Biodeterioration Study of Cementitious Materials During Sewage Treatment Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cement Specimens’ Preparations
2.2. Experimental Design
2.3. Sample Preparation for Analysis
2.4. Microbiological Analysis
2.4.1. Biofilm Sampling, DNA Extraction, PCR Reaction, and Amplicon Sequencing
2.4.2. Bioinformatic Analysis
2.5. Geochemical Analyses
2.5.1. Specimens Morphology and Microstructure
2.5.2. Specimen Mineralogy
2.6. Compressive Strength of the Specimens
2.7. Statistical Analysis
3. Results
3.1. Microbiological Results
3.1.1. Bacterial Community Structure
3.1.2. Archaeal Community Structure
3.2. Geochemical Results
3.2.1. Mineralogical and Mechanical Properties
3.2.2. Mass Loss and pH Reduction
3.2.3. Specimens Microstructure and Morphology
3.2.4. Relationship Between Microbial Communities and Cement Properties
4. Discussion
(monosulfoaluminate)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Connell, M.; McNally, C.; Richardson, M.G. Biochemical attack on concrete in wastewater applications: A state of the art review. Cem. Concr. Compos. 2010, 32, 479–485. [Google Scholar] [CrossRef]
- Erbektas, A.R.; Isgor, O.B.; Weiss, W.J. Comparison of chemical and biogenic acid attack on concrete. ACI Mater. J. 2020, 117, 255–264. [Google Scholar] [CrossRef]
- Woyciechowski, P.; Łukowski, P.; Szmigiera, E.; Adamczewski, G.; Chilmon, K.; Spodzieja, S. Concrete corrosion in a wastewater treatment plant—A comprehensive case study. Constr. Build. Mater. 2021, 303, 124388. [Google Scholar] [CrossRef]
- Munyao, O.M.; Thiong’o, J.K.; Muthengia, J.W.; Mutitu, D.K.; Mwirichia, R.; Muriithi, G.; Marangu, J.M. Munyao, Study on the effect of Thiobacillus intermedius bacteria on the physico-mechanical properties of mortars of ordinary portland cement. Heliyon 2020, 6, e03232. [Google Scholar] [CrossRef] [PubMed]
- Cydzik-Kwiatkowska, A.; Zielińska, M. Bacterial communities in full-scale wastewater treatment systems. World J. Microbiol. Biotechnol. 2016, 32, 66. [Google Scholar] [CrossRef] [PubMed]
- Tchobanoglous, G.; Burton, F.L.; Stensel, H.D. Wastewater Engineering: Treatment and Reuse, 4th ed.; McGraw-Hill: New York, NY, USA, 2003; pp. 27–137. [Google Scholar]
- Davis, M. Water and Wastewater Engineering; McGraw-Hill Professional: New York, NY, USA, 2010; p. 806. [Google Scholar]
- Wu, M.; Wang, T.; Wu, K.; Kan, L. Microbiologically induced corrosion of concrete in sewer structures: A review of the mechanisms and phenomena. Constr. Build. Mater. 2020, 239, 117813. [Google Scholar] [CrossRef]
- Krysiak, L.; Falaciński, P.; Szarek, Ł. Identification of Biogenic Sulphate Corrosion of Concrete in Sewage Treatment Plant Settling Tank Walls. Civ. Environ. Eng. Rep. 2020, 30, 253–264. [Google Scholar] [CrossRef]
- Grengg, C.; Mittermayr, F.; Ukrainczyk, N.; Koraimann, G.; Kienesberger, S.; Dietzel, M. Advances in concrete materials for sewer sys-tems affected by microbial induced concrete corrosion: A review. Water Res. 2018, 134, 341–352. [Google Scholar] [CrossRef]
- Drugă, B.; Ukrainczyk, N.; Weise, K.; Koenders, E.; Lackner, S. Interaction between wastewater microorganisms and geopolymer or cementitious materials: Biofilm characterization and deterioration characteristics of mortars. Int. Biodeterior. Biodegrad. 2018, 134, 58–67. [Google Scholar] [CrossRef]
- Šavija, B.; Luković, M. Carbonation of cement paste: Understanding, challenges, and opportunities. Constr. Build. Mater. 2016, 117, 285–301. [Google Scholar] [CrossRef]
- Taylor, H.F.W. Cement Chemistry, 2nd ed.; Academic Press: London, UK, 1990; pp. 383–401. [Google Scholar]
- Kashaija, N.T.; Gável, V.; Gergely, K.; Akos, K.; Kürthy, M.; Szabó, C.; Tóth, E.; Szabó-Krausz, Z. Deterioration of Cementitious Materials in Wastewater Treatment Plants’ Pumping Stations and Sand-Trap Structures. J. Compos. Sci. 2024, 8, 60. [Google Scholar] [CrossRef]
- Hanein, T.; De la Torre, A.G.; Zhang, Z.; Provis, J.L. Alternative Non-Portland Binders. Elements 2022, 18, 314–320. [Google Scholar] [CrossRef]
- Tao, Y.; Rahul, A.V.; Mohan, M.K.; De Schutter, G.; Van Tittelboom, K. Recent progress and technical challenges in using calcium sulfoaluminate (CSA) cement. Cem. Concr. Compos. 2023, 137, 104908. [Google Scholar] [CrossRef]
- Damion, T.; Cepuritis, R.; Chaunsali, P. Sulfuric acid and citric acid attack of calcium sulfoaluminate-based binders Sulfuric Acid and Citric Acid Attack of Calcium Sulfoaluminate-Based Binders. Cem. Concr. Compos. 2022, 130, 104524. [Google Scholar] [CrossRef]
- Damion, T.; Chaunsali, P. Biogenic acid resistance of calcium sulfoaluminate cement: Revelations from a field study. Cem. Concr. Compos. 2024, 145, 105324. [Google Scholar] [CrossRef]
- BS EN 196-3; Methods of Testing Cement-Determination of Setting Time and Soundness. European Standards Institution: Brussels, Belgium, 2016.
- European Assessment Document-EAD 150001-00-0301. Calcium Sulphoaluminate Based Cement. 2017. Available online: https://www.eota.eu (accessed on 24 November 2024).
- Herlemann, D.P.R.; Labrenz, M.; Jürgens, K.; Bertilsson, S.; Waniek, J.J.; Andersson, A.F. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011, 5, 1571–1579. [Google Scholar] [CrossRef]
- Toumi, M.; Abbaszade, G.; Sbaoui, Y.; Farkas, R.; Ács, É.; Jurecska, L.; Tóth, E. Cultivation and molecular studies to reveal the microbial communities of groundwaters discharge located in Hungary. Water 2021, 13, 1533. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimaera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, 590–596. [Google Scholar] [CrossRef]
- Tindall, B.J.; Rosselló-Móra, R.; Busse, H.J.; Ludwig, W.; Kämpfer, P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int. J. Syst. Evol. Microbiol. 2010, 60, 249–266. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Su, F.; Li, P.; Wang, W.; Yang, H.; Wang, L. Microbiologically induced concrete corrosion in the cracked sewer pipe under sus-tained load. Constr. Build. Mater. 2023, 369, 130521. [Google Scholar] [CrossRef]
- Okabe, S.; Odagiri, M.; Ito, T.; Satoh, H. Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Appl. Environ. Microbiol. 2007, 73, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Wells, T.; Melchers, R.E.; Bond, P. Factors involved in the long-term corrosion of concrete sewers. In Proceedings of the 49th Annual Conference of the Australasian Corrosion Association 2009: Corrosion and Prevention 2009, Coffs Harbour, Australia, 15–18 November 2009; Australasian Corrosion Association Inc.: Preston, Australia, 2009; pp. 345–356. Available online: https://www.researchgate.net/publication/43527972 (accessed on 19 April 2023).
- Madraszewski, S.; Sielaff, A.M.; Stephan, D. Acid attack on concrete—Damage zones of concrete and kinetics of damage in a simulating laboratory test method for wastewater systems. Constr. Build. Mater. 2023, 366, 130121. [Google Scholar] [CrossRef]
- Ngari, R.W.; Thiong’o, J.K.; Wachira, J.M.; Muriithi, G.; Mutitu, D.K. Bioremediation of mortar made from Ordinary Portland Cement degraded by Thiobacillus thioparus using Bacillus flexus. Heliyon 2021, 7, e07215. [Google Scholar] [CrossRef]
- Bensted, J.; Brough, A.R.; Page, M.M. Chemical degradation of concrete. In Durability of Concrete and Cement Composites, 1st ed.; Page, C.L., Page, M.M., Eds.; Elsevier Ltd-Woodhead Publishing Limited: Cambridge, UK, 2007; pp. 86–135. [Google Scholar]
- Larreur-Cayol, S.; Bertron, A.; Escadeillas, G. Degradation of cement-based materials by various organic acids in agro-industrial waste-waters. Cem. Concr. Res. 2011, 41, 882–892. [Google Scholar] [CrossRef]
- Cwalina, B. Biodeterioration of Concrete, Brick and Other Mineral-Based Building Materials; Woodhead Publishing Limited: Cambridge, UK, 2014; pp. 281–312. [Google Scholar]
- Voegel, C.; Bertron, A.; Erabe, B. Mechanisms of cementitious material deterioration in biogas digester. Sci. Total Environ. 2016, 571, 892–901. [Google Scholar] [CrossRef]
- Sand, W. Microbial mechanisms of deterioration of inorganic substrates—A general mechanistic overview. Int. Biodeterior. Biodegrad. 1997, 40, 183–190. [Google Scholar] [CrossRef]
- Vijay, K.; Murmu, M.; Deo, S.V. Bacteria based self-healing concrete—A review. Constr. Build. Mater. 2017, 152, 1008–1014. [Google Scholar] [CrossRef]
- Castro-Alonso, M.J.; Montañez-Hernandez, L.E.; Sanchez-Muñoz, M.A.; Macias Franco, M.R.; Narayanasamy, R.; Balagurusamy, N. Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: Microbiological and molecular concepts. Front. Mater. 2019, 6, 126. [Google Scholar] [CrossRef]
- Garg, R.; Garg, R.; Eddy, N.O. Microbial induced calcite precipitation for self-healing of concrete: A review. J. Sustain. Cem. Mater. 2023, 12, 317–330. [Google Scholar] [CrossRef]
- Uroz, S.; Kelly, L.C.; Turpault, M.P.; Lepleux, C.; Frey-Klett, P. The Mineralosphere Concept: Mineralogical Control of the Distribution and Function of Mineral-associated Bacterial Communities. Trends Microbiol. 2015, 23, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Han, M.; Yang, X. Evaluation on relationship between accelerated carbonation and deterioration of concrete subjected to a high-concentrated sewage environment. Constr. Build. Mater. 2020, 237, 117650. [Google Scholar] [CrossRef]
- Koukouzas, N.; Kypritidou, Z.; Vasilatos, C.; Tsoukalas, N.; Rochelle, C.A.; Purser, G. Geochemical modeling of carbonation of hydrated oil well cement exposed to CO2-saturated brine solution. Appl. Geochem. 2017, 85, 35–48. [Google Scholar] [CrossRef]
- Hamza, O.; Esaker, M.; Abogdera, A.; Elliott, D. Bio-protection of cementitious materials below ground: The significance of natural soil environments. Dev. Built Environ. 2024, 17, 100331. [Google Scholar] [CrossRef]
- Tan, B.; Okoronkwo, M.U.; Kumar, A.; Ma, H. Durability of calcium sulfoaluminate cement concrete. J. Zhejiang Univ.-Sci. A (Appl. Phys. Eng.) 2020, 21, 118–128. [Google Scholar] [CrossRef]
- Kaufmann, J.; Winnefeld, F.; Lothenbach, B. Stability of ettringite in CSA cement at elevated temperatures. Adv. Cem. Res. 2016, 28, 251–261. [Google Scholar] [CrossRef]
- Elumalai, P.; Gao, X.; Cui, J.; Kumar, A.S.; Dhandapani, P.; Parthipan, P.; Karthikeyan, O.P.; Theerthagiri, J.; Kheawhom, S.; Choi, M.Y. Biofilm formation, occurrence, microbial communication, impact and characterization methods in natural and anthropic systems: A review. Environ. Chem. Lett. 2024, 22, 1297–1326. [Google Scholar] [CrossRef]
- Kong, L.; Liu, C.; Cao, M.; Fang, J. Mechanism study of the role of biofilm played in sewage corrosion of mortar. Constr. Build. Mater. 2017, 164, 44–56. [Google Scholar] [CrossRef]
- Pal, M.K.; Lavanya, M. Microbial Influenced Corrosion: Understanding Bioadhesion and Biofilm Formation. J. Bio- Tribo-Corros. 2022, 8, 1–13. [Google Scholar] [CrossRef]
Materials (m/m%) | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | Na2O | SO3 | TiO2 | Cl− | LOI* | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PC | 18.75 | 5.59 | 3.53 | 64.17 | 2.34 | 0.25 | 0.02 | 3.35 | 0.39 | 0.02 | 1.23 | 99.64 |
CSAC | 6.18 | 23.49 | 1.28 | 36.64 | 4.80 | 0.36 | 0.75 | 21.54 | 0.36 | 0.10 | 0.70 | 96.20 |
Property | Cement Properties | PC Specimen | CSAC Specimen |
---|---|---|---|
Mechanical Properties | Surface pH | 8.95 | 9.68 |
Compressive Strength | 68.9 MPa | 115.7 MPa | |
Mineralogical Compositions | |||
Secondary Minerals | hydrocalumite (Ca2Al(OH)6Cl·2H2O) | 2% | ne |
calcite (CaCO3) | 4% | nd | |
monosulfoaluminate (Ca4Al2(SO4)(OH)12·6H2O) | nd | ne | |
ettringite (Ca6Al2(SO4)3(OH)12·26H2O) | 17% | nd | |
Hydrated Minerals | katoite (Ca3Al2O6·6H2O) | 10% | ne |
CASH (Ca12Al2Si18O51(OH)2·18H2O) | 2% | ne | |
C-S-H (Ca5Si6O16(OH)2·4H2O) | 11% | ne | |
portlandite (Ca(OH)2) | 28% | nd | |
ettringite (Ca6Al2(SO4)3(OH)12·26H2O) | nd | 58% | |
gibbsite (Al(OH)3) | nd | 6% | |
Clinker Minerals | Periclase (MgO) | nd | 3% |
merwinite (Ca3Mg(SiO4)2) | 4% | 10% | |
brownmillerite (Ca4Al2Fe2O10) | 1% | ne | |
akermanite (Ca2Mg(Si2O7)) | 1% | nd | |
ye’elimite (Ca4Al6O12SO4) | ne | 7% | |
anhydrite (CaSO4) | nd | 7% | |
belite (Ca2SiO4) | 3% | 9% | |
alite (Ca3SiO5) | 17% | ne |
Groups | Genera | Class | WW | PC Specimens | CSAC Specimens | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC5 | CSAC1 | CSAC2 | CSAC3 | CSAC4 | CSAC5 | |||||||||||
Sulfate reducing bacteria (SRB) | Desulfomicrobium | Desulfovibronia | 0.12 | 2.09 | 6.68 | 18.30 | 0.32 | 2.48 | 8.16 | 11.50 | 6.40 | 0.30 | |||||||
Desulfobulbus | Desulfobulbia | 0.08 | 1.57 | 2.23 | 3.20 | 0.11 | 0.97 | 1.64 | 2.65 | 3.32 | 1.32 | ||||||||
Desulfovibrio | Desulfovibronia | 0.17 | 1.03 | 0.36 | 0.37 | 0.12 | 0.92 | 0.59 | 0.30 | 0.17 | 0.03 | ||||||||
Desulfomonile | Desulfomonilia | 0.00 | 0.18 | 0.10 | 0.37 | 0.03 | 0.09 | 0.14 | 0.48 | 0.60 | 0.23 | ||||||||
Sulfurospirillum | Campylobacteria | 0.06 | 0.22 | 0.12 | 0.00 | 0.30 | 0.36 | 0.12 | 0.12 | 0.08 | 0.23 | ||||||||
Fusibacter | Clostridia | 0.09 | 0.14 | 0.56 | 0.24 | 0.19 | 0.30 | 0.93 | 0.29 | 0.08 | 0.04 | ||||||||
Sulfur oxidizing bacteria (SOB) | Bosea | Alphaproteobacteria | 0.01 | 0.00 | 0.01 | 0.04 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | |||||||
Sulfuricurvum | Campylobacteria | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | ||||||||
Sulfurimonas | Campylobacteria | 0.05 | 0.00 | 0.26 | 0.00 | 0.12 | 0.00 | 0.07 | 0.00 | 0.07 | 0.27 | ||||||||
Thiothrix | Gammaproteobacteria | 0.01 | 0.07 | 0.04 | 0.00 | 0.05 | 0.00 | 0.05 | 0.02 | 0.17 | 0.05 | ||||||||
Fermenters | Trichococcus | Bacilli | 1.42 | 18.13 | 5.77 | 1.12 | 19.84 | 11.15 | 6.16 | 0.68 | 4.48 | 25.01 | |||||||
Macellibacteroides | Bacteroidia | 0.08 | 5.42 | 12.07 | 10.51 | 1.35 | 7.72 | 1.06 | 14.05 | 5.98 | 1.68 | ||||||||
Acetobacterium | Clostridia | 0.04 | 1.68 | 1.41 | 2.26 | 0.89 | 2.44 | 2.18 | 2.49 | 2.98 | 1.01 | ||||||||
Christensenella | Clostridia | 0.21 | 1.05 | 3.95 | 4.99 | 0.12 | 1.49 | 2.70 | 6.39 | 4.76 | 1.30 | ||||||||
Clostridium_sensu_stricto | Clostridia | 0.26 | 1.40 | 1.37 | 2.54 | 0.26 | 1.75 | 2.18 | 2.79 | 2.32 | 1.24 | ||||||||
Butyricicoccus | Clostridia | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.19 | 0.03 | 0.00 | 0.00 | 0.03 | ||||||||
Ruminococcus | Clostridia | 0.04 | 0.60 | 0.51 | 0.16 | 0.48 | 0.97 | 0.79 | 0.34 | 0.68 | 0.41 | ||||||||
Propionivibrio | Gammaproteobacteria | 0.00 | 0.30 | 0.81 | 0.65 | 0.49 | 0.44 | 0.16 | 0.58 | 0.95 | 0.19 | ||||||||
Enterococcus | Bacilli | 0.35 | 0.56 | 0.14 | 0.07 | 0.87 | 0.34 | 0.00 | 0.05 | 0.12 | 0.00 | ||||||||
Streptococcus | Bacilli | 0.00 | 0.30 | 0.19 | 0.00 | 0.04 | 0.28 | 0.05 | 0.02 | 0.58 | 0.04 | ||||||||
Mycobacterium | Actinobacteria | 8.75 | 3.09 | 3.96 | 2.37 | 0.22 | 3.77 | 3.86 | 2.17 | 1.57 | 0.20 | ||||||||
Lactivibrio | Synergistia | 0.13 | 0.16 | 0.45 | 1.34 | 0.07 | 0.13 | 1.69 | 1.80 | 1.80 | 0.66 | ||||||||
Romboutsia | Clostridia | 1.67 | 0.41 | 0.37 | 0.73 | 0.11 | 0.17 | 1.18 | 1.57 | 1.08 | 0.20 | ||||||||
Peptococcus | Clostridia | 0.00 | 0.03 | 0.09 | 0.14 | 0.03 | 0.05 | 0.30 | 0.34 | 0.27 | 0.03 | ||||||||
Intestinimonas | Clostridia | 0.03 | 0.00 | 0.04 | 0.00 | 0.03 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | ||||||||
Oscillospirales_ge | Clostridia | 0.05 | 0.18 | 1.01 | 1.05 | 0.05 | 0.33 | 0.41 | 1.24 | 0.80 | 0.15 | ||||||||
Candidatus_Soleaferrea | Clostridia | 0.00 | 0.03 | 0.10 | 0.06 | 0.00 | 0.00 | 0.00 | 0.11 | 0.08 | 0.00 | ||||||||
Faecalibacterium | Clostridia | 0.76 | 0.58 | 0.41 | 0.04 | 0.38 | 0.51 | 0.05 | 0.01 | 0.07 | 0.22 | ||||||||
total relative abundances (SRB +SOB+fermenters) | 14.38 | 39.21 | 43.02 | 50.57 | 26.55 | 36.85 | 34.51 | 50.04 | 39.40 | 34.85 | |||||||||
Others | 85.62 | 60.79 | 56.98 | 49.43 | 73.45 | 63.15 | 65.49 | 49.96 | 60.60 | 65.15 | |||||||||
pH | 8.93 | 8.62 | 8.5 | 7.75 | 8.84 | 9.3 | 8.3 | 8.09 | 8.84 | ||||||||||
>50% | 20–49% | 10–19% | 1–9% | 0.1–1% | 0–0.5% | ||||||||||||||
Legend |
Samples | Mass Loss (g) | % | pH | |
---|---|---|---|---|
PC Specimens | Reference PC | – | – | 8.95 |
PC1 (10 days) | 0.3 | 0.72 | 8.93 | |
PC2 (30 days) | 0.5 | 1.2 | 8.62 | |
PC3 (75 days) | 1.1 | 2.63 | 8.5 | |
PC5 (240 days) | 0.1 | 0.24 | 7.75 | |
CSAC Specimens | Reference CSAC | – | – | 9.68 |
CSAC1 (10 days) | 0.2 | 0.48 | 9.3 | |
CSAC2 (30 days) | 0.1 | 0.24 | 8.84 | |
CSAC3 (75 days) | 1.2 | 2.86 | 8.3 | |
CSAC4 (150 days) | 1.0 | 2.38 | 8.09 | |
CSAC5 (240 days) | 0.5 | 1.19 | 8.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kashaija, N.T.; Gável, V.; Iklaga, G.; Alexander, A.; Gergely, K.; Mireisz, T.; Szabó, C.; Szabó-Krausz, Z.; Vargha, M.; Tóth, E. Biodeterioration Study of Cementitious Materials During Sewage Treatment Processes. Water 2025, 17, 459. https://doi.org/10.3390/w17030459
Kashaija NT, Gável V, Iklaga G, Alexander A, Gergely K, Mireisz T, Szabó C, Szabó-Krausz Z, Vargha M, Tóth E. Biodeterioration Study of Cementitious Materials During Sewage Treatment Processes. Water. 2025; 17(3):459. https://doi.org/10.3390/w17030459
Chicago/Turabian StyleKashaija, Nedson T., Viktória Gável, Gabriel Iklaga, Augustina Alexander, Krett Gergely, Tamás Mireisz, Csaba Szabó, Zsuzsanna Szabó-Krausz, Márta Vargha, and Erika Tóth. 2025. "Biodeterioration Study of Cementitious Materials During Sewage Treatment Processes" Water 17, no. 3: 459. https://doi.org/10.3390/w17030459
APA StyleKashaija, N. T., Gável, V., Iklaga, G., Alexander, A., Gergely, K., Mireisz, T., Szabó, C., Szabó-Krausz, Z., Vargha, M., & Tóth, E. (2025). Biodeterioration Study of Cementitious Materials During Sewage Treatment Processes. Water, 17(3), 459. https://doi.org/10.3390/w17030459