracy. In the field of SST
data, it is to find the method used to identify nodes with a strong correlation relationship.

The easiest way is to calculate the correlation relationship using the distance between
two spatial points. However, using the distance will have some limitations, because the
time-series data of the spatial points are not considered, and the SST data of the two spatial
points relatively far away may also have similar rules. Therefore, this paper determines
whether there is an edge between the two points by defining a threshold and checking if the
value of the correlation coefficient (r) is greater than it. The value of r reflects the correlation
of data between spatial points and can be used to judge the strength of the relationship
between them. The definition of r is shown as Equation (11).

r = ∑n
i=1 (xi − x)(yi − y)√

∑n
i=1 (xi − x)2∑n

i=1(yi − y)2
(11)

By using r to determine the strength of the relationship between two nodes, the
adjacency matrix A of the graph can be expressed as Equation (12).

Aij ∈ A, Aij =

{
1 , rij ≥ α

0 , rij < α
(12)
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where rij is the value of r between the ith and jth node, and α is the threshold of r where
there is an edge between two nodes. The range of α is (0, 1); in general, a value close to 1
will be taken. The adjacency matrix is calculated by Equation (12). The r value between
the node and itself is 1, and the parameter α is less than 1, so the adjacency matrix already
contains the identity matrix. It is not required to add the identity matrix to A, and the graph
convolutional neural network can directly use the adjacency matrix A.

An edge between spatial points in the sea area will be added through the adjacency
matrix, and the two points with a strong correlation will establish a connection. In this way,
the graph structure of SST data is formed through nodes and the adjacency matrix. Now,
we have the graph data structure of the SST data, which can be expressed as Equation (13).

G = (X, A) (13)

where X is the node and data of the graph (X ∈ RP×D), and A is the adjacency matrix of the
graph (A ∈ RP×P). P is the number of spatial points, and D is the number of days of the
time-series data. The graph structure will be used as the input for the graph convolutional
neural network to realize the analysis and mining in spatial dimensions for SST and to
improve the accuracy of SST prediction.

2.6. The Spatiotemporal Fusion Model for SST Prediction Based on the GCN and the LSTM

It can be seen from Section 2.4 that the graph convolutional neural network (GCN) can
fully implement feature extraction in the spatial dimension, but it has no special advantages
for processing time-series data. LSTM is a deep learning model specially used to deal with
time-series data. Therefore, combining the GCN and the LSTM can create a spatiotemporal
fusion model, GCN-LSTM, for SST prediction, which will integrate the advantages of
neural networks in the spatial and temporal dimensions.

In order to seamlessly integrate the GCN and LSTM models, we need to first adjust
the SST graph data structure G = (X, A) described in Section 2.5. The shape of the node and
data X is (P, D), and the shape of the adjacency matrix A is (P, P). On this basis, the time
step T of the LSTM model is introduced, the shape of X is adjusted to (P, D, T), and the
shape of the adjacency matrix A is unchanged. After the time step is added, each time step
has a separate graph. The GCN will train all graphs corresponding to the time steps. If the
size of the prediction window F is taken into account as prediction results, the number of
graphs will be generated based on F after the training and prediction are completed. After
adding time step, the diagram of the GCN is shown in Figure 2.
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As we can see from Figure 2, multiple SST graphs are trained through the hidden
layers of the GCN and related nonlinear transformations, and the graphs, as the prediction
results, will be generated based on the size of the prediction window F.

After the input data of the GCN is adjusted and the LSTM is added, the model
becomes the proposed spatiotemporal fusion model for SST prediction, GCN-LSTM. The
GCN-LSTM model is composed of four parts. The first part is data preprocessing and
graph structure construction. The second part uses the GCN to train the SST graphs with
time steps to realize spatial feature extraction. The third part feeds the training results of
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the GCN into the LSTM for further time-series data processing. The last part generates the
final prediction results through the fully connected layer. The structure of the GCN-LSTM
model is shown in Figure 3.
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In Figure 3, P is the number of nodes of the SST graph and the number of spatial points
in the selected sea area, and D is the number of days of the SST time series for each spatial
point. The shape of the initial input data of the model is (P, D). First, the adjacency matrix
is constructed for the model according to Equation (12) in Section 2.5, and the shape of the
adjacency matrix is (P, P). Then, the time step of the LSTM is introduced to construct the
input shape of the LSTM, and the shape of the input data is adjusted from (P, D) to (P, D, T)
as nodes and node data of the graph structure. After the nodes, data, and adjacency matrix
are obtained, the graph data structure of SST data is constructed by combining them. The
shape of each batch of data is (P, B, T), which is the input for the GCN. After convolutional
and nonlinear transformations, the shape of the GCN output is the same as that of the input,
so it is still (P, B, T). It completes the feature extraction in the spatial dimension. Next, the
graphs trained by the GCN will be input into the LSTM to conduct the feature analysis
and extraction in the temporal dimension. The output shape is (N, B, T), where N is the
number of hidden units in the LSTM. In order to generate the final prediction result of the
graph, it is required to flatten (N, B, T), reshape it to two dimensions, and adjust its shape
to (B, T × N). Since the number of nodes in the final graph is P, another fully connected
layer is needed here to further adjust the output shape to (B, P). At this point, a batch of
training and prediction data in the temporal dimension has been completed. The dataset is
divided into 70% data as the training data and 30% data as the test data. Therefore, when
all batches are trained and predicted, the final output result of the GCN-LSTM model is
(P, 0.3D). It represents the final graph as the prediction result, which contains P nodes, and
the size of the SST data for each node is 0.3D in the temporal dimension.

The GCN-LSTM model changes the input graph from one to multiple graphs according
to the time step of the LSTM. For the graph of each time step, the feature extraction and
mining in the spatial dimension are fully conducted through the spatial correlation identified
by the GCN, so that the information between nodes with edges can be transferred and
integrated with each other. Then, the LSTM is used to further mine the features of the SST
data in the temporal dimension. The GCN-LSTM model integrates the advantages of the
GCN and LSTM models, and this will significantly improve the accuracy of SST prediction.

2.7. Evaluation Solution of SST Prediction Models

This paper will use five models with different spatial correlation mining to predict
SSTs. The first model is that of the LSTM based on the regular boundary division, and it
includes three models based on different division methods—square division (LSTM-S),
horizontal rectangle division (LSTM-H), and vertical rectangle division (LSTM-V)—to verify
the optimal division method for SST prediction. The second model is ConvLSTM, which
is based on convolutional sliding translation, to analyze the advantages of convolutional
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sliding translation compared with regular boundary division. The third model is a model
based on the clustering neural network (SOM-LSTM), which combines SOM and LSTM
to analyze the advantages of the clustering neural network compared with convolutional
sliding translation. Wei et al. [45] also used SOM-LSTM to achieve better SST prediction.
The fourth model is the deep learning model (GCN-LSTM) based on GCN and LSTM,
which is also the proposed model in this paper. This model realizes spatial correlation
mining through a graph convolutional neural network. The fifth model is a conventional
LSTM model (LSTM) without any spatial correlation mining. Next, we will use experiments
to verify the advantages and effectiveness of the GCN-LSTM model compared with the
other four models.

2.8. Data Sets

The data used in the experiments are the SST data for the East China Sea, which comes
from the National Oceanic and Atmospheric Administration (NOAA) dataset of the U.S.
Physical Sciences Laboratory (PSL). The laboratory provides high-resolution global daily
average SST data. The selected spatial scope of sea area in experiments is the East China
Sea. The latitude and longitude ranges are 21.125◦ N–30.875◦ N, 122.375◦ E–132.125◦ E,
and the spatial resolution is 0.25◦ × 0.25◦, as shown in Figure 4. The dataset time range is
from 2010 to 2018, and the temporal resolution is in days.
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3. Results
3.1. Model Configuration and Evaluation Criteria

In order to achieve better prediction results, the experiment uses hyperbands to
identify the optimal hyper parameters. For LSTM-H, LSTM-S, and LSTM-V, the number of
hidden units is 256, and the batch size is 64. The hyper parameters of the regular LSTM
model are the same as for the above three models. The number of convolution kernels for
the ConvLSTM model is 256, and the batch size is the same as for the LSTM model. For
the SOM-LSTM model, the SOM size is (5, 5), the neighbor radius is set to 2, the nearest
neighbor function is Gaussian, and the LSTM part is the same as that for the regular LSTM
model. For the GCN-LSTM model, the LSTM part is the same as for the above LSTM
model. In addition, for all models, the optimizer algorithm is Adam, the learning rate is
0.001, the number of training epochs is 1000, the early stopping mechanism is enabled, and
the number of epochs for early stopping is 10. The detailed parameter settings for all the
models are shown in Table 1.
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Table 1. The detailed parameter information of the five different prediction models.

Parameters LSTM-H/S/V ConvLSTM SOM-LSTM LSTM GCN-LSTM

Time Step 10

Input Shape (10, 16) (10, 1600, 1, 1) (10, 1600) (10, 1600) (10, 1600)

No. of LSTM Units 256

Size of Convolution Kernel / (5, 1) / / /

Size of Convolution Step / (5, 1) / / /

No. of Convolution Kernels / 256 / / /

Batch Size 64

No. of Spatial Group 100 / / / /

Spatial Scope 21.125◦ N–30.875◦ N 122.375◦ E–132.125◦ E

Time Range—Training 1 January 2010 to 18 April 2016

Time Range—Testing 19 April 2016 to 31 December 2018

In the experiment, the prediction performance of the model will be validated using
the following evaluation criteria: root mean squared error (RMSE), mean absolute error
(MAE), correlation coefficient (r), and mean absolute percentage error (MAPE). The specific
definitions are as follows.

The RMSE is used to measure the deviation of the predicted value from the observed
value. The smaller the value, the better the performance of the prediction model. The RMSE
results are on the same level as the data, and they are more sensitive to particularly large or
small errors, which can reflect the accuracy of the prediction model well. The equation for
the RMSE is Equation (14).

RMSE =

√
∑n

i=1(yi − xi)
2

n
(14)

The MAE is the average of the absolute errors between the predicted and observed
values, and it can effectively avoid the situation where errors between the predicted and
values cancel each other out; thus, it accurately reflects the actual situation of errors between
the predicted and observed values. Like for the RMSE, a smaller value indicates a better
performance for the model. The MAE is less sensitive than the RMSE to very large or very
small errors. The calculation equation for the MAE is Equation (15).

MAE =
1
n∑n

i=1|yi − xi| (15)

The r value is the measure for the degree of linear correlation between predicted
and observed values, and it is often used to verify the validity of predicted values in
deep learning models. Contrary to the RMSE and MAE, r is inversely proportional to the
performance of the model, and the closer it is to 1, the stronger the correlation between the
predicted and observed values. The equation for calculating r is Equation (11) in Section 2.5.

The MAPE is the average of the percentage error between the predicted and the actual
values, which can effectively avoid the impact caused by a wide range of data. It is defined
by Equation (16).

MAPE =
1
n∑n

i=1

∣∣∣∣yi − xi
xi

∣∣∣∣× 100% (16)

3.2. Effect Analysis for Regular Boundary Division

As mentioned in Section 2.1, there are three different division methods: horizontal
rectangular division, square division, and vertical rectangular division. The corresponding
deep learning models for them are LSTM-H, LSTM-S, and LSTM-V respectively. In the sea
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area selected by the experiment, there are a total of 1600 spatial points, and if each group is
set to contain 16 points, there will be 100 groups. The division results for the three different
methods are shown in Figure 5.
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The three models with three different division methods are used to train and predict
the SST in the selected sea area, respectively, and to generate the predicted SST in the
entire test time range. Through the evaluation criteria, we can verify the differences in the
influence from different division methods on the prediction model of the SST. At the same
time, for the entire sea area without division, or for the entire sea area as a group, the LSTM
model is used for SST training and prediction in order to compare the effect difference
between division and non-division.

Through the comparison between the predicted values and observed values, the
evaluation criteria of the four different models are shown in Table 2.

Table 2. The predictive effect of different division methods.

Evaluation Criteria LSTM LSTM-H LSTM-S LSTM-V

MAE 0.7108 0.3621 0.3505 0.3684

RMSE 0.8717 0.4691 0.4563 0.4767

MAPE 0.0287 0.0145 0.0140 0.0147

r 0.9865 0.9937 0.9940 0.9935

It can be clearly seen from Table 2 that the spatial correlation implemented by regular
boundary division improves the prediction accuracy for all evaluation criteria. At the same
time, among the three different division methods, the predictive effect of LSTM-H is better
than that of LSTM-V, and LSTM-S is the best model. This is also consistent with the law of
SST in the actual situation. Latitude has a greater impact on temperature than longitude.
Compared with vertical division, the latitude changes less, so the difference in SST within
a group is smaller, and the law is more similar. The square division is a method between
horizontal and vertical division. The SST changes in the dimensions of longitude and
latitude are moderate, and the farthest distance between spatial points is smaller than in
the horizontal and vertical methods, so it has the best prediction accuracy.

3.3. Effect Analysis for Spatial Feature Extraction by the Clustering Neural Network

In Section 3.2, experiments prove the good SST prediction ability from regular bound-
ary division. The clustering neural network does not divide the sea area by regular shape
and distance. The spatial correlation between the spatial points is mined and discovered
through the SOM neural network. Based on that, the clustering of similar points is imple-
mented. Next, we will verify the effect of the clustering neural network for SST prediction
by experiments.
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The above experiments prove that LSTM-S has the best prediction ability using the
regular division method. The following experiment will use the SOM neural network
to cluster the spatial points according to the time series of SST at each spatial point, and
the clustering results will be input into the LSTM model to build a SOM-LSTM model by
combining SOM and LSTM. Then, the SOM-LSTM model will be used for SST training
and prediction. The comparison results of the SOM-LSTM and LSTM-S models after the
training and prediction are shown in Table 3.

Table 3. The predictive effect of the SOM-LSTM and LSTM-S models.

Evaluation Criteria LSTM-S SOM-LSTM

MAE 0.3505 0.2991

RMSE 0.4563 0.3949

MAPE 0.0140 0.0122

r 0.9940 0.9956

It can be clearly seen from Table 3 that the experimental results are consistent with the
theory, and for each evaluation criterion, the SOM-LSTM model is better than the LSTM-S
model. Therefore, the experiment proves that the clustering neural network breaks through
the limitations of the regular boundary division, and as long as there is a potential similarity
law, the spatial points that are relatively far away can also be clustered into a group, which
further enhances the effect of spatial correlation and improves the SST prediction.

3.4. Effect Analysis of the Different Graphs for the Graph Convolutional Neural Network

Although the experimental results show that the clustering neural network further im-
proves the SST predictive effect, as mentioned in Section 2.4, the clustering neural network
still has explicit group boundaries, and the connections between nodes in different groups
are ignored to some extent. Therefore, by combining the advantages of the convolution
neural network and the clustering neural network, the spatial correlation implemented
by the graph convolutional neural network (GCN) is introduced, and a spatiotemporal
fusion prediction model, GCN-LSTM, based on the GCN and LSTM models, is proposed
and designed as shown in Section 2.6. Next, the predictive effect of the GCN-LSTM model
will be verified by experiments.

In the experiment, the threshold of correlation coefficient r is used to generate the
adjacency matrix of the graph structure. The selection of the threshold will directly affect the
number of non-zero values of the adjacency matrix, and different thresholds will generate
different adjacency matrixes. For the graph structure, when the r value between two points
is greater than or equal to the threshold, there is an edge between these two points. In
order to verify the predictive effect of the SST prediction model more comprehensively,
11 different thresholds are selected. The r values of the entire sea area and the adjacency
matrixes corresponding to the 11 thresholds are shown in Figure 6. The first subgraph is the
value of r between any two points. The remaining 11 subgraphs are the adjacency matrixes
for all thresholds. If there is an edge between two points, the corresponding position on
the adjacency matrix diagram is red; otherwise, it is blue. So, the larger the red area, the
greater the number of edges in the graph.

It can be clearly seen from Figure 6 that the r values are distributed symmetrically
along the diagonal line from the top left to the bottom right corner, which is consistent
with the undirected graph structure of the SST data. The closer to the diagonal line, the
higher the r value. As the threshold increases, the red area where there are edges gradually
becomes smaller and narrower, and this indicates that the number of edges in the graph
structure gradually decreases. When the threshold is equal to 0.88, there are edges between
most of the two points, and when the threshold is equal to 0.98, only the points with very
strong correlation have edges, so the number of edges in the graph is very small. Through
these experiments, we can generate the number of edges for the SST graph structure of
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the selected sea area based on the 11 different thresholds. The number of edges for each
threshold is shown in Table 4.
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Table 4. The number of edges for the different thresholds.

Threshold 0.88 0.89 0.90 0.91 0.92 0.93

No. of edges 2,216,234 2,078,242 1,897,754 1,669,650 1,402,046 1,133,382

Threshold 0.94 0.95 0.96 0.97 0.98 /

No. of edges 857,960 561,184 296,536 149,712 75,488 /

For different thresholds, the adjacency matrix of the graph is constructed by experimen-
tation, and then the graph structure of the SST is generated. Each SST graph is input into the
GCN-LSTM spatiotemporal fusion model for training and prediction. Then, the respective
predicted SST values of the entire sea area within the test time range are generated, and the
four evaluation criteria of the model are calculated through the predicted SST values and
actual values, so the predictive effect of the GCN-LSTM model can be compared with itself
when different thresholds are selected. The comparison results are shown in Figure 7.

It can be clearly seen from Figure 7 that the MAE, RMSE, and MAPE first decrease
and then go up with the increase in the threshold, so the predictive effect of the model first
improves and then deteriorates from the perspective of these three evaluation criteria. On the
contrary, the correlation coefficient r first increases and then decreases, and it also indicates
that the predictive effect of the model first improves and then deteriorates. This is consistent
with the actual situation of the graph structure. When the threshold is small, an edge with
an insufficient correlation relationship will be introduced, which will affect the predictive
effect of the model. As the threshold increases, the edge with a weak correlation relationship
is excluded, so the predictive effect of the model gradually becomes better. However, when
the threshold continues to increase, only the edge with a strong correlation relationship exists.
During this process, some valuable edges are excluded at the same time, resulting in too small
a number of edges, which further affects the predictive effect of the model. Therefore, the
predictive effect of the model deteriorates with the continuous increase in the threshold. It can
be seen from the experiment that when the threshold is set to 0.92, all the evaluation criteria
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are the optimal, and the model has the best predictive effect. So, in the following experiments,
if it is not explicitly stated, the default threshold will be 0.92.
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3.5. Effect Analysis of the GCN-LSTM Model

In the sea area selected by the experiment, three spatial points are selected for model
verification. The first one is at the boundary of the sea area and its coordinates of latitude and
longitude are (124.625◦ E, 21.125◦ N). The other two are within the sea area. Their coordinates
of latitude and longitude are (125.125◦ E, 27.125◦ N) and (129.875◦ E, 29.125◦ N), respectively.
These are shown in Figure 8.
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After the prediction of SST is completed, the comparison of the predicted SST and
observed SST at the three selected spatial points of each model is shown in Figure 9. There are
three figures. Figure 9A shows the comparison results for (124.625◦ E, 21.125◦ N). Figure 9B
shows the comparison results for (125.125◦ E, 27.125◦ N), and Figure 9C shows the comparison
results for (129.875◦ E, 29.125◦ N). In addition, each figure includes two subfigures, where
subfigure (a) is the comparison for the entire test time range from 19 April 2016 to 31 December
2018. In order to more clearly compare the predictive effects between different models, a
month is selected from 30 November 2017 to 30 December 2017 to compare the predictive
effects between different models. The subfigure (b) shows the comparison results over a
period of this month.
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For the predictive effect of the different models with different spatial correlation
mining methods, it can be clearly seen from the comparison figure for three spatial points
that the ConvLSTM model with convolutional sliding translation has a similar effect to
the LSTM-S model with the regular boundary division. SOM-LSTM with the clustering
neural network is better than the ConvLSTM and LSTM-S models. The GCN-LSTM model,
which uses the graph convolutional neural network to achieve spatial correlation, further
improves the effect of SST prediction, and the trend of the predicted SST for all three spatial
points is consistent with the trend of the observed SST.

The predictive effect of the model can be reflected more comprehensively through the
evaluation criteria. The comparison results of the evaluation criteria for the four models
used in the experiments at three spatial points are shown in Table 5.

Table 5. Comparison of evaluation criteria for different models at three spatial points.

Spatial Point Evaluation Criteria ConvLSTM LSTM-S SOM-LSTM GCN-LSTM

(124.625◦ E, 21.125◦ N)

MAE 0.4532 0.4499 0.2888 0.0659

RMSE 0.5659 0.5356 0.3643 0.0860

MAPE 0.0168 0.0165 0.0105 0.0024

r 0.9833 0.9908 0.9930 0.9995

(125.125◦ E, 27.125◦ N)

MAE 0.5401 0.3176 0.3180 0.1071

RMSE 0.7017 0.4431 0.4387 0.1407

MAPE 0.0225 0.0129 0.0128 0.0044

r 0.9894 0.9940 0.9957 0.9995

(129.875◦ E, 29.125◦ N)

MAE 0.4432 0.2715 0.2526 0.0787

RMSE 0.5568 0.3547 0.3373 0.1008

MAPE 0.0174 0.0106 0.0098 0.0030

r 0.9927 0.9963 0.9970 0.9997

As we can see from Table 5, the values of the four evaluation criteria for the ConvLSTM
model are all the worst. LSTM-S is similar to ConvLSTM and slightly better than the
ConvLSTM model in four aspects, while SOM-LSTM using the clustering neural network is
comprehensively superior to LSTM-S. Finally, GCN-LSTM greatly improves the predictive
effect from the perspective of the four evaluation criteria and is the best model.

It can be concluded from the experiments that regular boundary division is slightly
better than convolutional sliding translation for the predictive effect of a single point.
The clustering neural network breaks through the limitations of regular division and im-
proves the predictive effect compared with the above two methods. The spatial correlation
achieved through the graph convolutional neural network takes into account the spatial
correlation relationship of spatial points within and between groups and greatly improves
the predictive effect in SST prediction.

Next, the predictive effect of different models in the entire sea area will be verified,
and the advantages of the GCN-LSTM model proposed and designed in this paper will be
also proved. When all the models complete the training and prediction of SST for the entire
sea area and the predicted SST will be compared with the observed SST; the closer these
two values are, the better the predictive effect of the model is. First, a day is selected to test
the predictive effect of the different models. The day selected is 24 February 2018, and the
comparison results of all models for this day are shown in Figure 10.
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Figure 10. The comparison between the predicted and actual SST by the different models for the
same day.

It can be seen from Figure 10 that the predicted results of each model are consistent with
the change rule of SST, i.e., the higher the latitude, the lower the temperature. Furthermore,
it can be seen from the figure that there are many differences between the predicted values
and the actual values for the ConvLSTM model. Compared with the ConvLSTM model,
LSTM-S makes many improvements, and the overall SST distribution is closer to the
actual situation. The SOM-LSTM model has further improvement, and the predicted
SST distribution is closer to the actual distribution than that predicted by LSTM-S and
ConvLSTM. Finally, the prediction results of the GCN-LSTM model are only slightly
different from the actual SST, which indicates a greatly improved SST predictive effect.

Through the above experiment, the SST prediction ability of different models has been
verified by the single-day SST prediction, and the optimality of the GCN-LSTM model has
been proved. If the entire test time range is taken into account, the predictive effect of the
different models can be more fully reflected. This purpose can be achieved by calculating
the average SST over the entire test time range for each spatial point in the selected sea area.
Therefore, after the training and prediction are completed, the average predicted SST and
the average actual SST at each spatial point can be obtained, and the comparison results
of the predictive effect for different models can be realized in the entire sea area in the
spatial dimension, as well as for the entire test time range in the temporal dimension. The
comparison results are shown in Figure 11.

Water 2024, 16, x FOR PEER REVIEW 19 of 23 
 

 

is closer to the actual situation. The SOM-LSTM model has further improvement, and the 
predicted SST distribution is closer to the actual distribution than that predicted by LSTM-
S and ConvLSTM. Finally, the prediction results of the GCN-LSTM model are only slightly 
different from the actual SST, which indicates a greatly improved SST predictive effect. 

Through the above experiment, the SST prediction ability of different models has 
been verified by the single-day SST prediction, and the optimality of the GCN-LSTM 
model has been proved. If the entire test time range is taken into account, the predictive 
effect of the different models can be more fully reflected. This purpose can be achieved by 
calculating the average SST over the entire test time range for each spatial point in the 
selected sea area. Therefore, after the training and prediction are completed, the average 
predicted SST and the average actual SST at each spatial point can be obtained, and the 
comparison results of the predictive effect for different models can be realized in the entire 
sea area in the spatial dimension, as well as for the entire test time range in the temporal 
dimension. The comparison results are shown in Figure 11. 

 
Figure 11. The comparison between the average predicted and the actual SST for the entire sea 
area. 

It can be clearly seen from Figure 11 that the comparison results between the 
predicted and actual SST in the entire test time range are consistent with the comparison 
results of the single day. The spatial correlation implemented by the GCN and the GCN-
LSTM models proposed in this paper achieves the best prediction effect, and the predicted 
value is almost equal to the actual value. This result also fully reflects the influence of 
different spatial correlation mining methods on the SST deep learning model. The 
clustering neural network is better than the regular boundary division and convolutional 
sliding translation methods, and the GCN is superior to the clustering neural network. 

Next, different models will be compared by the evaluation criteria, MAE and MAPE. 
The first is the comparison result for the MAE. By calculating the MAE of 1600 spatial 
points in the sea area, MAE figures corresponding to different models can be generated, 
and then MAE figures of different models can be used to reflect whether the prediction 
effect is good or not. The comparison results of the MAE figures for the different models 
are shown in Figure 12. The 1600 spatial points in the figure are arranged in the form of 
40 × 40 in the latitude and longitude dimensions, and the color bars in the figure are used 
to indicate the quality of the prediction results. The closer the color is to blue, the better 
the predictive effect is, and the closer the color is to red, the worse the predictive effect is. 

 

Figure 11. The comparison between the average predicted and the actual SST for the entire sea area.

It can be clearly seen from Figure 11 that the comparison results between the predicted
and actual SST in the entire test time range are consistent with the comparison results
of the single day. The spatial correlation implemented by the GCN and the GCN-LSTM
models proposed in this paper achieves the best prediction effect, and the predicted value
is almost equal to the actual value. This result also fully reflects the influence of different
spatial correlation mining methods on the SST deep learning model. The clustering neural
network is better than the regular boundary division and convolutional sliding translation
methods, and the GCN is superior to the clustering neural network.

Next, different models will be compared by the evaluation criteria, MAE and MAPE. The
first is the comparison result for the MAE. By calculating the MAE of 1600 spatial points in
the sea area, MAE figures corresponding to different models can be generated, and then MAE
figures of different models can be used to reflect whether the prediction effect is good or not.
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The comparison results of the MAE figures for the different models are shown in Figure 12.
The 1600 spatial points in the figure are arranged in the form of 40 × 40 in the latitude and
longitude dimensions, and the color bars in the figure are used to indicate the quality of the
prediction results. The closer the color is to blue, the better the predictive effect is, and the
closer the color is to red, the worse the predictive effect is.
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As we can see from Figure 12, the predictive effect at most spatial points using
ConvLSTM is not ideal, with less blue, more yellow, and a small amount of red. The red
spatial points of the LSTM-S model have almost disappeared, while most of the spatial
points are blue, and there are still some yellow spatial points. When switching to the
SOM-LSTM model with the clustering neural network, most of the spatial points are blue
or light blue, and there are some light-yellow spatial points in the lower left corner. The
GCN-LSTM model using the graph convolutional neural network is the purest, and the
entire sea area is dark blue, which fully reflects the optimality and stability of the predictive
effect of this model.

Next is the evaluation criterion MAPE, which reflects the relative error between the
predicted value and the actual value and indicates the predictive effect of the model through
relative measurement. The MAPE comparison results for the different models for 40×40
spatial points in the entire sea area are shown in Figure 13.
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Because the value of MAPE is usually much smaller than the value of the MAE and
RMSE, the value range of the color bar for the MAPE is much smaller than that for the MAE
and the RMSE, so we only need to select the value range from 0 to 0.06. The MAPE of all
the models is also within this range. As we can see from Figure 13, the comparison results
of the MAPE are also consistent with those for the MAE and the RMSE. The ConvLSTM,
LSTM-S, and SOM-LSTM models show mainly light blue and blue, with some yellow
points, and ConvLSTM also has a few red points. GCN-LSTM behaves as usual in that the
entire sea area is dark blue. Therefore, the advantages and stability of the spatial correlation
through the GCN-LSTM model are proved once again through the MAPE comparison.

Finally, the effect of the different spatial correlation mining methods and different
models for SST prediction is comprehensively compared through the four evaluation
criteria. The comparison results of the evaluation criteria for the different models are
shown in Table 6.
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Table 6. Comparison of the average MAE, RMSE, MAPE, and r for the different models.

Evaluation Criteria ConvLSTM LSTM-S SOM-LSTM GCN-LSTM

MAE 0.4670 0.3506 0.2991 0.0901

RMSE 0.6047 0.4564 0.3949 0.1188

MAPE 0.0191 0.0140 0.0122 0.0036

r 0.9898 0.9941 0.9956 0.9996

It can be seen from Table 6 that the average evaluation criteria are also completely
consistent with the above experimental results. The results for the ConvLSTM and LSTM-S
models are close to each other, while those for the LSTM-S are a little bit better. After the
introduction of the clustering neural network, the SOM-LSTM improves the predictive
effect with respect to the MAE, RMSE, MAPE by nearly 40% compared with the previous
two models, and the correlation coefficient r also becomes bigger. The MAE, RMSE, and
MAPE of the GCN-LSTM model using the graph convolutional neural network decrease
by 69% compared with the previous three models, and it also has the biggest correlation
coefficient r. The experimental results prove that the spatial correlation implemented by
the graph convolutional neural network and the GCN-LSTM model proposed in this paper
are effective, optimal, and stable for SST prediction.

4. Discussion

In this paper, we explored the spatial correlation discovery and mining methods
and proposed the spatiotemporal fusion model for SST prediction. The first method
uses regular boundary division [43], including horizontal rectangular division, vertical
rectangular division, and square division. It can improve the predictive effect to a certain
extent compared with the model without spatial correlation; however, it depends on the
regular Euclidian space and requires explicit division. So, we introduced the second
method, which consists of convolutional sliding translation using the convolutional neutral
network [33]. It does not require explicit division and still depends on the regular Euclidian
space. The third method solves this problem using the clustering neural network for spatial
feature extraction [45]. However, it introduces a new problem, that is, the lack of spatial
correlation around the boundary of groups. Finally, we proposed the spatial correlation
mining method using the graph convolutional neural network and SST graph structure.
The proposed method can solve the above problems and more effectively mine the spatial
correlation of SSTs. Based on the proposed method, we also designed the GCN-LSTM
spatiotemporal fusion model for SST prediction. It combines the spatial advantages of the
GCN and the temporal advantages of LSTM and greatly improves the SST prediction.

We designed five models to verify the above methods and the proposed GCN-LSTM
model. Through various experiments, the method of regular boundary division was found
to have a similar predictive effect to the method using the convolutional neural network.
The clustering neural network method achieves much better prediction accuracy than the
first two methods. The methods using the graph convolutional neural network and the
GCN-LSTM model further improve the accuracy and have the best predictive effect. A
more accurate SST prediction will provide solid technical support for responding to the
challenges in marine biology [1,2], the global climate [3,4], and extreme weather events [5].

5. Conclusions

The SST data on the East China Sea were selected, and five models were verified by
various experiments. By comparison with other methods and models, we prove that the
proposed spatial correlation mining method using the graph convolutional neural network
and the proposed GCN-LSTM model can effectively capture the SST features from both
the spatial and temporal dimensions and achieve better accuracy for SST prediction. The
results show an RMSE of 0.1188 ◦C and an MAE of 0.0901 ◦C. The MAPE is 0.0036, and the
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r reaches up to 0.9996. The proposed method and model can solve the spatial prediction
problem and improve the effect of SST prediction.
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