Simulation of Gauged and Ungauged Streamflow of Coastal Catchments across Australia
Abstract
:1. Introduction
- Apply GR4J [16] daily rainfall–runoff models at all the coastal gauged catchments and evaluate their performance;
- Identify, cluster, and classify ungauged catchments into different categories;
- Transfer and apply GR4J models to all ungauged catchments and assess performance;
- Estimate daily and annual streamflow and create a nationwide coastal streamflow dataset for all gauged and ungauged catchments.
2. Australia’s Coastal Regions
2.1. Weather and Climate
2.2. Streamflow Measurements
- Distance from the coast in the catchment to avoid tidal effects and minimising the ungauged area;
- The availability of data from 1993 onwards with at least 5 years of operational observed streamflow data.
2.3. Developing Gauged and Ungauged Catchments
- Category 1: Ungauged area was downstream of a gauged catchment;
- Category 2: Ungauged catchments where there were nearby gauged catchments within a radius of up to 50 km;
- Category 3: Ungauged catchments with at least two neighbouring gauged catchments within a 50 km to 250 km radius and in the same Köppen climate zone (Figure A1 in Appendix A);
- Category 4: Ungauged catchments with only one or no neighbouring gauged catchments under a 250 km radius but within the same Köppen climate zone.
3. Data Quality Control and Gap Filling
3.1. Data Quality Control
- Download the time-series dataset and run the QATS (quality assurance of time-series) tool;
- Manually fill missing values (those unobserved and picked up by the tool) through a gap-filling heuristic;
- Plot the time series to manually scan for errors not flagged through automation;
- Reapply the above steps until a final dataset is agreed upon.
3.2. Gap Filling
- A linear interpolation was applied where the leading or rising trend of the hydrograph appeared to be constant, and little change occurred in the hydrometeorological information of rainfall and/or potential evapotranspiration (PET).
- The GR4J model was applied where a noticeable change appeared in the leading or rising trend of the hydrograph alongside evidence of a variation in the hydrometeorological information of rainfall and/or PET.
- In the case that a linear trend or otherwise was apparent, the gap was checked against the hydrological model simulations for the relevant durations, and where the trend was constant or where no noticeable event was simulated by the model, the linear interpolation technique was adopted or otherwise kept unchanged.
4. Methodology
4.1. Application of GR4J Model to Gauged Catchments
4.1.1. Input Data Preparation
4.1.2. Objective Function for Model Calibration
4.2. Estimation of Ungauged Streamflow
- was the gap-filled observed discharge time-series from the gauged locations upstream of an ungauged node on the same river or tributary (Figure 2a);
- was the simulated discharge from the intermediate area using parameters from the upstream gauge on the same river as the coastal node.
- and ;
- was the indicator function, such that if the distance is more than km, then the time-series is not used to estimate the discharge;
- was an inverse distance weighting of power , such that simulated discharge from closer sites receives a larger weighting than those further away.
- and ;
- 50 km km.
4.3. Evaluation Criteria
4.3.1. Evaluation Metrics
4.3.2. Evaluation Diagnostic Plots
4.3.3. Model Performance Ratings
5. Results
5.1. Gauged and Ungauged Catchments
5.2. Model Calibration and Validation
5.3. Performance Evaluation—Gauged Catchments
5.4. Performance Evaluation—Ungauged Catchments
5.5. Estimated Coastal Discharge
6. Discussion and Future Research
6.1. Model Calibration and Performance
6.2. Discharge Estimates from Ungauged Catchments
6.3. Future Research
7. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Depetris, P.J. The Importance of Monitoring River Water Discharge. Front. Water 2021, 3, 745912. [Google Scholar] [CrossRef]
- Dobriyal, P.; Badola, R.; Tuboi, C.; Hussain, S.A. A Review of Methods for Monitoring Streamflow for Sustainable Water Resource Management. Appl. Water Sci. 2017, 7, 2617–2628. [Google Scholar] [CrossRef]
- Kiang, J.E.; Stewart, D.W.; Archfield, S.A.; Osborne, E.B.; Eng, K. A National Streamflow Network Gap Analysis; United States Geological Survey: Reston, VA, USA, 2013. [Google Scholar]
- Zammit, C.; Sivapalan, M.; Viney, N.R.; Bari, M. Improvement of Physical Basis of Conceptual Model, LASCAM, with Explicit Inclusion of within Catchment Heterogeneity of Landscape Attributes. In Proceedings of the International Congress on Modelling and Simulation, Townsville, Australia, 14–17 July 2003; pp. 921–926. [Google Scholar]
- Seibert, J.; Beven, K.J. Gauging the Ungauged Basin: How Many Discharge Measurements Are Needed? Hydrol. Earth Syst. Sci. 2009, 13, 883–892. [Google Scholar] [CrossRef]
- Hrachowitz, M.; Savenije, H.H.G.; Blöschl, G.; McDonnell, J.J.; Sivapalan, M.; Pomeroy, J.W.; Arheimer, B.; Blume, T.; Clark, M.P.; Ehret, U.; et al. A Decade of Predictions in Ungauged Basins (PUB)-a Review. Hydrol. Sci. J. 2013, 58, 1198–1255. [Google Scholar] [CrossRef]
- Sefton, C.E.M.; Howarth, S.M. Relationships between Dynamic Response Characteristics and Physical Descriptors of Catchments in England and Wales. J. Hydrol. 1998, 211, 1–16. [Google Scholar] [CrossRef]
- Hao, Z.; Jin, J.; Xia, R.; Tian, S.; Yang, W.; Liu, Q.; Zhu, M.; Ma, T.; Jing, C.; Zhang, Y. CCAM: China Catchment Attributes and Meteorology Dataset. Earth Syst. Sci. Data 2021, 13, 5591–5616. [Google Scholar] [CrossRef]
- Tramblay, Y.; Rouché, N.; Paturel, J.E.; Mahé, G.; Boyer, J.F.; Amoussou, E.; Bodian, A.; Dacosta, H.; Dakhlaoui, H.; Dezetter, A.; et al. ADHI: The African Database of Hydrometric Indices (1950–2018). Earth Syst. Sci. Data 2021, 13, 1547–1560. [Google Scholar] [CrossRef]
- Moggridge, B.J.; Thompson, R.M. Cultural Value of Water and Western Water Management: An Australian Indigenous Perspective. Aust. J. Water Resour. 2021, 25, 4–14. [Google Scholar] [CrossRef]
- Hamilton, S.; Doyle, M.; Cordery, I. The Value of Water Monitoring. In Proceedings of the 36th Hydrology and Water Resources Symposium: The Art and Science of Water, HWRS 2015, Hobart, Australia, 7–10 December 2015; pp. 972–978. [Google Scholar]
- National Marine Science Committee. National Marine Science Plan 2015-2025 Factsheet; National Marine Science Committee: Coffs Harbour, Australia, 2015; ISBN 9781925012026. [Google Scholar]
- Husain, A.; Reddy, J.; Bisht, D.; Sajid, M. Fractal Dimension of Coastline of Australia. Sci. Rep. 2021, 11, 6304. [Google Scholar] [CrossRef]
- Melbourne-Thomas, J.; Constable, A.J.; Fulton, E.A.; Corney, S.P.; Trebilco, R.; Hobday, A.J.; Blanchard, J.L.; Boschetti, F.; Bustamante, R.H.; Cropp, R.; et al. Integrated Modelling to Support Decision-Making for Marine Social-Ecological Systems in Australia. ICES J. Mar. Sci. 2017, 74, 2298–2308. [Google Scholar] [CrossRef]
- Smith, D.C.; Fulton, E.A.; Apfel, P.; Cresswell, I.D.; Gillanders, B.M.; Haward, M.; Sainsbury, K.J.; Smith, A.D.M.; Vince, J.; Ward, T.M. Implementing Marine Ecosystem-Based Management: Lessons from Australia. ICES J. Mar. Sci. 2017, 74, 1990–2003. [Google Scholar] [CrossRef]
- Perrin, C.; Michel, C.; Andréassian, V. Improvement of a Parsimonious Model for Streamflow Simulation. J. Hydrol. 2003, 279, 275–289. [Google Scholar] [CrossRef]
- Chen, K.; McAneney, J. High-Resolution Estimates of Australia’s Coastal Population. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- CSIRO; BoM. State of the Climate 2020: Australia’s Changing Climate; CSIRO: Canberra, Australia; Bureau of Meteorology: Melbourne, Australia, 2020; ISBN 978-1-4863-1509-3. [Google Scholar]
- Dey, R.; Lewis, S.C.; Arblaster, J.M.; Abram, N.J. A Review of Past and Projected Changes in Australia’s Rainfall. Wiley Interdiscip. Rev. Clim. Chang. 2019, 10, e577. [Google Scholar] [CrossRef]
- Stern, H.; De Hoedt, G.; Ernst, J. Objective Classification of Australian Climates. Aust. Meteorol. Mag. 2000, 49, 87–96. [Google Scholar]
- Holper, P. Climate Change Science Information Paper: Australian Rainfall—Past, Present and Future; CSIRO: Canberra, Australia, 2011; p. 18. [Google Scholar]
- Milly, P.C.D.; Dunne, K.A.; Vecchia, A.V. Global Pattern of Trends in Streamflow and Water Availability in a Changing Climate. Nature 2005, 438, 347–350. [Google Scholar] [CrossRef]
- Amirthanathan, G.E.; Bari, M.A.; Woldemeskel, F.M.; Tuteja, N.K.; Feikema, P.M. Regional Significance of Historical Trends and Step Changes in Australian Streamflow. Hydrol. Earth Syst. Sci. 2023, 27, 229–254. [Google Scholar] [CrossRef]
- Atkinson, R.; Power, R.; Lemon, D.; O’Hagan, R.G.; Dee, D.; Kinny, D. The Australian Hydrological Geospatial Fabric—Development Methodology and Conceptual Architecture; CSIRO: Canberra, Australia, 2008; p. 57. [Google Scholar]
- Perraud, J.; Bridgart, R.; Bennett, J.C.; Robertson, D. SWIFT2: High Performance Software for Short-Medium Term Ensemble Streamflow Forecasting Research and Operations. In Proceedings of the MODSIM 2015, Broadbeach, Australia, 29 November–4 December 2015; pp. 2458–2464. [Google Scholar]
- Coron, L.; Andréassian, V.; Perrin, C.; Lerat, J.; Vaze, J.; Bourqui, M.; Hendrickx, F. Crash Testing Hydrological Models in Contrasted Climate Conditions: An Experiment on 216 Australian Catchments. Water Resour. Res. 2012, 48, 5. [Google Scholar] [CrossRef]
- Van Esse, W.R.; Perrin, C.; Booij, M.J.; Augustijn, D.C.M.; Fenicia, F.; Kavetski, D.; Lobligeois, F. The Influence of Conceptual Model Structure on Model Performance: A Comparative Study for 237 French Catchments. Hydrol. Earth Syst. Sci. 2013, 17, 4227–4239. [Google Scholar] [CrossRef]
- Li, M.; Wang, Q.J.; Bennett, J.C.; Robertson, D.E. Error Reduction and Representation in Stages (ERRIS) in Hydrological Modelling for Ensemble Streamflow Forecasting. Hydrol. Earth Syst. Sci. 2016, 20, 3561–3579. [Google Scholar] [CrossRef]
- Kunnath-Poovakka, A.; Eldho, T.I. A Comparative Study of Conceptual Rainfall-Runoff Models GR4J, AWBM and Sacramento at Catchments in the Upper Godavari River Basin, India. J. Earth Syst. Sci. 2019, 128, 33. [Google Scholar] [CrossRef]
- Hapuarachchi, H.A.P.; Bari, M.A.; Kabir, A.; Hasan, M.M.; Woldemeskel, F.M.; Gamage, N.; Sunter, P.D.; Zhang, X.S.; Robertson, D.E.; Bennett, J.C.; et al. Development of a National 7-Day Ensemble Streamflow Forecasting Service for Australia. Hydrol. Earth Syst. Sci. 2022, 26, 4801–4821. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V.K. Optimal Use of the SCE-UA Global Optimization Method for Calibrating Watershed Models. J. Hydrol. 1994, 158, 265–284. [Google Scholar] [CrossRef]
- Raupach, M.R.; Briggs, P.R.; Haverd, V.; King, E.A.; Paget, M.; Trudinger, C.M. The Centre for Australian Weather and Climate Research A Partnership between CSIRO and the Bureau of Meteorology Australian Water Availability Project (AWAP): CSIRO Marine and Atmospheric Research Component: Final Report for Phase 3; CSIRO: Canberra, Australia, 2009; ISBN 9781921605314. [Google Scholar]
- Priestley, C.H.B.; Taylor, R.J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Robertson, D.E.; Bennett, J.C.; Shrestha, D.; Wang, Q.J.; Enever, D.J.; Hapuarachchi, H.A.P.; Tuteja, N.K. The Performance of a New Ensemble Flood and Short-Term Streamflow Forecasting System for Australia. In Proceedings of the Hydrology and Water Resources Symposium 2014, HWRS 2014, Perth, Australia, 24–27 February 2014; pp. 913–920. [Google Scholar]
- Bennett, J.C.; Ling, F.L.N.; Post, D.A.; Grose, M.R.; Corney, S.P.; Graham, B.; Holz, G.K.; Katzfey, J.J.; Bindoff, N.L. High-Resolution Projections of Surface Water Availability for Tasmania, Australia. Hydrol. Earth Syst. Sci. 2012, 16, 1287–1303. [Google Scholar] [CrossRef]
- Huang, Z.; Zhao, T. Predictive Performance of Ensemble Hydroclimatic Forecasts: Verification Metrics, Diagnostic Plots and Forecast Attributes. Wiley Interdiscip. Rev. Water 2022, 9, e1580. [Google Scholar] [CrossRef]
- Razavi, T.; Coulibaly, P. Streamflow Prediction in Ungauged Basins: Review of Regionalization Methods. J. Hydrol. Eng. 2013, 18, 958–975. [Google Scholar] [CrossRef]
- Zanial, W.N.C.W.; Malek, M.A.; Reba, M.N.M. A Review on Rainfall Runoff Simulation at Ungauged Catchment. Int. J. Eng. Technol. 2018, 7, 162–167. [Google Scholar] [CrossRef]
- Belvederesi, C.; Zaghloul, M.S.; Achari, G.; Gupta, A.; Hassan, Q.K. Modelling River Flow in Cold and Ungauged Regions: A Review of the Purposes, Methods, and Challenges. Environ. Rev. 2022, 30, 159–173. [Google Scholar] [CrossRef]
- Parajka, J.; Viglione, A.; Rogger, M.; Salinas, J.L.; Sivapalan, M.; Blöschl, G. Comparative Assessment of Predictions in Ungauged Basins-Part 1: Runoff-Hydrograph Studies. Hydrol. Earth Syst. Sci. 2013, 17, 1783–1795. [Google Scholar] [CrossRef]
- Singh, R.; Archfield, S.A.; Wagener, T. Identifying Dominant Controls on Hydrologic Parameter Transfer from Gauged to Ungauged Catchments—A Comparative Hydrology Approach. J. Hydrol. 2014, 517, 985–996. [Google Scholar] [CrossRef]
- Liu, G.; Schwartz, F.W.; Tseng, K.H.; Shum, C.K. Discharge and Water-Depth Estimates for Ungauged Rivers:Combining Hydrologic, Hydraulic, and Inverse Modeling Withstage and Water-Area Measurements from Satellites. Water Resour. Res. 2015, 51, 6017–6035. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Chiew, F.H.S. Evaluation of Regionalisation Methods for Predicting Runoff in Ungauged Catchments in Southeast Australia. In Proceedings of the Interfacing Modelling and Simulation with Mathematical and Computational Sciences: 18th IMACS World Congress, MODSIM09, Cairns, Australia, 13–17 July 2009; pp. 3442–3448. [Google Scholar]
- Zhang, Y.; Vaze, J.; Chiew, F.H.S.; Teng, J.; Li, M. Predicting Hydrological Signatures in Ungauged Catchments Using Spatial Interpolation, Index Model, and Rainfall-Runoff Modelling. J. Hydrol. 2014, 517, 936–948. [Google Scholar] [CrossRef]
- Narbondo, S.; Gorgoglione, A.; Crisci, M.; Chreties, C. Enhancing Physical Similarity Approach to Predict Runoff in Ungauged Watersheds in Sub-Tropical Regions. Water 2020, 12, 528. [Google Scholar] [CrossRef]
- Kim, U.; Kaluarachchi, J.J. Application of Parameter Estimation and Regionalization Methodologies to Ungauged Basins of the Upper Blue Nile River Basin, Ethiopia. J. Hydrol. 2008, 362, 39–56. [Google Scholar] [CrossRef]
- Yilmaz, M.U.; Onoz, B. A Comparative Study of Statistical Methods for Daily Streamflow Estimation at Ungauged Basins in Turkey. Water 2020, 12, 459. [Google Scholar] [CrossRef]
- Singh, L.; Mishra, P.K.; Pingale, S.M.; Khare, D.; Thakur, H.P. Streamflow Regionalisation of an Ungauged Catchment with Machine Learning Approaches. Hydrol. Sci. J. 2022, 67, 886–897. [Google Scholar] [CrossRef]
- Bárdossy, A. Calibration of Hydrological Model Parameters for Ungauged Catchments. Hydrol. Earth Syst. Sci. 2007, 11, 703–710. [Google Scholar] [CrossRef]
- Swain, J.B.; Patra, K.C. Streamflow Estimation in Ungauged Catchments Using Regionalization Techniques. J. Hydrol. 2017, 554, 420–433. [Google Scholar] [CrossRef]
- Pool, S.; Vis, M.; Seibert, J. Regionalization for Ungauged Catchments—Lessons Learned from a Comparative Large-Sample Study. Water Resour. Res. 2021, 57, e2021WR030437. [Google Scholar] [CrossRef]
- Abraham, T.; Liu, Y.; Tekleab, S.; Hartmann, A. Prediction at Ungauged Catchments through Parameter Optimization and Uncertainty Estimation to Quantify the Regional Water Balance of the Ethiopian Rift Valley Lake Basin. Hydrology 2022, 9, 150. [Google Scholar] [CrossRef]
- Merz, R.; Tarasova, L.; Basso, S. Parameter’s Controls of Distributed Catchment Models—How Much Information Is in Conventional Catchment Descriptors? Water Resour. Res. 2020, 56, e2019WR026008. [Google Scholar] [CrossRef]
- Oudin, L.; Kay, A.; Andráassian, V.; Perrin, C. Are Seemingly Physically Similar Catchments Truly Hydrologically Similar? Water Resour. Res. 2010, 46, W11558. [Google Scholar] [CrossRef]
- Bao, Z.; Zhang, J.; Liu, J.; Fu, G.; Wang, G.; He, R.; Yan, X.; Jin, J.; Liu, H. Comparison of Regionalization Approaches Based on Regression and Similarity for Predictions in Ungauged Catchments under Multiple Hydro-Climatic Conditions. J. Hydrol. 2012, 466–467, 37–46. [Google Scholar] [CrossRef]
- Rojas-Serna, C.; Lebecherel, L.; Perrin, C.; Andreassian, V.; Oudin, L. How should a rainfall-runoff model be parameterized in an almost ungauged catchment? A methodology tested on 609 catchments. Water Resour. Res. 2016, 52, 4765–4784. [Google Scholar] [CrossRef]
- Azdy, R.A.; Darnis, F. Use of Haversine Formula in Finding Distance between Temporary Shelter and Waste End Processing Sites. J. Phys. Conf. Ser. 2020, 1500, 012104. [Google Scholar] [CrossRef]
- Althoff, D.; Rodrigues, L.N. Goodness-of-Fit Criteria for Hydrological Models: Model Calibration and Performance Assessment. J. Hydrol. 2021, 600, 126674. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Chiew, F.H.S.; McMahon, T.A. Assessing the Adequacy of Catchment Streamflow Yield Estimates. Aust. J. Soil Res. 1993, 31, 665–680. [Google Scholar] [CrossRef]
- Kalin, L.; Isik, S.; Schoonover, J.E.; Lockaby, B.G. Predicting Water Quality in Unmonitored Watersheds Using Artificial Neural Networks. J. Environ. Qual. 2010, 39, 1429–1440. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Luo, Y.; Potter, C.; Moran, P.J.; Grieneisen, M.L.; Zhang, M. Modeling Pesticide Diuron Loading from the San Joaquin Watershed into the Sacramento-San Joaquin Delta Using SWAT. Water Res. 2017, 121, 374–385. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Xiong, L.; Liu, D.; Chen, J.; Kim, J.S. Improving Parameter Transferability of GR4J Model under Changing Environments Considering Nonstationarity. Water 2019, 11, 2029. [Google Scholar] [CrossRef]
- Wang, A.; Solomatine, D.P. Practical Experience of Sensitivity Analysis: Comparing Six Methods, on Three Hydrological Models, with Three Performance Criteria. Water 2019, 11, 1062. [Google Scholar] [CrossRef]
- National Land and Water Resources Audit. Australian Water Resource Assessment 2000; CSIRO: Canberra, Australia, 2000. [Google Scholar]
- CSIRO. Water in the Mitchell Region. Water in the Gulf of Carpentaria Drainage Division. A Report to the Australian Government from the CSIRO Northern Australia Sustainable Yields Project; CSIRO: Canberra, Australia, 2009; pp. 347–416. [Google Scholar]
- Mayer, X.; Ruprecht, J.; Bari, M. Stream Salinity Status and Trends in South-West Western Australia; CSIRO: Canberra, Australia, 2005. [Google Scholar]
- Evans, A.; Jones, D.; Smalley, R.; Lellyett, S. An Enhanced Gridded Rainfall Dataset Scheme for Australia; CSIRO: Canberra, Australia, 2020; ISBN 978-1-925738-12-4. [Google Scholar]
- McFarlane, D. Water Resource Assessment for the Pilbara Region A Report to the West Australian Government and Industry Partners from the CSIRO Pilbara Water Resource Assessment; CSIRO: Canberra, Australia, 2015. [Google Scholar]
- CSIRO. Water in the Timor Sea Drainage Division. A Report to the Australian Government from the CSIRO Northern Australia Sustainable Yields Project. CSIRO Water for a Healthy Country Flagship, Australia; CSIRO: Canberra, Australia, 2009. [Google Scholar]
- Hapuarachchi, H.A.P.; Kabir, A.; Zhang, X.S.; Kent, D.; Bari, M.A.; Tuteja, N.K.; Hasan, M.M.; Enever, D.; Shin, D.; Plastow, K.; et al. Performance Evaluation of the National 7-Day Water Forecast Service. In Proceedings of the 22nd International Congress on Modelling and Simulation, MODSIM 2017, Hobart, Australia, 3–8 December 2017; pp. 1815–1821. [Google Scholar] [CrossRef]
- Viney, N.R.; Vaze, J.; Chiew, F.H.S.; Perraud, J.; Post, D.A.; Teng, J. Comparison of Multi-Model and Multi-Donor Ensembles for Regionalisation of Runoff Generation Using Five Lumped Rainfall-Runoff Models. In Proceedings of the Interfacing Modelling and Simulation with Mathematical and Computational Sciences: 18th IMACS World Congress, MODSIM09, Cairns, Australia, 13–17 July 2009; pp. 3428–3434. [Google Scholar]
- Oudin, L.; Andréassian, V.; Perrin, C.; Michel, C.; Le Moine, N. Spatial Proximity, Physical Similarity, Regression and Ungaged Catchments: A Comparison of Regionalization Approaches Based on 913 French Catchments. Water Resour. Res. 2008, 44, 1–15. [Google Scholar] [CrossRef]
- Silberstein, R.; Aryal, S.; Pearcey, M.; Durrant, J.; Braccia, M.; Boniecka, L.; McCallum, S.; Smith, K.; Bari, M.; Hodgson, G.; et al. Rainfall-Runoff Modelling in South-West Western Australia. 3. Performance of the “Adopted Model”. South-West Western Australia Sustainable Yields Project: Technical Report. A Report to the Australian Government from the CSIRO South-West Western Australia; CSIRO: Canberra, Australia, 2010. [Google Scholar]
- Sleziak, P.; Szolgay, J.; Hlavčová, K.; Parajka, J. Assessment of the Effectiveness of Calibrating a Conceptual Hydrological Model in Relation to Selected Catchment Characteristics. In Catchment Processes in Regional Hydrology: Linking Experiments and Modelling in Carpathian Drainage Basins; University of West Hungary Press: Sopron, Hungary, 2015; pp. 1–9. [Google Scholar]
- Shu, C.; Ouarda, T.B.M.J. Improved Methods for Daily Streamflow Estimates at Ungauged Sites. Water Resour. Res. 2012, 48, 1–15. [Google Scholar] [CrossRef]
- Beck, H.E.; van Dijk, A.I.; De Roo, A.; Miralles, D.G.; McVicar, T.R.; Schellekens, J.; Bruijnzeel, L.A. Global-Scale Regionalization of Hydrologic Model Parameters. J. Am. Water Resour. Assoc. 2016, 52, 3599–3622. [Google Scholar] [CrossRef]
Metrics | Abbreviation | Equation | Description |
---|---|---|---|
Nash-Sutcliffe Efficiency | NSE | Compares the mean square error against the observation variable. It varies between −∞ to 1 with a perfect score of 1. | |
Percent bias | PBias | Measures the difference between the mean/median of forecast variable and observation. It varies between −∞ to +∞ with a perfect score of 0. |
Plot | X-Axis | Y-Axis | Description |
---|---|---|---|
Time series | Time step | Simulated and observed streamflow | Daily and monthly discharge |
Flow-duration | Probability of exceedance (%) | Simulated and observed streamflow | Daily and monthly streamflow |
Correlation scatter | Observed streamflow | Simulated streamflow | Daily, monthly, and annual total streamflow |
Performance Rating | NSE | Catchment (%) | Abs (PBias) % | Catchment (%) |
---|---|---|---|---|
Very Good | NSE ≥ 0.70 | 57 | Abs(PBias) ≤ 25 | 88 |
Good | 0.5 ≤ NSE < 0.7 | 23 | 25 < Abs(PBias) ≤ 50 | 6 |
Satisfactory | 0.3 ≤ NSE < 0.5 | 8 | 50 < Abs(PBias) ≤ 70% | 3 |
Unsatisfactory | NSE < 0.3 | 12 | Abs(PBias) > 70% | 3 |
Drainage Division | Gauged Stations | Ungauged Area | |||||
---|---|---|---|---|---|---|---|
No. | Area | 1 | 2 | 3 | 4 | Total | |
Northeast Coast (NEC) | 83 | 366 | 35 | 13 | 10 | 0 | 58 |
Southeast Coast NSW (SEN) | 60 | 75 | 44 | 4 | 2 | 0 | 50 |
Southeast Coast VIC (SEV) | 60 | 75 | 11 | 4 | 1 | 0 | 16 |
Tasmania (TAS) | 53 | 38 | 21 | 1 | 0 | 0 | 22 |
Murray–Darling Basin (MDB) | 7 | 882 | 9 | 0 | 0 | 0 | 9 |
South Australian Gulf (SAG) | 23 | 9 | 5 | 5 | 8 | 6 | 24 |
Southwest Coast (SWC) | 55 | 159 | 8 | 8 | 4 | 0 | 21 |
Pilbara–Gascoyne (PG) | 17 | 276 | 11 | 19 | 18 | 3 | 52 |
Tanami–Timor Sea Coast (TTS) | 33 | 312 | 91 | 21 | 95 | 26 | 233 |
Carpentaria Coast (CC) | 13 | 304 | 141 | 21 | 81 | 73 | 315 |
Northwestern Plateau (NWP) | 1 | 53 | 0 | 6 | 3 | 7 | 17 |
Southwestern Plateau (SWP) | 0 | 0 | 2 | 1 | 4 | 11 | 18 |
Total | 405 | 2549 | 378 | 106 | 231 | 128 | 835 |
Drainage Division | Overall Total | Gauged | Ungauged | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | Total | |||
Northeast Coast (NEC) | 58.47 | 35.67 | 11.73 | 7.34 | 3.73 | 22.80 | |
Southeast Coast NSW (SEN) | 20.4 | 11.23 | 8.04 | 1.07 | 0.06 | 9.18 | |
Southeast Coast VIC (SEV) | 11.95 | 10.87 | 0.92 | 0.11 | 0.05 | 1.07 | |
Tasmania (TAS) | 39.07 | 25.12 | 13.10 | 0.85 | 13.95 | ||
Murray–Darling Basin (MDB) | 4.38 | 4.38 | 0.00 | 0.00 | |||
South Australian Gulf (SAG) | 0.23 | 0.04 | 0.02 | 0.11 | 0.02 | 0.04 | 0.19 |
Southwest Coast (SWC) | 3.48 | 2.57 | 0.73 | 0.15 | 0.03 | 0.91 | |
Pilbara–Gascoyne (PG) | 6.15 | 4.52 | 0.34 | 0.70 | 0.50 | 0.09 | 1.63 |
Tanami–Timor Sea Coast (TTS) | 146.15 | 61.72 | 27.16 | 9.69 | 38.12 | 9.46 | 84.43 |
Carpentaria Coast (CC) | 109.44 | 30.25 | 25.00 | 8.99 | 26.52 | 18.68 | 79.19 |
Northwestern Plateau (NWP) | 9.41 | 1.48 | 7.38 | 0.03 | 0.28 | 0.24 | 7.93 |
Southwestern Plateau (SWP) | 10.91 | 0.00 | 10.83 | 0.01 | 0.02 | 0.05 | 10.90 |
Total | 419.95 | 187.85 | 105.3 | 29.0 | 69.3 | 28.5 | 232.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bari, M.A.; Khan, U.; Amirthanathan, G.E.; Tuteja, M.; Laugesen, R.M. Simulation of Gauged and Ungauged Streamflow of Coastal Catchments across Australia. Water 2024, 16, 527. https://doi.org/10.3390/w16040527
Bari MA, Khan U, Amirthanathan GE, Tuteja M, Laugesen RM. Simulation of Gauged and Ungauged Streamflow of Coastal Catchments across Australia. Water. 2024; 16(4):527. https://doi.org/10.3390/w16040527
Chicago/Turabian StyleBari, Mohammed Abdul, Urooj Khan, Gnanathikkam Emmanuel Amirthanathan, Mayank Tuteja, and Richard Mark Laugesen. 2024. "Simulation of Gauged and Ungauged Streamflow of Coastal Catchments across Australia" Water 16, no. 4: 527. https://doi.org/10.3390/w16040527