
Academic Editors: Shouhong Zhang,

Anita Raimondi and Jun Wang

Received: 9 December 2024

Revised: 3 January 2025

Accepted: 5 January 2025

Published: 8 January 2025

Citation: Tanyanyiwa, C.T.;

Armitage, N.P.; Okedi, J. The

Hydrological Impacts of Retrofitted

Detention Ponds for Urban Managed

Aquifer Recharge in the Cape Flats,

South Africa. Water 2025, 17, 145.

https://doi.org/10.3390/w17020145

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

The Hydrological Impacts of Retrofitted Detention Ponds for
Urban Managed Aquifer Recharge in the Cape Flats,
South Africa
Craig Tinashe Tanyanyiwa , Neil Philip Armitage and John Okedi *

Future Water Research Institute, Department of Civil Engineering, University of Cape Town,
Cape Town 7700, South Africa; craigtanyanyiwa@gmail.com (C.T.T.); neil.armitage@uct.ac.za (N.P.A.)
* Correspondence: john.okedi@uct.ac.za

Abstract: A stormwater detention pond in a low-income residential area in Cape Town,
South Africa, was retrofitted to enhance its infiltration capacity and support, among other
things, Managed Aquifer Recharge (MAR) in the Cape Flats Aquifer (CFA). Continuous
field monitoring was not feasible owing to theft and vandalism risks, leading to the devel-
opment of a calibrated and validated hydrological model. This model, which integrated the
surface and subsurface interactions, evaluated the pond’s performance under six scenarios.
The scenarios included: pre- and post-retrofit (Scenarios 1 and 2); potential MAR coupled
with the planned abstraction and additional MAR by the City of Cape Town in the CFA
(Scenario 3); the impact of an increased infiltration area coupled with a lowered water
table (Scenario 4); and climate change impacts on MAR (Scenarios 5 and 6). The study
found that retrofitting increased recharge by 118% even with a high water table—i.e., 1.2 m
below ground level—(Scenario 2). Scenario 3 indicated groundwater abstraction could
increase MAR by up to 290% as the water table is lowered. These findings demonstrate the
potential hydrological benefits of retrofitted ponds in enhancing MAR while maintaining
their detention functions.

Keywords: stormwater detention ponds; managed aquifer recharge; retrofitting; stormwater
harvesting

1. Introduction
Water scarcity is a significant challenge affecting millions worldwide, especially in

arid and semiarid regions such as South Africa that require sustainable water resource
management approaches. South Africa’s growing population and climate change are
putting additional strain on the already limited water resources, underlining the need for
innovative approaches to ensure sustainable water supply in South Africa [1,2].

Managed aquifer recharge (MAR) involves the intentional recharge of groundwater to
supplement natural recharge and enhance aquifer storage [3]. It can provide a cost-effective
and sustainable solution for water supply in water-scarce regions because it enables the
storage of excess water during periods of high rainfall for use during dry spells [4,5].
However, MAR requires suitable injection or infiltration sites to ensure adequate recharge
rates and to prevent contamination of the underlying aquifer.

In Cape Town, South Africa, the Cape Flats Aquifer (CFA) is a groundwater resource
that can potentially provide a significant portion of the city’s water supply [6]. The City
of Cape Town (CoCT) intends to abstract water from the CFA as part of its New Water
Program [7]. Although the CFA has not yet been overexploited, it is imperative to ensure
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its sustainable use. To this end, the proposed abstraction from the CoCT’s production wells
will be coupled with MAR through the injection of high-quality treated wastewater effluent
into several recharge wells.

Stormwater has also been identified as a viable method for water resource augmenta-
tion in CoCT. The resource is appealing because of increasing water scarcity, as exemplified
by the 2015–2018 drought that saw the CoCT narrowly escaping Day Zero, the date when it
had been projected that the city’s taps would be shut off [7–9].

Okedi (2019) [10] identified MAR into the CFA as an effective method for implement-
ing stormwater harvesting (SWH). He proposed that stormwater could be harvested by
retrofitting stormwater detention ponds for MAR, highlighting that some of the 230+ de-
tention ponds in the CoCT could theoretically be retrofitted to improve their infiltration
capacity for this purpose. While stormwater retrofitting is a well-established concept in
the urban water management literature, its practical application to South African public
infrastructure for facilitating urban MAR remains an underexplored research area. Ad-
vancing knowledge in this area is critical to assessing the technical, social, and economic
feasibility of retrofitting stormwater infrastructure in the CoCT to implement urban MAR
and enhance water security.

In previous studies [11,12], one stormwater detention pond was retrofitted and tested
in a low-income residential area in Mitchells Plain, Cape Town, to evaluate its potential for
enhancing SWH through MAR. However, the risk of theft and vandalism in the area (and
in South Africa more broadly) made real-time, long-term field monitoring of the pond’s
SWH performance unfeasible. To address this limitation, this study employs a hydrological
modelling approach to assess the long-term performance of the retrofitted detention pond.

In this study, the modelling was carried out using the PCSWMM Professional (ver.
7.5) software, a commonly used tool for simulating urban drainage systems and their
impacts on water quality and quantity [13,14]. The model was calibrated and validated
using historical rainfall, runoff, and groundwater data. Six scenarios were developed to
assess the effects of different design configurations and climatic parameters on the pond’s
performance.

This paper presents the results of this study, offering insights into the performance
of a retrofitted stormwater detention pond as a MAR site over an unconfined aquifer.
It contributes to the growing literature on using SuDS and MAR as sustainable water-
supply solutions in water-scarce regions. The modelling approach used in this study is a
potentially valuable tool that can be used to evaluate the likely performance of retrofitted
stormwater detention ponds for MAR, especially in areas where continuous and extended
field monitoring is not feasible owing to security concerns. The findings also contribute to
the global effort towards achieving Sustainable Development Goal 6, which aims to ensure
the availability and sustainable management of water and sanitation for all.

2. Modelling SuDS
Conventional stormwater management approaches typically aim to collect and convey

precipitation as quickly and efficiently as reasonably possible to nearby receiving waters
through engineered structures. Although this may reduce the risk of local flooding and
property damage, it usually fails to maintain the pre-development water balances and
address water quality concerns. By contrast, Sustainable Drainage Systems (SuDS) have
emerged as an alternative stormwater management approach. SuDS are ‘drainage sys-
tems that are environmentally beneficial, causing minimal or no long-term detrimental
impact’ [15]. Also known as Low Impact Development (LID), SuDS offer a holistic means of
managing stormwater by mimicking the natural hydrological cycle to preserve and recreate
pre-development ecosystems [16–18]. They generally encourage stormwater from small
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and frequent rainfall events to infiltrate and/or evaporate at the catchment, neighbourhood,
and individual lot scales [19].

The impact of SuDS on water systems can be assessed through time-consuming and
costly field monitoring [20], or with hydrological and hydraulic models that enable the user
to predict the short- and long-term impacts of different types of SuDS interventions [21].
Although the impact of SuDS on surface water systems has been well documented, its
influence on aquifer recharge is less understood.

Hydrological models are essential tools for water-related systems as they provide
solutions for resolving problems, filling temporal and spatial data gaps, and optimising
networks. They can aid in planning, designing, and operating water systems, including
flood routing, forecasting, stormwater design, and analysis [22]. They are also helpful
for evaluating stormwater infrastructure such as pipes, drains, and ponds, enabling the
cost-effective prediction of various interventions and hydrological conditions [23].

Among the various software developed for simulating single- or long-term hydrologi-
cal events [18,24], the Stormwater Management Model (SWMM) is arguably the most pop-
ular. Originally developed by the United States Environmental Protection Agency (USEPA)
and CDM Inc. (Turnersville, NJ, USA) in 1971, SWMM is an open-source window-based
desktop program that has, in recent years, used the SWMM5 computational engine [23,25].
PCSWMM, a commercial user interface for the SWMM software, was first released in
1984 [26].

Models built using the SWMM engine are largely deterministic, that is, they use limited,
known scientific knowledge with limited observed data. However, the SWMM engine
includes subroutines that rely on statistical models, including regression and stochastic
models [22] (James, 2005). Therefore, assessing uncertainty is essential to ensure the
accuracy and validity of modelling results.

PCSWMM has limited subsurface modelling capabilities compared to groundwater
modelling software, such as MODFLOW, which limits its use in modelling some SuDS
(called LIDs in the software), such as infiltration ponds, especially in areas with high water
tables that influence the infiltration rate [27]. While SWMM engine-driven software like
PCSWMM does not simulate groundwater interaction particularly well, it remain popular
for modelling SuDS [27–31]. The software performs reasonably well in areas where the
infiltration rate is minimally affected by the water table. PCSWMM’s functionality for
modelling shallow aquifers (high water tables) can be enhanced by subsurface calibration,
application of lateral groundwater equations, or modifying SWMM functions.

Coupled models, which link surface and groundwater models, are better suited to
modelling flow in areas with shallow water tables; however, the coupling process is complex
and often requires advanced coding experience. Furthermore, coupled models are only
applicable and helpful if calibrated and validated [32–35]. In instances where calibration
and validation of both surface and subsurface are unachievable, SWMM-based software
can nevertheless provide valuable insights into hydrological systems with their limited
surface and subsurface modelling capabilities.

3. Materials and Methods
3.1. Description of the Study Area

This paper presents a study conducted in Cape Town, the second most populous city
in South Africa, with approximately 5 million inhabitants in 2024 (Figure 1). Cape Town is
located at latitude 34◦ S 18◦ E. The city experiences a Mediterranean climate characterised
by warm, dry summers and cold, wet winters [36–38].
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and a groundwater capacity of around 600 Mm3 [7,42]. It is a significant source of irriga-
tion water [39,43]. Significantly for this study, the aquifer is overlaid by many detention 
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A detention pond was chosen for use in a case study from the 234 available dry de-
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dition of the pond, hydrological feasibility for retrofitting as a MAR site, proximity to a 
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education. The selected pond, named ‘School Pond’ by the researchers and located in Ron-
devlei Park, Mitchells Plain (Figure 2), was the best compromise [11]. 

The School Pond is owned and maintained by the CoCT and falls within the Mitchells 
Plain West hydrological catchment. It has a surface area of 9950 m2, a maximum depth of 
approximately 2 m, two inlets, and one outlet. It was originally designed as a flood atten-
uation hydraulic structure to hold back runoff from significant storm events from the sur-
rounding 170,600 m2 catchment before gradually releasing it into downstream storm con-
duits. 

The pond was redesigned to retrofit infiltration areas to promote MAR, incorporating 
limited landscaping to extend the pond’s amenities. The workforce was recruited from 
the community [11,12]. Infiltration in the pond was enhanced by constructing a 90 m long 
infiltration swale by placing vertical PVC sheeting supported by sandbags to create a 

Figure 1. City of Cape Town location.

Cape Town is in a water-scarce region. The City authorities have implemented various
measures to manage its water resources and mitigate risks [2,7]. These include exploring
new water sources such as desalination, and maximising previously underutilised sources,
such as groundwater from the Cape Flats Aquifer (CFA).

The CFA is an unconfined, sandy aquifer covering an area of ≈630 km2 with surface
elevations ranging from 0 to 110 m above sea level [39,40] comprising of quaternary sands
overlying the weathered Malmesbury Formation, Table Mountain Sandstone, and Cape
Granite Basement [40,41]. It is relatively shallow with a maximum thickness of 40–55 m
and a groundwater capacity of around 600 Mm3 [7,42]. It is a significant source of irrigation
water [39,43]. Significantly for this study, the aquifer is overlaid by many detention ponds,
some of which may be retrofitted for managed aquifer recharge.

A detention pond was chosen for use in a case study from the 234 available dry
detention ponds. The selection criteria for the study site included: location within the
CFA, proximity to an urban settlement, accessibility to the public, current functionality and
condition of the pond, hydrological feasibility for retrofitting as a MAR site, proximity to
a stormwater source, safety and security, and the potential for community involvement
and education. The selected pond, named ‘School Pond’ by the researchers and located in
Rondevlei Park, Mitchells Plain (Figure 2), was the best compromise [11].
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Figure 2. School Pond locality map.

The School Pond is owned and maintained by the CoCT and falls within the Mitchells
Plain West hydrological catchment. It has a surface area of 9950 m2, a maximum depth
of approximately 2 m, two inlets, and one outlet. It was originally designed as a flood
attenuation hydraulic structure to hold back runoff from significant storm events from
the surrounding 170,600 m2 catchment before gradually releasing it into downstream
storm conduits.

The pond was redesigned to retrofit infiltration areas to promote MAR, incorporating
limited landscaping to extend the pond’s amenities. The workforce was recruited from
the community [11,12]. Infiltration in the pond was enhanced by constructing a 90 m long
infiltration swale by placing vertical PVC sheeting supported by sandbags to create a berm
that detained water to a depth of 300 mm along a contour in front of the inlets. Excess
stormwater overflows over two weirs at either end of the berm, through a swampy area
in the lower portion of the pond and out through a stormwater pipe into the regional
underground stormwater system. The capital cost of the retrofit amounted to ZAR 667,000,
with a present value maintenance cost of ZAR 108,700 over 10 years (as of 2023). The
construction process was completed in 25 working days, and the final retrofit elements are
shown in Figure 3.

3.2. Model Development

Modelling provides a simplified representation of real-world conditions in a controlled,
simulated environment [44]. The PCSWM model (Figure 4) was developed using data
from various sources, including the CoCT, the UCT-GIS laboratory, the literature, and field
surveys. Local weather data, spanning 2005 to 2022, was obtained from nearby weather
stations managed by the South African Weather Services (SAWS), supplemented by climate
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change data from the UCT Climate Systems Analysis Group (CSAG). The groundwater, soil,
and infiltration characteristics were derived from site-specific hydrogeological surveys.
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A 0.5 m bare earth digital elevation model (DEM) from a Light Detection and Rang-
ing (LiDAR) survey and stormwater infrastructure shapefiles were integrated into PC-
SWMM Professional (ver. 7.5), facilitating watershed and sub-catchment delineation.
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Sub-catchments, with a typical area of around 0.25 ha, were defined to reflect different
hydrological areas and land uses. The flow paths and areas contributing to the pond inflow
and outflow were also defined. Geometric properties were automatically assigned, while
land cover and soil properties were sourced from the literature and field data.

The model was calibrated and validated against observed data, including rainfall
depths, temperature, and inflow rates. A ‘LID’ was assigned to the pond following surface
model calibration. Groundwater data from the installed groundwater monitoring wells
in the pond were used to calibrate the subsurface model. The calibrated PCSWM model
incorporating an infiltration swale was then used to evaluate the hydraulic performance of
the retrofitted swale under various scenarios.

3.3. Model Conceptualisation

Real-time monitoring was not feasible owing to theft risks, necessitating parameter
estimation through modelling. The PCSWMM model was developed to evaluate the hy-
draulic performance of the retrofitted detention. The system was divided into surface and
subsurface components, which were dynamically linked and interacted within the PC-
SWMM environment. Although PCSWMM has some noted limited subsurface modelling
capabilities, a moisture balance approach was employed, tracking water movement and
storage across layers using a water balance equation. This approach, along with model
calibration and validation (discussed in subsequent sections), provided an adequate repre-
sentation of the aquifer despite inherent limitations. Field measurements were incorporated
for model validation, offering additional ground truthing. Furthermore, ongoing studies at
the site employ IoT techniques to collect continuous data, which enhances the accuracy of
moisture balance calculations and provides deeper insights into system dynamics. These
findings will be detailed in subsequent publications.

3.3.1. Surface Model

The surface model in this study attempted to encompass the dynamic interactions
between precipitation, catchment features, stormwater networks, and evapotranspiration.
Parameters such as precipitation data, catchment characteristics, stormwater network spec-
ifications, and temperature data are required for PCSWMM to reasonably replicate the
complex dynamics between precipitation, catchment properties, and the stormwater net-
work. Precipitation is routed onto the various sub-catchments where it is initially stored in
depressions for potential infiltration and/or evaporation. Runoff occurs when depressions
overflow, directing excess water along defined pathways, generally the roads, into the
stormwater network via catch pits, ultimately reaching the retrofitted detention pond.

3.3.2. Sub-Surface Model

The subsurface model involves the infiltration of water captured by surface processes.
Various parameters such as soil properties and land cover determine the infiltration rate
and volume. These parameters, which are challenging to determine accurately, may be
estimated from the literature, GIS tools, and field tests, and adjusted during model cali-
bration. This study focused on the pond area and the retrofitted ‘School Pond’ infiltration
swale. The swale was modelled in PCSWMM as a ‘Rain Garden’ LID. Both the real and
modelled swale had both a surface layer and an unsaturated soil layer with fluctuating
saturation due to seasonal water table changes (Figure 5). Water infiltrates the soil layer
from the surface before percolating into the aquifer. The soil parameters were derived from
the literature and laboratory studies conducted with both this and associated studies, such
as Jones (2019) [45] and Mavundla (2022) [46]. PCSWMM was used to conduct moisture
balance calculations for each layer, tracking water movement and storage. The lateral
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movement of water was simulated by creating an outlet node in the aquifer object. The
calibrated transfer rate modelled the lateral groundwater flow.
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3.4. Model Input Parameters
3.4.1. Rainfall

Three rainfall datasets were used: one for model calibration and validation, another for
continuous simulation spanning 17 years, and a third to assess the impacts of climate change
on managed aquifer recharge. Data from an on-site weather station aided calibration, while
a station 3.6 km away from the pond (Wolfgat station) provided continuous simulation
data. Rainfall data from both stations were processed as time-series files. Two climate
change models from the 26 available models were chosen to evaluate their impact on
MAR in the retrofitted pond. The Hadley Global Environment Model 2 climate change
RCP8.5 (HadGEM2-CC-rcp85) and the Institute of Numerical Climate Model version 4
RCP4.5 (inmcm4-rcp45) were chosen for this study as they represented the wettest and
driest scenarios observed at the Cape Town Airport station [10]. The climate change rainfall
data were disaggregated into 15-min intervals using NetSTORM software (version 2022.02)
employing paired stochastic rainfall disaggregation methods.

3.4.2. Stormwater Network

The road and stormwater for the Rondevlei Park neighborhood were obtained from
the as-built drawings. Drawings containing pipe diameters, slopes, invert levels, catch pit
locations, and inlet and outlet positions in the pond were digitized using PCSWMM.

3.4.3. Catchment Characteristics

Sub-catchments were classified by land use and assigned properties from the lit-
erature and desktop studies. Imperviousness percentages were calculated using high-
resolution satellite imagery from Google Earth Pro (version 7.1) and Sentinel 2A data.
Manning’s roughness coefficients and depression storage depths were obtained from the
literature [25,47].

3.4.4. Infiltration Parameters

The study defined infiltration parameters using empirical and experimental methods
for hydraulic modelling. The SCS curve method was used for built-up areas, and the
Horton infiltration model was used for undeveloped areas, including the pond [48]. The
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Horton parameters were derived from double-ring infiltration tests [45]. The infiltration
parameters are important calibration parameters.

3.4.5. Evapotranspiration

Evapotranspiration (ETo) is essential in surface modelling, as it can significantly
affect the volume of water lost to the atmosphere. Several empirical ETo models exist,
but the Hargreaves method is mainly used in data-scarce regions because it requires
minimal data to estimate ETo [49]. This study thus used the Hargreaves method to derive
hourly evapotranspiration values using the best publicly available extra-terrestrial radiation
dataset and historical temperature data.

3.4.6. LID Control Parameters

This study modelled the retrofitted infiltration swale as a SuDS, evaluating various
SuDS processes, including infiltration, storage, and percolation. The swale was modelled
as an infiltration trench comprising surface and soil layers. The surface and soil layer
parameters are listed in Tables 1 and 2, respectively. Soil samples were collected from the
pond during the installation of the monitoring wells. The soil layer thickness (vadose zone)
was determined from the borehole logs (monitoring well logs). The soil samples were used
to determine the porosity of the soil layers by calculating the void volume ratio and total
volume using standard soil property equations from soil mechanics and geology [50].

Table 1. Surface layer parameters.

Parameter Values Source

Berm height (mm) 300 Constructed berm height

Vegetation volume (fraction) 0.8 Google Earth imagery

Surface roughness (Manning’s) 0.03 [47]

Surface slope (%) 3.3 Constructed infiltration swale slope

Table 2. Soil layer parameters.

Parameter Values Source

Thickness (mm) 500 Swale surface to lowest recorded water table depth

Porosity 0.29 Laboratory experiments

Field capacity 0.19 [26]

Wilting point 0.085 [26]

Conductivity (mm/h) 110 [46]

Conductivity slope 9.8 [46]

Suction head (mm) 49.5 [26]

3.4.7. Aquifer Attributes

The SWMM computational engine includes subsurface elements, such as groundwater-
surface interaction, bank storage, and a threshold-saturated water zone. Subsurface repre-
sentation involves an unsaturated upper zone (UZ) and a lower saturated zone (LZ). The
water table fluctuates within the UZ and LZ, which receive vertical inflow from pervious
sub-catchments and lose moisture via evapotranspiration. The percolation equation gov-
erns the flow from UZ to LZ. Lateral groundwater flow is modelled using equations like the
linear reservoir, Dupuit–Forchheimer, or Hooghoudt [51]. However, the two-zone model in
SWMM has limitations, particularly in simulating groundwater mounding and lateral flows
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between aquifers beneath multiple sub-catchments. Specifically, these limitations include
(1) that it is a simplistic representation comprising one saturated and unsaturated zone and
does not allow for multi-layered aquifer systems modelling; (2) Water is assumed uniformly
spread across the entire catchment area (the water table responds uniformly under pervi-
ous and impervious areas), which means groundwater mounding under infiltration areas
cannot be simulated; (3) the capillary fringe of the saturated zone cannot move upwards by
either diffusion or capillary action. (4) Lateral groundwater flows between aquifer systems
that underlie several sub-catchments cannot be simply simulated and require modifying
the model structure. Despite these limitations, it is possible to route infiltration from
sub-catchments to an aquifer modelled as a ‘tank’ and then use the Dupuit-Forchheimer
equation to model lateral groundwater flow to a channel or node. The Dupuit-Forchheimer
parameters influencing aquifer response can be calibrated using observed data to develop
a more realistic long-term groundwater response [14]. This approach was employed in
this study.

3.5. Model Calibration and Validation

Model calibration involves adjusting parameters to align the simulated outputs with
observed ones to account for model structure uncertainties and minimise errors. It aims
to maintain various objective functions within acceptable limits, typically 25% accuracy,
although some models demand tighter tolerances and aim for less than 10%. The rec-
ommended range for wet weather flow is ±10% of volume and ±15% of the flow peak.
Calibration requires at least three significant events [22]. Evaluation criteria typically in-
clude flow volume between −10% and +20%, peak flow between −15% and +25%, and
similar shapes of hydrographs.

Short-term time series data can provide credible calibration if accurately measured,
while long-term data, such as precipitation, aid validation and inference. Input parameter
estimation and optimisation involves statistical analysis of observed and modelled data
using methods like maximum likelihood or sum of squares. PCSWMM calibrates various
parameters, including runoff, pollutant wash-off, groundwater flow, elevation, node depth,
inflow, flooding, water quality, and flow rate [51]. Sensitivity analysis identifies uncertain
parameters requiring adjustment to fit simulated data to observed data and assesses the
extent and impact of different adjustment levels. Calibration quality is assessed using
objective functions (OF) like Integral Square Error (ISE) (1) and Nash–Sutcliffe Efficiency
(NSE) [22]. Table 3 displays the ranges and interpretations of the two commonly used
objective functions.

Table 3. ISE and NSE ranges for model calibration and validation [52,53].

Parameter Poor Fair Good Very Good Excellent

ISE ≥25 10 ≤ ISE < 25 6 ≤ ISE < 10 3 ≤ ISE < 6 0 ≤ ISE < 3

NSE 0.3< 0.3 ≤ NSE < 0.5 0.5 ≤ NSE < 0.65 0.65 ≤ NSE < 0.75 0.75 ≤ NSE < 1

3.5.1. Surface Model Calibration

A portable area-velocity flow meter (AVFM) was used to measure the inflow from one
of the inlets to the pond during rainfall events. The choice of a portable meter aimed to
reduce the risk of instrumentation theft, although on-site robbery or hijacking remained a
potential concern. The risk of robbery was mitigated by the presence of a neighbourhood
watch, which conducted regular patrols during flow-logging events. The AVFM contained
a submersible ultrasonic sensor that measures flowing water’s velocity and depth (level) in
an open channel or pipe. This information is relayed to a programmable battery-powered
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data logger box that computes and records the water profile area given the pipe diameter
and, consequently, the flow rate. Flow readings are stored in a data logger. The AVFM has
an accuracy of ±0.25% of the reading and can measure flows with a range of 0.1 to 6.2 m/s.
It was used in conjunction with a weather site (www.windy.com accessed from 1 January
2020) that gave advance warning of incoming storms. Four storm events, each lasting at
least three hours, were recorded with flow rates measured at one-minute intervals. Three
of these events were used for calibration, while the fourth was reserved for validation
(Table 4).

Table 4. Selected storms for calibration and validation.

Event Date Model Process Rainfall/Duration

13 June 2022 Calibration 7.8 mm/3.55 h

14 June 2022 Calibration 6.0 mm/3.5 h

23 June 2022 Calibration 8.6 mm/2.95 h

17 August 2022 Validation 4.2 mm/5.5 h

A subsequent sensitivity analysis using the SRTC tool evaluated parameters influenc-
ing pond inflow, identifying 15 as most sensitive (Figure 6). These parameters were then
optimised based on data derived from the AVFM’s flow rate measurements.
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Manual calibration of model parameters ensued, focusing on achieving the best fit for
simulated hydrograph shape, peak flow rates, and peak time. Integral Square Error (ISE)
and Nash–Sutcliffe Efficiency (NSE) served as calibration objective functions (OF). While
the simulated hydrograph closely resembled the observed one (Figure 7), a five-minute
phase discrepancy was observed, attributed to a partially blocked stormwater pipe affecting
pond inflow.

Validation indicated satisfactory performance based on NSE and ISE. Despite a 41%
higher simulated peak flow compared to the observation, falling beyond the recommended
ranges, it was considered acceptable given the model’s primary objective of estimating
volumes rather than peak flows. This deviation aligns with the findings by Randall et al.
(2019) [28]. Table 5 summarises objective function values and interpretations for calibration
and validation exercises, consolidating the surface model’s refinement process outcomes.
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Table 5. Summary of the surface model calibration results.

Objective Function
Value

Comment
Simulated Calibrated Verified Validated

ISE 3.54 2.7 2.72 4.97 The ISE value is rated
‘Very Good’ (Table 3)

NSE 0.131 0.493 0.486 0.648 The NSE value is rated
‘Very Good’ (Table 3)

Event volume (L) 159,900 130,400 +18.4%

Peak flow (L/s) 60.1 35.3 +41% difference

3.5.2. Subsurface Model Calibration

The calibration of the subsurface model in this study was crucial due to its significant
impact on stormwater infiltration rates and volumes within a retrofitted pond. Ground-
water calibration utilised data from monitoring wells within the pond, collecting monthly
readings in summer and fortnightly in winter, spanning 203 days from 13 October 2021
to 4 May 2022. A sensitivity analysis of 34 parameters using the SRTC tool, with four
sensitivity points, resulted in 136 model runs, identifying lower evaporation depth as the
most influential parameter on mean groundwater level.

Parameter optimisation was aimed at attaining a realistic groundwater profile using
NSE as the objective function. However, adjusting certain parameters yielded unrealistic
outcomes, such as water table levels exceeding the swale surface elevation and improbable
values, such as field capacity surpassing soil porosity. Adjusting the B1 coefficient, a com-
ponent of the Dupuit-Forchheimer equation that influences the rate of lateral groundwater
flow, to achieve a desirable positive NSE value resulted in dimensionally heterogeneous val-
ues. Hence, a dimensionally homogenous Dupuit-Forchheimer approximation for lateral
groundwater flow was adopted, with B1 maintained at a value of 2.
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Trade-offs were made during iterative parameter fine-tuning to balance profile shape,
realistic aquifer parameter values, and NSE and ISE values. Validation of the groundwater
model was hindered by a lack of usable data owing to Cape Mole Rats (Bathyergus suillus)
digging tunnels under the berm that drained the swale and thus upset the experiment until
such time as the PVC barrier could be extended deeper than the rats were prepared to dig.
Meantime, concerns that the observed water level in the groundwater monitoring well
might not reflect infiltration in the swale meant that some data could not be used for model
validation.

PCSWMM uses instantaneous data points (at 15-min intervals) to calculate NSE and
ISE values, which presents a challenge when comparing continuous simulated data to
observed monthly data points. Thus, the simulated groundwater levels were exported to
Microsoft Excel 2022, and the simulated data’s moving averages (mean) were computed.
This process resulted in a closer match between the computed and observed data, leading
to higher NSE and ISE values compared to those derived directly from the PCSWMM
software (Figure 8, Table 6).

Water 2025, 17, x FOR PEER REVIEW 13 of 21 
 

 

 

Figure 8. Groundwater elevation curves with processed observed data. 

The ISE ratings were excellent in both observed and simulated groundwater eleva-
tion graphs, with NSE ratings ranging from good to excellent, depending on data pro-
cessing methods. The mean difference between observed and simulated water tables was 
minimal at 0.04 m, suggesting reasonable confidence in utilising the model for long-term 
groundwater simulations. Despite challenges, the model demonstrated adequacy for pre-
dicting groundwater dynamics over extended periods. 

3.5.3. MAR Volumes 

For all scenarios, the infiltrated volume in the detention pond—considered the vol-
ume contributing to MAR—was calculated using the water balance presented in Equation 
(1). 𝐼𝑁𝐹௪ =  𝐼௩ + 𝑅௩ − 𝑂௩ − 𝐸𝑣𝑎𝑝௦௨ (1)

where INFgw is the infiltration to groundwater, Iv is the inflow volume into the pond from 
the two inlets, Rv is the runoff volume resulting from rainfall falling over the pond area, 
Ov is the resulting outflow that drains to the existing stormwater network, and Evapsurface is 
the evaporation from the pond surface mainly evaporation from depression storage and 
ponded water. The stored groundwater volume (MAR) is then derived from Equation (2). 𝑀𝐴𝑅 =  𝐼𝑁𝐹௪ − 𝐸𝑣𝑎𝑝௪ − 𝐺𝑊௦ (2)

where, Evapgw is evaporation from the upper and lower saturated aquifer zones via evap-
otranspiration, and GWseepage is groundwater seepage defined as percolation into the deep 
aquifer [51]. 

3.6. Model Scenarios 

The retrofitted pond’s performance was analysed under six scenarios to determine 
infiltrated stormwater (MAR) volume using water balance. Scenarios 1 and 2 assessed the 

27.1

27.2

27.3

27.4

27.5

27.6

27.7

27.8

27.9

2021/10/11

2021/11/05

2021/11/30

2021/12/25

2022/01/19

2022/02/13

2022/03/10

2022/04/04

2022/04/29

G
ro

un
dw

at
er

 E
le

va
tio

n 
(m

am
sl)

Date

Simulated GW (Moving Average) Observed GW Simulated GW Processed

Figure 8. Groundwater elevation curves with processed observed data.

Table 6. Summary of groundwater calibration using processed data.

OF
Value

Comment
Calibrated Verified Cleaned

ISE 0.187 0.173 0.0012 The ISE value is rated
‘Excellent’ (Table 1)

NSE 0.556 0.63 0.82 The NSE is rated
‘Excellent’ (Table 1)

The ISE ratings were excellent in both observed and simulated groundwater elevation
graphs, with NSE ratings ranging from good to excellent, depending on data processing
methods. The mean difference between observed and simulated water tables was minimal
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at 0.04 m, suggesting reasonable confidence in utilising the model for long-term ground-
water simulations. Despite challenges, the model demonstrated adequacy for predicting
groundwater dynamics over extended periods.

3.5.3. MAR Volumes

For all scenarios, the infiltrated volume in the detention pond—considered the volume
contributing to MAR—was calculated using the water balance presented in Equation (1).

INFgw = Iv + Rv − Ov − Evapsur f ace (1)

where INFgw is the infiltration to groundwater, Iv is the inflow volume into the pond from
the two inlets, Rv is the runoff volume resulting from rainfall falling over the pond area, Ov

is the resulting outflow that drains to the existing stormwater network, and Evapsurface is
the evaporation from the pond surface mainly evaporation from depression storage and
ponded water. The stored groundwater volume (MAR) is then derived from Equation (2).

MAR = INFgw − Evapgw − GWseepage (2)

where, Evapgw is evaporation from the upper and lower saturated aquifer zones via evapo-
transpiration, and GWseepage is groundwater seepage defined as percolation into the deep
aquifer [51].

3.6. Model Scenarios

The retrofitted pond’s performance was analysed under six scenarios to determine
infiltrated stormwater (MAR) volume using water balance. Scenarios 1 and 2 assessed
the pre- and post-retrofit (Figure 9) long-term swale performance and recharge volumes
spanning 17 years (2005–2022).
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Scenario 3 investigated potential MAR if the City of Cape Town implemented its
planned abstraction and MAR from the CFA [7,54], anticipating a 2.5 m decline in the School
Pond’s water table and potentially enhancing infiltration volume. Scenario 4 examined a
larger infiltration area amidst lowered water tables (Figure 10). Scenarios 5 and 6 assessed
climate change impact on MAR, employing HadGEM2-CC-rcp85 and inmcm4-rcp45 models
representing the wettest and driest scenarios from 2084 to 2100.
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4. Results
4.1. Scenarios 1–4

A 17-year continuous simulation assessed the infiltration swale’s performance under
varying hydrological conditions. The two inlets and direct precipitation onto the pond
contributed an estimated total stormwater volume of 256,000 m3 (256 ML) in Scenarios 1 to
4. The School Pond’s infiltration potential was an estimated 17% of the stormwater inflow
pre-retrofit. In Scenario 1, 45% of infiltrated water was lost through evapotranspiration, a
trend consistent across scenarios (Figure 11). This percentage increased in scenarios with a
lower water table due to increased water availability for evapotranspiration.

The post-retrofit scenario demonstrated that the swale should capture a greater frac-
tion of infiltrated stormwater compared with the pre-retrofit scenario. The swale’s higher
permeability compared to the general pond and swampy areas allows more water to be
directly stored in the CFA, thereby reducing the amount of water available for evapotranspi-
ration. The total recharge was increased by 118% or 52,300 m3 with the retrofit introduction,
albeit with a higher water table. Lowering the water table by 2.5 m increased the potential
recharge by 244%, an additional 108,500 m3. Enlarging the swale area further boosted the
recharge by 286% compared to pre-retrofit.
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Figure 11. Water balance for Scenarios 1 to 4.

The simulation results from the four scenarios demonstrated that the retrofit signifi-
cantly increased recharge by detaining and infiltrating water that would otherwise be lost
to the stormwater network (Table 7).

Table 7. Results for Scenarios 1–4.

Pre-Retrofit
(Scenario 1)

Post-Retrofit
(Scenario 2)

Retrofitted with the
Lowered Water Table

(Scenario 3)

Retrofitted Extended
Infiltration Swale

(Scenario 4)

Infiltrated stormwater (m3) 80,800 131,000 190,000 214,000

Evapotranspiration (m3) 36,300 34,400 37,400 42,000

MAR (m3) 44,500 96,800 153,000 172,000

SW infiltrated to GW (%) 17 38 60 67

Percentage change (%) – 118 244 286

4.2. Scenarios 5–6

Two climate change scenarios, intermediate and high emissions pathways, were
simulated using continuous rainfall data to assess the infiltration swale’s performance in
managing stormwater. Scenario 2, based on historical data from the past 17 years, served as
the baseline. The total rainfall projections for Cape Town from 2084 to 2100 were 5284 mm
and 8023 mm for the intermediate and high emissions scenarios, respectively. Stormwater
infiltration decreases with declining rainfall. During drier years, the retrofitted basin will
capture a greater proportion of water leading to reduced outflow (Figure 12). For example,
Scenarios 5 and 6 indicated only 5% and 9% loss of stormwater as outflow, respectively,
compared with 23% for Scenario 2, with a higher total rainfall. Dry spells also allow for
more substantial water table recovery, enhancing infiltration but also resulting in increased
evapotranspiration (Table 8). Over 17 years, the MAR volumes for Scenarios 5 and 6 would
likely contribute around 4% and 8% of the City of Cape Town’s peak daily demand in the
summer of 2022 [55].
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Table 8. Results for Scenarios 2, 5 and 6.

Post-Retrofit (Scenario 2) Retrofitted Intermediate
Emissions (Scenario 5)

Retrofitted High
Emissions (Scenario 6)

Infiltrated stormwater (m3) 131,000 80,800 101,000

Evapotranspiration (m3) 34,400 25,600 30,900

MAR (m3) 96,800 38,300 69,700

SW infiltrated to GW (%) 38 35 39

Mean Annual MAR (m3) 5900 2340 4250

Percentage Change – −37% −24%

5. Discussion
5.1. Impact of Pond Retrofits on MAR

The modelling results showed a significant 118% increase in infiltration with the
introduction of retrofitting (Scenario 1 vs. Scenario 2), validating the hydraulic benefits of
retrofitting in Cape Town’s detention ponds. Retrofitting enhances infiltration by retaining
and infiltrating water, thus preventing its loss to the stormwater network. However, the
high winter water tables in the CFA may restrict MAR, as Seyler et al. (2016) [56] and Mauck
(2017) [42] noted. Encouragingly, planned groundwater abstraction in the CFA can augment
MAR volume and aquifer replenishment. This is validated by the sensitivity analysis, which
indicated the significance of CFA characteristics in shaping groundwater response, except
for the SuDS soil thickness. Lowering the water table creates opportunities for expanding
the swale area, leading to a substantial 290% increase in infiltration volumes compared to
pre-retrofit scenarios. While individual pond contributions to CoCT’s daily demand are
modest, they emphasize the potential of pond retrofitting for MAR. Comparable benefits
may be achievable in other ponds with similar CFA characteristics, even when approaching
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the upper limits of allowable vadose depths. Thus, further investigation is recommended
to explore the ramifications of such retrofits in broader catchment areas.

5.2. Impact of Climate Change on SWH via MAR

The study highlighted the significant impact of climate change on rainfall and the
consequent stormwater volume received at the pond. Both climate change scenarios
indicated a reduction in MAR, with the high emissions scenario showing greater MAR
due to increased rainfall. Climate change will also escalate evapotranspiration rates as
summers (and winters) become hotter and drier. The higher evapotranspiration rates from
the retrofitted pond could positively contribute to urban cooling and mitigate the heat
island effects through evaporative cooling—a process in which evaporated water absorbs
heat from the surrounding air and surfaces—see Coutts et al. (2013); Qiu et al. (2013); Moss
et al. (2019); and Bakhshoodeh et al. (2022) [57–60].

5.3. Model Limitations

The geohydrological model was constrained by the various assumptions made during
its development and implementation, which inevitably impact the reliability of the results
and consequent conclusions.

Calibration relied on storm events rather than continuous flow data because of the
impracticality of installing a permanent flow meter at the study site. Only four of the
seven recorded storm events were usable because of logger error. Although calibration
can be carried out with this number [61], the model’s response under extreme conditions
is uncertain.

Using PCSWMM to simulate the local aquifer flow characteristics meant the assump-
tion of a constant aquifer transfer rate, neglecting variability. However, the absence of the
necessary data to calibrate and validate the flux-dependent aquifer boundary conditions
in MODFLOW led to the conclusion that a coupled model such as SWMM-MODFLOW
would not provide superior results compared with the calibrated and validated PCSWMM
model selected.

The absence of appropriate instrumentation prevented recording pond outflow vol-
umes due to the high costs and theft risks associated with installing an instrumented weir.

These limitations underscore the need for cautious interpretation of the findings
and highlight areas for future model refinement, such as addressing data constraints and
exploring alternative calibration approaches to enhance model robustness and reliability.

6. Conclusions
This study evaluated the short- and long-term hydrological impacts of retrofitting

a pond using PCSWMM software. Extensive field monitoring of inflows, outflows, and
evapotranspiration was replaced with a model to estimate MAR due to concerns about
instrumentation theft and vandalism at School Pond. Despite these constraints, some
field monitoring of inflows, temperature, rainfall, groundwater quality, and depths was
conducted with additional groundwater research by Schneuwly et al. (2024) [62]. The
findings from this study demonstrate that it is feasible to calibrate and validate both surface
and subsurface models with PCSWMM software within acceptable parameters.

Six scenarios were developed to evaluate the effectiveness of the retrofitted ponds.
This study established that detention ponds in a sandy aquifer, such as CFA, have some
current infiltration potential, but pond retrofits can enhance recharge. In the case study
site, retrofitting potentially increases recharge volume by 118% when the water table is
high. However, if the CoCT implements groundwater abstraction over the CFA, resulting
in a lower water table, a more significant increase in MAR is possible. Although the likely
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increase in the MAR offered by the School Pond alone is unlikely to contribute substantially
to CoCT’s supply, if it is possible to extend this approach to many more ponds with similar
characteristics, there could be a substantial impact on the CoCT supply, as explored by
Okedi (2019) [10]. On the other hand, climate change is likely to lead to decreased rainfall;
thus, any retrofitted ponds are anticipated to collect less MAR in the future.

The study results highlight the potential advantages of retrofitting detention ponds
for MAR while preserving their primary function of flood management. Although high
water tables currently limit the realization of MAR benefits, future scenarios suggest that
more water may be harvested and stored as the water table drops. Thus, the potential for
increased MAR volumes and replenishment of the aquifer for groundwater abstraction
presents a promising opportunity for future research and implementation.
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