Links Between Two Duckweed Species (Lemna minor L. and Spirodela polyrhiza (L.) Schleid.), Light Intensity, and Organic Matter Removal from the Water—An Experimental Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Biomass of Duckweeds
3.2. Chlorophyll-a Concentration in Water
3.3. Dissolved Organic Matter Content in Water
4. Discussion
5. Conclusions
- Two studied duckweed species showed different patterns of growth response to different light intensities. Lemna minor development was directly proportional to the light intensity: it grew better in better light conditions. Spirodela polyrhiza, by contrast, appeared to have had its growth suppressed in the highest light intensities;
- Lemna minor growth was weaker in tanks with added organic matter as compared to control tanks. In contrast, strong development of algae in the water was observed in these tanks, which suggests the existence of a competitive relationships between both groups of primary producers;
- Dissolved organic carbon concentration at the end of the experiment was the highest in tanks with the lowest light intensity and where the growth of Lemna minor was weaker. In reverse, low DOC values at medium and high light corresponded to higher values of this duckweed biomass there. This may suggest that light intensity played a positive role in a process of organic matter removal by Lemna minor.
- In the case of Spirodela polyrhiza, no clear pattern was observed in the context of organic matter removal due to the suppression of its growth in conditions of high light intensity.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landolt, E.; Kandeler, R. Biosystematic Investigations in the Family of Duckweeds (Lemnaceae), Vol. 4: The Family of Lemnaceae-a Monographic Study, Vol. 2 (Phytochemistry, Physiology, Application, Bibliography); Veroeffentlichungen des Geobotanischen Instituts der ETH, Stiftung Ruebel: Zürich, Switzerland, 1986. [Google Scholar]
- Janes, R.A.; Eaton, J.W.; Hardwick, K. The effects of floating mats of Azolla filiculoides Lam. and Lemna minuta Kunth on the growth of submerged macrophytes. In Management and Ecology of Freshwater Plants: Proceedings of the 9th International Symposium on Aquatic Weeds, European Weed Research Society; Springer: Dordrecht, The Netherlands, 1996; pp. 23–26. [Google Scholar]
- Janse, J.H.; Van Puijenbroek, P.J. Effects of eutrophication in drainage ditches. In Nitrogen, the Confer-Ns; Elsevier: Amsterdam, The Netherlands, 1998; pp. 547–552. [Google Scholar]
- Kilgore, K.J.; Hoover, J.J. Effects of hypoxia on fish assemblages in a vegetated waterbody. J. Aquat. Plant Manag. 2001, 39, 40–44. [Google Scholar]
- Parr, L.; Perkins, R.G.; Mason, C.F. Reduction in photosynthetic efficiency of Cladophora glomerata, induced by overlying canopies of Lemna spp. Water Res. 2002, 36, 1735–1742. [Google Scholar] [CrossRef]
- de Tezanos Pinto, P.; Allende, L.; O’Farrell, I. Influence of free-floating plants on the structure of a natural phytoplankton assemblage: An experimental approach. J. Plankton Res. 2007, 29, 47–56. [Google Scholar] [CrossRef]
- Pasztaleniec, A.; Poniewozik, M. The impact of free-floating plant cover on phytoplankton assemblages of oxbow lakes (The Bug River Valley, Poland). Biologia 2013, 68, 18–29. [Google Scholar] [CrossRef]
- Scheffer, M.; van Nes, E.H. Shallow lakes theory revisited: Various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 2007, 584, 455–466. [Google Scholar] [CrossRef]
- Iberite, M.; Iamonico, D.; Abati, S.; Abbate, G. Lemna valdiviana Phil. (Araceae) as a potential invasive species in Italy and Europe: Taxonomic study and first observations on its ecology and distribution. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2011, 145, 751–757. [Google Scholar] [CrossRef]
- Njambuya, J.; Stiers, I.; Triest, L. Competition between Lemna minuta and Lemna minor at different nutrient concentrations. Aquat. Bot. 2011, 94, 158–164. [Google Scholar] [CrossRef]
- Hussner, A. Alien aquatic plant species in European countries. Weed Res. 2012, 52, 297–306. [Google Scholar] [CrossRef]
- Ge, X.; Zhang, N.; Phillips, G.C.; Xu, J. Growing Lemna minor in agricultural wastewater and converting the duckweed biomass to ethanol. Bioresour. Technol. 2012, 124, 485–488. [Google Scholar] [CrossRef] [PubMed]
- Romanowska-Duda, Z.; Pszczółkowski, W. Biomasa Lemnaceae jako alternatywny substrat dla ekoenergetyki. Acta Innov. 2013, 9, 28–30. [Google Scholar]
- Bergmann, B.A. Nutrient removal from swine lagoon effluent by Duckweed. Trans. ASAE 2000, 42, 263–269. [Google Scholar] [CrossRef]
- Men, B.X.; Ogle, B.; Lindberg, J.E. Use of duckweed as a protein supplement for growing ducks. Asian-Australas. J. Anim. Sci. 2001, 14, 1741–1746. [Google Scholar] [CrossRef]
- Sońta, M.; Rekiel, A. Rzęsa jako potencjalne źródło białka dla świń. Przegląd Hod. 2018, 86, 7. [Google Scholar]
- Kutera, J.; Paruch, A. Możliwości stosowania rzęsy wodnej w procesach oczyszczania ścieków bytowo-gospodarczych. Zesz. Probl. Postępów Nauk. Rol. 2001, 475, 155–162. [Google Scholar]
- Amare, E.; Kebede, F.; Mulat, W. Wastewater treatment by Lemna minor and Azolla filiculoides in tropical semi-arid regions of Ethiopia. Ecol. Eng. 2018, 120, 464–473. [Google Scholar] [CrossRef]
- Kostecka, J.; Kaniuczak, J. Vermicomposting of duckweed (Lemna minor L.) biomass by Eisenia fetida (Sav.) earthworm. J. Elementol. 2008, 13, 571–579. [Google Scholar]
- Cao, H.X.; Fourounjian, P.; Wang, W.; Hussain, C.M. The Importance and Potential of Duckweeds as a Model and Crop Plant for Biomass-Based Applications and Beyond. In Handbook of Environmental Materials Management; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–16. [Google Scholar]
- Wang, W.; Kerstetter, R.A.; Michael, T.P. Evolution of Genome Size in Duckweeds (Lemnaceae). J. Bot. 2011, 2011, 570319. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hasegawa, H. Aquatic arsenic: Phytoremediation using floating macrophytes. Chemosphere 2011, 83, 633–646. [Google Scholar] [CrossRef]
- Yang, J.; Li, G.; Bishopp, A.; Heenatigala, P.P.M.; Hu, S.; Chen, Y.; Wu, Z.; Kumar, S.; Duan, P.; Yao, L.; et al. A Comparison of Growth on Mercuric Chloride for Three Lemnaceae Species Reveals Differences in Growth Dynamics That Effect Their Suitability for Use in Either Monitoring or Remediating Ecosystems Contaminated with Mercury. Front. Chem. 2018, 6, 112. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Cheng, J.J. Growing duckweed for biofuel production: A review. Plant Biol. 2014, 17, 16–23. [Google Scholar] [CrossRef]
- Rusoff, L.L.; Blakeney, E.W.; Culley, D.D. Duckweeds (Lemnaceae family): A potential source of protein and amino acids. J. Agric. Food Chem. 1980, 28, 848–850. [Google Scholar] [CrossRef] [PubMed]
- Sońta, M.; Rekiel, A.; Batorska, M. Use of Duckweed (Lemna L.) in Sustainable Livestock Production and Aquaculture—A Review. Ann. Anim. Sci. 2019, 19, 257–271. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, Z.; Zhou, Z.; Yang, J.; Xia, M.; Chen, Y.; Hou, H. Boosting starch productivity of mixotrophic duckweed via light and organic carbon treatment. Biomass Bioenergy 2023, 173, 106795. [Google Scholar] [CrossRef]
- Tabou, T.T.; Baya, D.T.; Eyul’anki, D.M.; Vasel, J.L. Monitoring the influence of light intensity on the growth and mortality of duckweed (Lemna minor) through digital images processing. Biotechnol. Agron. Soc. Environ. 2014, 18, 37–48. [Google Scholar]
- Strzałek, M.; Kufel, L. Light intensity drives different growth strategies in two duckweed species: Lemna minor L. and Spirodela polyrhiza (L.) Schleiden. PeerJ 2021, 9, e12698. [Google Scholar] [CrossRef]
- Femeena, P.V.; Roman, B.; Brennan, R.A. Maximizing duckweed biomass production for food security at low light intensities: Experimental results and an enhanced predictive model. Environ. Chall. 2023, 11, 100709. [Google Scholar] [CrossRef]
- Steinberg, R.A. Mineral requirements of Lemna minor. Plant Physiol. 1946, 21, 42. [Google Scholar] [CrossRef]
- Thimijan, R.W.; Heins, R.D. Photometric, Radiometric, and Quantum Light Units of Measure: A Review of Procedures for Interconversion. HortScience 1982, 18, 818–822. [Google Scholar] [CrossRef]
- Pápista, É.; Ács, É.; Böddi, B. Chlorophyll-a determination with ethanol—A critical test. Hydrobiologia 2002, 485, 191–198. [Google Scholar] [CrossRef]
- Yin, Y.; Yu, C.; Yu, L.; Zhao, J.; Sun, C.; Ma, Y.; Zhou, G. The influence of light intensity and photoperiod on duckweed biomass and starch accumulation for bioethanol production. Bioresour. Technol. 2015, 187, 84–90. [Google Scholar] [CrossRef]
- Landolt, E.; Kandeler, R. The Family of Lemnaceae—A Monographic Study Vol. 2; Veroffentlichungen des Geobotanischen Institutes der Eidgenossischen Technischen Hochschule, Stiftung Rubel: Zürich, Switzerland, 1987. [Google Scholar]
- Stewart, J.J.; Adams, W.W., III; López-Pozo, M.; Doherty Garcia, N.; McNamara, M.; Escobar, C.M.; Demmig-Adams, B. Features of the duckweed Lemna that support rapid growth under extremes of light intensity. Cells 2021, 10, 1481. [Google Scholar] [CrossRef] [PubMed]
- Paolacci, S.; Harrison, S.; Jansen, M.A. The invasive duckweed Lemna minuta Kunth displays a different light utilisation strategy than native Lemna minor Linnaeus. Aquat. Bot. 2018, 146, 8–14. [Google Scholar] [CrossRef]
- Wetzel, R.G. Limnology: Lake and River Ecosystems; Gulf Professional Publishing: Houston, TX, USA, 2001. [Google Scholar]
- Ni, Z.; Wang, S.; Cai, J.; Li, H.; Jenkins, A.; Maberly, S.C.; May, L. The potential role of sediment organic phosphorus in algal growth in a low nutrient lake. Environ. Pollut. 2019, 255, 113235. [Google Scholar] [CrossRef]
- Roijackers, R.; Szabó, S.; Scheffer, M. Experimental analysis of the competition between algae and duckweed. Arch. Hydrobiol. 2004, 160, 401–412. [Google Scholar] [CrossRef]
- Szabó, S.; Roijackers, R.; Scheffer, M.; Borics, G. The strength of limiting factors for duckweed during algal competition. Arch. Hydrobiol. 2005, 164, 127–140. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Huang, Z.; Zhao, J.; Zhang, F.; Li, S.; Du, D. Effects of Nitrogen and Population Density on the Competition Between Spirodela polyrhiza and Microcystis sp. Under Laboratory Conditions. Water Air Soil Pollut. 2023, 234, 661. [Google Scholar] [CrossRef]
- Ng, Y.S.; Chan, D.J.C. Phytoremediation capabilities of Spirodela polyrhiza, Salvinia molesta and Lemna sp. in synthetic wastewater: A comparative study. Int. J. Phytoremediation 2018, 20, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Nardi, S.; Concheri, G.; Pizzeghello, D.; Sturaro, A.; Rella, R.; Parvoli, G. Soil organic matter mobilization by root exudates. Chemosphere 2000, 41, 653–658. [Google Scholar] [CrossRef]
- Nguyen, C. Rhizodeposition of organic C by plants: Mechanisms and controls. Agronomie 2003, 23, 375–396. [Google Scholar] [CrossRef]
- Gostyńska, J.; Pankiewicz, R.; Romanowska-Duda, Z.; Messyasz, B. Overview of allelopathic potential of Lemna minor L. obtained from a shallow eutrophic lake. Molecules 2022, 27, 3428. [Google Scholar] [CrossRef]
- Wetzel, R.G. Gradient-dominated ecosystems: Sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia 1992, 229, 181–198. [Google Scholar] [CrossRef]
- Datko, A.H.; Mudd, S.H. Uptake of amino acids and other organic compounds by Lemna paucicostata Hegelm. 6746. Plant Physiol. 1985, 77, 770–778. [Google Scholar] [CrossRef]
- De Carvalho, R.F.; Bromilow, R.H.; Greenwood, R. Uptake of pesticides from water by curly waterweed Lagarosiphon major and lesser duckweed Lemna minor. Pest Manag. Sci. Former. Pestic. Sci. 2007, 63, 789–797. [Google Scholar] [CrossRef]
- Flores-Rojas, N.C.; Esterhuizen-Londt, M.; Pflugmacher, S. Uptake, growth, and pigment changes in Lemna minor L. exposed to environmental concentrations of cylindrospermopsin. Toxins 2019, 11, 650. [Google Scholar] [CrossRef]
- Ekperusi, A.O.; Sikoki, F.D.; Nwachukwu, E.O. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective. Chemosphere 2019, 223, 285–309. [Google Scholar] [CrossRef]
- Körner, S.; Lyatuu, G.B.; Vermaat, J.E. The influence of Lemna gibba L. on the degradation of organic material in duckweed-covered domestic wastewater. Water Res. 1998, 32, 3092–3098. [Google Scholar] [CrossRef]
Control | Experimental | |||||
---|---|---|---|---|---|---|
L | M | H | L | M | H | |
Lemna minor | 0.0222 ± 0.0004 | 0.0212 ± 0.0013 | 0.0210 ± 0.001 | 0.0209 ± 0.0008 | 0.0219 ± 0.0003 | 0.0218 ± 0.0006 |
Spirodela polyrhiza | 0.02105 ± 0.00035 | 0.0209 ± 0.0004 | 0.0219 ± 0.0019 | 0.0212 ± 0.0009 | 0.0208 ± 0.0001 | 0.0204 ± 0.0009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pęczuła, W. Links Between Two Duckweed Species (Lemna minor L. and Spirodela polyrhiza (L.) Schleid.), Light Intensity, and Organic Matter Removal from the Water—An Experimental Study. Water 2025, 17, 438. https://doi.org/10.3390/w17030438
Pęczuła W. Links Between Two Duckweed Species (Lemna minor L. and Spirodela polyrhiza (L.) Schleid.), Light Intensity, and Organic Matter Removal from the Water—An Experimental Study. Water. 2025; 17(3):438. https://doi.org/10.3390/w17030438
Chicago/Turabian StylePęczuła, Wojciech. 2025. "Links Between Two Duckweed Species (Lemna minor L. and Spirodela polyrhiza (L.) Schleid.), Light Intensity, and Organic Matter Removal from the Water—An Experimental Study" Water 17, no. 3: 438. https://doi.org/10.3390/w17030438
APA StylePęczuła, W. (2025). Links Between Two Duckweed Species (Lemna minor L. and Spirodela polyrhiza (L.) Schleid.), Light Intensity, and Organic Matter Removal from the Water—An Experimental Study. Water, 17(3), 438. https://doi.org/10.3390/w17030438