All articles published by MDPI are made immediately available worldwide under an open access license. No special
permission is required to reuse all or part of the article published by MDPI, including figures and tables. For
articles published under an open access Creative Common CC BY license, any part of the article may be reused without
permission provided that the original article is clearly cited. For more information, please refer to
https://www.mdpi.com/openaccess.
Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature
Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for
future research directions and describes possible research applications.
Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive
positive feedback from the reviewers.
Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world.
Editors select a small number of articles recently published in the journal that they believe will be particularly
interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the
most exciting work published in the various research areas of the journal.
This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
Open AccessArticle
A Verification of Seismo-Hydrogeodynamic Effect Typifications Recorded in Wells on the Kamchatka Peninsula: The 3 April 2023 Earthquake, Mw = 6.6, as an Example
Laboratory of Geophysical Research, Kamchatka Branch of the Geophysical Survey of the Russian Academy of Sciences (KB GS RAS), 683006 Petropavlovsk-Kamchatsky, Russia
*
Author to whom correspondence should be addressed.
Long-term observations in wells make it possible to study changes in groundwater pressure/level during individual earthquakes (seismo-hydrogeodynamic effects—SHGEs) over a wide range of periods of their manifestation. Information on the morphological features and durations of the SHGEs together with data on earthquake parameters form the basis for creating the unique typifications of SHGEs for individual observation wells. With reliable verification, such SHGE typifications provide the practical use of well observation data to predict strong earthquakes and assess their impact on groundwater. During long-term (1996–2022) precision observations of pressure/water level variations in wells of the Petropavlovsk–Kamchatsky test site (Kamchatka Peninsula, northwest Pacific seismic belt), SHGE typifications describing the manifestations of various types of SHGEs at the earthquakes in ranges of magnitudes Mw = 5.0–9.1 and epicentral distances de = 80–14,600 km were developed. At the same time, the issue of verifying created SHGE typifications for individual wells in relation to the strongest and closest earthquakes, accompanied by noticeable tremors in the observation area, is relevant. On 3 April 2023, an earthquake, Mw = 6.6 (EQ), occurred at an epicentral distance de = 67–77 km from observation wells. Various changes in the groundwater pressure/level were recorded in the wells: oscillations and other short-term and long-term effects of seismic waves, coseismic jumps in water pressure caused by a change in the static stress state of water-bearing rocks during the formation of rupture in the earthquake source, and supposed hydrogeodynamic precursors. The EQ was used to verify the SHGE typifications for wells YuZ-5 and E-1 with the longest observation series of more than 25 years. In these wells, the seismo-hydrogeodynamic effects recorded during the EQ corresponded to the previously observed SHGE during the two strongest earthquakes with Mw = 7.2, de = 80 km and Mw = 7.8, de = 200 km. This correspondence is considered an example of the experimental verification of previously created SHGE typifications in individual wells in relation to the most powerful earthquakes in the wells’ area. Updated SHGE typifications for wells E-1 and YuZ-5 are presented, showing the patterns of water level/pressure changes in these wells depending on earthquake parameters and thereby increasing the practical significance of well observations for assessing earthquake consequences for groundwater, searching for hydrogeodynamic precursors and forecasting strong earthquakes. The features of the hydrogeodynamic precursor manifesting in the water level/pressure lowering with increased rates in well E-1 before earthquakes with Mw ≥ 5.0 at epicentral distances of up to 360 km are considered. A retrospective statistical analysis of the prognostic significance of this precursor showed that its use for earthquake forecasting increases the efficiency of predicting earthquakes with Mw ≥ 5.0 by 1.55 times and efficiency of predicting earthquakes with Mw ≥ 5.8 by 2.34 times compared to random guessing. This precursor was recorded during the 92 days before the EQ and was identified in real time with the issuance of an early prognostic conclusion on the possibility of a strong earthquake to the Kamchatka branch of the Russian Expert Council for Earthquake Forecasting.
Kopylova, G.; Boldina, S.
A Verification of Seismo-Hydrogeodynamic Effect Typifications Recorded in Wells on the Kamchatka Peninsula: The 3 April 2023 Earthquake, Mw = 6.6, as an Example. Water2025, 17, 634.
https://doi.org/10.3390/w17050634
AMA Style
Kopylova G, Boldina S.
A Verification of Seismo-Hydrogeodynamic Effect Typifications Recorded in Wells on the Kamchatka Peninsula: The 3 April 2023 Earthquake, Mw = 6.6, as an Example. Water. 2025; 17(5):634.
https://doi.org/10.3390/w17050634
Chicago/Turabian Style
Kopylova, Galina, and Svetlana Boldina.
2025. "A Verification of Seismo-Hydrogeodynamic Effect Typifications Recorded in Wells on the Kamchatka Peninsula: The 3 April 2023 Earthquake, Mw = 6.6, as an Example" Water 17, no. 5: 634.
https://doi.org/10.3390/w17050634
APA Style
Kopylova, G., & Boldina, S.
(2025). A Verification of Seismo-Hydrogeodynamic Effect Typifications Recorded in Wells on the Kamchatka Peninsula: The 3 April 2023 Earthquake, Mw = 6.6, as an Example. Water, 17(5), 634.
https://doi.org/10.3390/w17050634
Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.
Article Metrics
No
No
Article Access Statistics
For more information on the journal statistics, click here.
Multiple requests from the same IP address are counted as one view.
Kopylova, G.; Boldina, S.
A Verification of Seismo-Hydrogeodynamic Effect Typifications Recorded in Wells on the Kamchatka Peninsula: The 3 April 2023 Earthquake, Mw = 6.6, as an Example. Water2025, 17, 634.
https://doi.org/10.3390/w17050634
AMA Style
Kopylova G, Boldina S.
A Verification of Seismo-Hydrogeodynamic Effect Typifications Recorded in Wells on the Kamchatka Peninsula: The 3 April 2023 Earthquake, Mw = 6.6, as an Example. Water. 2025; 17(5):634.
https://doi.org/10.3390/w17050634
Chicago/Turabian Style
Kopylova, Galina, and Svetlana Boldina.
2025. "A Verification of Seismo-Hydrogeodynamic Effect Typifications Recorded in Wells on the Kamchatka Peninsula: The 3 April 2023 Earthquake, Mw = 6.6, as an Example" Water 17, no. 5: 634.
https://doi.org/10.3390/w17050634
APA Style
Kopylova, G., & Boldina, S.
(2025). A Verification of Seismo-Hydrogeodynamic Effect Typifications Recorded in Wells on the Kamchatka Peninsula: The 3 April 2023 Earthquake, Mw = 6.6, as an Example. Water, 17(5), 634.
https://doi.org/10.3390/w17050634
Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.