Research on Flow Field Characteristics of a Three-Plate Vertical Rotary Gate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of Three-Plate Vertical Rotary Gate
2.2. Experimental Setup
2.3. Numerical Simulation
2.3.1. Governing Equations
2.3.2. Establishment of Numerical Models
2.3.3. Numerical Simulation Scheme
3. Results
3.1. Steady-State Flow Prediction Model
3.1.1. Analysis of Experimental Results
3.1.2. Establishment of Steady-State Flow Prediction Model
3.2. Analysis of Steady-State Flow Field Characteristics
3.2.1. Flow Velocity Distribution Characteristics of Steady-State Flow Field
3.2.2. Pressure Distribution Characteristics of Steady-State Flow Field
3.2.3. Flow Force of Gates at Different Openings
3.3. Analysis of Transient Flow Field Characteristics
3.3.1. Flow Velocity Distribution Characteristics
3.3.2. Pressure Distribution Characteristics
3.3.3. Flow Force of Gates During the Opening and Closing Process
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Xu, G.; Li, W.; Liu, F.; Duan, Y. Characteristics of Plane Gate Vibration and Holding Force in Closing Process by Experiments. Appl. Sci. 2020, 10, 6111. [Google Scholar] [CrossRef]
- Li, J.; Wang, C.; Wang, Z.; Ren, K.; Zhang, Y.; Xu, C.; Li, D. Numerical Analysis of Flow-Induced Vibration of Deep-Hole Plane Steel Gate in Partial Opening Operation. Sustainability 2022, 14, 3616. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, G.; Liu, Z.; Yang, D. Experimental Study on the Slip–Stick Vibration of Plane Gate. Water 2024, 16, 912. [Google Scholar] [CrossRef]
- Zhonghao, Z.; Jiaxin, L.; Feng, F.; Xudong, Z. Selection of New Type Radial Steel Gate and Analysis of Static and Dynamic Characteristics. Int. J. Steel Struct. 2021, 21, 1630–1643. [Google Scholar] [CrossRef]
- Xu, C.; Liu, J.; Zhao, C.; Liu, F.; Wang, Z. Dynamic failures of water controlling radial gates of hydro-power plants: Advancements and future perspectives. Eng. Fail. Anal. 2023, 148, 107168. [Google Scholar] [CrossRef]
- Yu, Y.; Hong, Y.; Wang, S.; Ding, Z. Research on wear resistant bottom edge of radial gates. J. Water Resour. Water Eng. 2023, 34, 116–123. [Google Scholar]
- An, Y.; Gu, R.; Cui, R.; Wu, P.; Ou, J. Nonlinear dynamic response analysis and assessment for miter gate subjected to ship impact. Ocean Eng. 2024, 310, 118799. [Google Scholar] [CrossRef]
- Li, R.; Zhang, J.; Xiao, J. Operation State Evaluation of Miter Gate Based on On-Line Monitoring and Finite Element Analysis. Appl. Sci. 2022, 13, 381. [Google Scholar] [CrossRef]
- Zhu, S.; Cheng, X. Test and analyses of a new double-arch steel gate under cyclic loading. J. Constr. Steel Res. 2008, 64, 454–464. [Google Scholar] [CrossRef]
- Luo, Y.-Z.; Zhu, S.-Z.; Chen, X. Cyclic behavior test of a new double-arch steel gate. J. Zhejiang Univ.-Sci. A 2007, 8, 1731–1739. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, Q.; Huang, W.; Dai, Z.; Cai, J. Experimental and numerical study on static performance of ship lock sector gates. J. Constr. Steel Res. 2024, 222, 108977. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, X.; Ma, H. Operating Force Characteristics of Sector Gates Based on Prototype Testing. Water 2024, 16, 762. [Google Scholar] [CrossRef]
- Seidel, C. Investigation of the Closing Operation of Emergency Sluice Gates and Their Influence on the Flow of Run-of-River Hydroelectricity. In Proceedings of the International Conference on Numerical Analysis and Applied Mathematics (ICNAAM-2018), Rhodes, Greece, 13–18 September 2018. [Google Scholar]
- Wang, Y.; Xu, G.; Liu, F. Holding Force and Vertical Vibration of Emergency Gate in the Closing Process: Physical and Numerical Modelling. Appl. Sci. 2021, 11, 8440. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.L.; Su, H.; Wang, X.Z.; Cao, Z.Y.; Zou, L.L. Influence of Gate Opening on Hydraulic Characteristics of Hydraulic Tunnel. Water Resour. Power 2023, 41, 117–120. [Google Scholar] [CrossRef]
- Xu, C.; Wang, Z.; Zhang, H.; Li, H.; Li, D. Investigation on mode-coupling parametric vibrations and instability of spillway radial gates under hydrodynamic excitation. Appl. Math. Modell. 2022, 106, 715–741. [Google Scholar] [CrossRef]
- Lee, S.O.; Seong, H.; Kang, J.W. Flow-induced vibration of a radial gate at various opening heights. Eng. Appl. Comput. Fluid Mech. 2018, 12, 567–583. [Google Scholar] [CrossRef]
- Bijankhan, M.; Ferro, V.; Kouchakzadeh, S. New Stage-Discharge Relationships for Radial Gates. J. Irrig. Drain. Eng. 2013, 139, 378–387. [Google Scholar] [CrossRef]
- Ferro, V. Simultaneous flow over and under a gate. J. Irrig. Drain. Eng. 2000, 126, 190–193. [Google Scholar] [CrossRef]
- Shahrokhnia, M.A.; Javan, M. Dimensionless stage-discharge relationship in radial gates. J. Irrig. Drain. Eng. 2006, 132, 180–184. [Google Scholar] [CrossRef]
- Marashi, A.; Kouchakzadeh, S.; Rashidi, N.; Yonesi, H.A. Rotary gate: Submerged flow condition. Flow Meas. Instrum. 2021, 81, 102035. [Google Scholar] [CrossRef]
- Marashi, A.; Kouchakzadeh, S.; Yonesi, H.A.; Torabi-Poudeh, H. Hydraulics of Rotary Gate: Novel Structure for Semicircular Canals. J. Irrig. Drain. Eng. 2021, 147, 1537. [Google Scholar] [CrossRef]
- Norouzi, R.; Ebadzadeh, P.; Sume, V.; Daneshfaraz, R. Upstream vortices of a sluice gate: An experimental and numerical study. AQUA—Water Infrastruct. Ecosyst. Soc. 2023, 72, 1906–1919. [Google Scholar] [CrossRef]
- Elgamal, M.; Abdel-Mageed, N.; Helmy, A.; Ghanem, A. Hydraulic performance of sluice gate with unloaded upstream rotor. Water SA 2017, 43, 4. [Google Scholar] [CrossRef]
- Kim, B.-J.; Hwang, J.-H.; Kim, B. FLOW-3D Model Development for the Analysis of the Flow Characteristics of Downstream Hydraulic Structures. Sustainability 2022, 14, 10493. [Google Scholar] [CrossRef]
- Jung, J.-S.; Yoon, J.-S.; Kang, S.; Jeong, S.; Lee, S.O.; Park, Y.-S. Discharge Characteristics of Drainage Gates on Saemangeum Tidal Dyke, South Korea. KSCE J. Civ. Eng. 2021, 25, 1308–1325. [Google Scholar] [CrossRef]
- Shen, C.; Wang, W.; He, S.; Xu, Y. Numerical and Experimental Comparative Study on the Flow-Induced Vibration of a Plane Gate. Water 2018, 10, 11551. [Google Scholar] [CrossRef]
- Daneshfaraz, R.; Norouzi, R.; Ebadzadeh, P.; Kuriqi, A. Influence of sill integration in labyrinth sluice gate hydraulic performance. Innov. Infrastruct. Solut. 2023, 8, 1083. [Google Scholar] [CrossRef]
- Daneshfaraz, R.; Norouzi, R.; Abbaszadeh, H.; Kuriqi, A.; Di Francesco, S. Influence of Sill on the Hydraulic Regime in Sluice Gates: An Experimental and Numerical Analysis. Fluids 2022, 7, 244. [Google Scholar] [CrossRef]
- Enes, G.; Zeyneb, K.; Erdinç, İ.; Aydın, M.C. Investigation of the effect of variable-sized energy dissipating blocks on sluice gate performance. Water SA 2024, 50, 4064. [Google Scholar] [CrossRef]
- Yan, X.; Wang, Y.; Fan, B.; Mohammadian, A.; Liu, J.; Zhu, Z. Data-driven modeling of sluice gate flows using a convolutional neural network. J. Hydroinformatics 2023, 25, 1629–1647. [Google Scholar] [CrossRef]
- Daneshfaraz, R.; Norouzi, R.; Ebadzadeh, P.; Di Francesco, S.; Abraham, J.P. Experimental Study of Geometric Shape and Size of Sill Effects on the Hydraulic Performance of Sluice Gates. Water 2023, 15, 314. [Google Scholar] [CrossRef]
- Rentachintala, L. Characteristics of discharge of skew side sluice gate. J. Appl. Water Eng. Res. 2024, 14, 1442. [Google Scholar] [CrossRef]
- Meng, W.; Li, L.; Zhao, S.; Li, P. Flow regime discrimination and methodology for calculating discharge in trapezoidal sluice gates. Flow Meas. Instrum. 2024, 100, 102710. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Zhang, Y. Experimental and simulation analysis of flow patterns and energy dissipation through sluice gates in a U-shaped channel. Water Supply 2024, 24, 1393–1408. [Google Scholar] [CrossRef]
- Shen, C.-Y.; Yang, R.-G.; Qing, S.; He, S.-H. Vortex analysis of water flow through gates by different vortex identification methods. J. Hydrodyn. 2023, 35, 112–124. [Google Scholar] [CrossRef]
- Takagi, H.; Furukawa, F. Stochastic Uncertainty in a Dam-Break Experiment with Varying Gate Speeds. J. Mar. Sci. Eng. 2021, 9, 67. [Google Scholar] [CrossRef]
- Li, S.; Wu, S.; Wang, X.; Li, G.; Li, H.; Lv, J.; Xie, J. Research on the response characteristics and operation control of unsteady water transport in Huangchigou water distribution hub. Eng. Appl. Comput. Fluid Mech. 2024, 18, 2398123. [Google Scholar] [CrossRef]
- Zhang, R.; Shen, C.Y.; Ma, J.X. Time-frequency Characteristics Analysis of Pulsating Pressure of Water Flow Through Gate Based on Hilbert-Huang Transform. Water Resour. Power 2023, 41, 174–177. [Google Scholar] [CrossRef]
- Li, D.; Wang, H.; Li, Z.; Nielsen, T.K.; Goyal, R.; Wei, X.; Qin, D. Transient characteristics during the closure of guide vanes in a pump-turbine in pump mode. Renewable Energy 2018, 118, 973–983. [Google Scholar] [CrossRef]
- Tong, Z.; Yang, Z.; Huang, Q.; Yao, Q. Numerical Modeling of the Hydrodynamic Performance of Slanted Axial-Flow Urban Drainage Pumps at Shut-Off Condition. Energies 2022, 15, 1905. [Google Scholar] [CrossRef]
- Wu, G.; Duan, X.; Zhu, J.; Li, X.; Tang, X.; Gao, H. Investigations of hydraulic transient flows in pressurized pipeline based on 1D traditional and 3D weakly compressible models. J. Hydroinform. 2021, 23, 231–248. [Google Scholar] [CrossRef]
- Xie, C.; Fu, T.; Xuan, W.; Bai, C.; Wu, L. Optimization and Internal Flow Analysis of Inlet and Outlet Horn of Integrated Pump Gate. Processes 2022, 10, 1753. [Google Scholar] [CrossRef]
Group of Working Conditions | Water Level of the Water Tank H1/m | Submergence Depth of the Flume H2/m | Actual Water Level Difference ΔH/m | Opening Degree of the Gate θ/° |
---|---|---|---|---|
1 | 1.0 | 0.4 | 0.25 | 10, 20, 30, 40, 50, 60, 70, 80, 90 |
2 | 1.2 | 0.4 | 0.45 | |
3 | 1.4 | 0.4 | 0.65 | |
4 | 1.6 | 0.4 | 0.85 |
Working Condition Group | Water Level of the Water Tank /m | Submergence Depth of the Flume/m | Actual Water Level Difference ΔH/m | Inlet Pressure/kPa | Outlet Pressure/kPa | Opening Degree of the Gate Θ/° |
---|---|---|---|---|---|---|
1 | 0.9 | 0.4 | 0.15 | 4.41 | 2.94 | 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, 90° |
2 | 1 | 0.4 | 0.25 | 5.39 | 2.94 | |
3 | 1.1 | 0.4 | 0.35 | 6.37 | 2.94 | |
4 | 1.2 | 0.4 | 0.45 | 7.35 | 2.94 | |
5 | 1.3 | 0.4 | 0.55 | 8.33 | 2.94 | |
6 | 1.4 | 0.4 | 0.65 | 9.31 | 2.94 | |
7 | 1.5 | 0.4 | 0.75 | 10.29 | 2.94 | |
8 | 1.6 | 0.4 | 0.85 | 11.27 | 2.94 |
Working Condition Group | Inlet Pressure/kPa | Outlet Pressure/kPa | Rotational Speed/deg·s−1 | Calculation Duration/s | ||
---|---|---|---|---|---|---|
Plate 1 | Plate 2 | Plate 3 | ||||
1 | 11.27 | 2.94 | 200 | −200 | 200 | 1.8 |
2 | 100 | −100 | 100 | 3.6 | ||
3 | 50 | −50 | 50 | 7.2 | ||
4 | 25 | −25 | 25 | 14.4 | ||
5 | 12.5 | −12.5 | 12.5 | 28.8 |
Working Condition Group | Experimental Result/m3·s−1 | Prediction Results/m3·s−1 | Prediction Error |
---|---|---|---|
∆H = 0.3 m, θ = 20° | 0.00645 | 0.006854 | 6.27% |
∆H = 0.5 m, θ = 50° | 0.04715 | 0.048181 | 2.17% |
∆H = 0.7 m, θ = 80° | 0.15400 | 0.154845 | 0.55% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, H.; Zhang, X.; Sun, Y.; Ji, X.; Tian, D.; Sun, C.; Xue, Z.; Liu, Y. Research on Flow Field Characteristics of a Three-Plate Vertical Rotary Gate. Water 2025, 17, 456. https://doi.org/10.3390/w17030456
Qi H, Zhang X, Sun Y, Ji X, Tian D, Sun C, Xue Z, Liu Y. Research on Flow Field Characteristics of a Three-Plate Vertical Rotary Gate. Water. 2025; 17(3):456. https://doi.org/10.3390/w17030456
Chicago/Turabian StyleQi, Houyi, Xiao Zhang, Yuxue Sun, Xinyu Ji, Dong Tian, Chao Sun, Zhenzhen Xue, and Yanshun Liu. 2025. "Research on Flow Field Characteristics of a Three-Plate Vertical Rotary Gate" Water 17, no. 3: 456. https://doi.org/10.3390/w17030456
APA StyleQi, H., Zhang, X., Sun, Y., Ji, X., Tian, D., Sun, C., Xue, Z., & Liu, Y. (2025). Research on Flow Field Characteristics of a Three-Plate Vertical Rotary Gate. Water, 17(3), 456. https://doi.org/10.3390/w17030456