Numerical Simulation of Fine Particle Migration in Loose Soil Under Groundwater Seepage Based on Computational Fluid Dynamics–Discrete Element Method
Abstract
:1. Introduction
2. Basic Modeling Principles
- (1)
- Equations for the motion of groundwater
- (2)
- Equations for the motion of solid particles
- (3)
- Coupling process of the fluid-solid interaction force
3. Model and Numerical Simulation Procedure
3.1. Model Setting
3.2. Fluid and Simulation Settings
4. Results
4.1. Validation of the Model Between Fluid and Particles
4.2. Particle Migration Process
4.3. Velocity and Displacement of Fine Particles
4.4. Fine Particle Clogging Area
5. Discussion
5.1. Effect of Particle Size Ratio
5.2. Analysis and Prospect of Particle Clogging
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiao, M.; Shwiyhat, N. Experimental Investigation of the Effects of Suffusion on Physical and Geomechanic Characteristics of Sandy Soils. Geotech. Test. J. 2012, 35, 104594. [Google Scholar] [CrossRef]
- Song, H.; Cui, W. A large-scale colluvial landslide caused by multiple factors: Mechanism analysis and phased stabilization. Landslides 2016, 13, 321–335. [Google Scholar] [CrossRef]
- Keqiang, H.; Shangqing, W.; Wen, D.; Sijing, W. The dynamic parameter of rainfall: Its importance in the prediction of colluvial landslides. Bull. Eng. Geol. Environ. 2008, 67, 345–351. [Google Scholar] [CrossRef]
- Hu, W.; Scaringi, G.; Xu, Q.; Huang, R.Q. Internal Erosion Controls Failure and Runout of Loose Granular Deposits: Evidence From Flume Tests and Implications for Postseismic Slope Healing. Geophys. Res. Lett. 2018, 45, 5518–5527. [Google Scholar] [CrossRef]
- Tian, S.; Dai, X.; Wang, G.; Lu, Y.; Chen, J. Formation and evolution characteristics of dam breach and tailings flow from dam failure: An experimental study. Nat. Hazard. 2021, 107, 1621–1638. [Google Scholar] [CrossRef]
- Tian, S.; He, Y.; Bai, R.; Chen, J.; Wang, G. Experimental study on consolidation and strength properties of tailings with different particle size distribution characteristics. Nat. Hazard. 2022, 114, 3683–3699. [Google Scholar] [CrossRef]
- Shi-fan, Q.; Jun-kun, T.; Yong-gang, Z.; Li-jun, W.; Ming-fei, Z.; Jun, T.; Qing, H. Settlement Prediction of Foundation Pit Excavation Based on the GWO-ELM Model considering Different States of Influence. Adv. Civ. Eng. 2021, 2021, 8896210. [Google Scholar] [CrossRef]
- Zhang, M.; Tong, L.; Wang, Q. Geotechnical Characteristic Assessments of Floodplain Soils Using SCPTU Data in Nanjing, China. Adv. Civ. Eng. 2022, 2022, 1669511. [Google Scholar] [CrossRef]
- Zhang, Y.-g.; Tang, J.; Liao, R.-p.; Zhang, M.-f.; Zhang, Y.; Wang, X.-m.; Su, Z.-y. Application of an enhanced BP neural network model with water cycle algorithm on landslide prediction. Stoch. Environ. Res. Risk Assess. 2021, 35, 1273–1291. [Google Scholar] [CrossRef]
- Wang, G.; Sassa, K. Pore-pressure generation and movement of rainfall-induced landslides: Effects of grain size and fine-particle content. Eng. Geol. 2003, 69, 109–125. [Google Scholar] [CrossRef]
- Wiącek, J.; Stasiak, M. Effect of the particle size ratio on the structural properties of granular mixtures with discrete particle size distribution. Granul. Matter 2018, 20, 31. [Google Scholar] [CrossRef]
- Chen, P.; Sun, J.; Ma, L.; Chen, Y.; Xia, J. Effects of shell sand content on soil physical properties and salt ions under simulated rainfall leaching. Geoderma 2022, 406, 115520. [Google Scholar] [CrossRef]
- Ding, W.; Huang, C. Effects of soil surface roughness on interrill erosion processes and sediment particle size distribution. Geomorphology 2017, 295, 801–810. [Google Scholar] [CrossRef]
- Wang, J.Y.; Li, Y.T.; Lai, Z.Q.; Zhao, L.J.; Wang, Z.M. Study on the Motion Characteristics of Particles Transported by a Horizontal Pipeline in Heterogeneous Flow. Water 2022, 14, 3177. [Google Scholar] [CrossRef]
- Shang, J.; Liu, C.; Wang, Z. Transport and retention of engineered nanoporous particles in porous media: Effects of concentration and flow dynamics. Colloids Surf. A 2013, 417, 89–98. [Google Scholar] [CrossRef]
- Cui, X.Z.; Liu, Q.S.; Zhang, C.Y. Physical factors affecting the transport and deposition of particles in saturated porous media. Water Sci. Technol.-Water Supply 2017, 17, 1616–1625. [Google Scholar] [CrossRef]
- Bai, B.; Xu, T.; Guo, Z. An experimental and theoretical study of the seepage migration of suspended particles with different sizes. Hydrogeol. J. 2016, 24, 2063–2078. [Google Scholar] [CrossRef]
- Sun, C.; Zhu, Y.; Guo, J.; Zhang, Y.; Sun, G. Effects of foaming agent type on the workability, drying shrinkage, frost resistance and pore distribution of foamed concrete. Constr. Build. Mater. 2018, 186, 833–839. [Google Scholar] [CrossRef]
- Heylen, R.; Thanki, A.; Verhees, D.; Iuso, D.; De Beenhouwer, J.; Sijbers, J.; Witvrouw, A.; Haitjema, H.; Bey-Temsamani, A. 3D total variation denoising in X-CT imaging applied to pore extraction in additively manufactured parts. Meas. Sci. Technol. 2022, 33, 045602. [Google Scholar] [CrossRef]
- Rahmati, H.; Jafarpour, M.; Azadbakht, S.; Nouri, A.; Vaziri, H.; Chan, D.; Xiao, Y. Review of Sand Production Prediction Models. J. Pet. Eng. 2013, 2013, 864981. [Google Scholar] [CrossRef]
- Al-Shaaibi, S.K.; Al-Ajmi, A.M.; Al-Wahaibi, Y. Three dimensional modeling for predicting sand production. J. Pet. Sci. Eng. 2013, 109, 348–363. [Google Scholar] [CrossRef]
- Ghassemi, A.; Pak, A. Numerical simulation of sand production experiment using a coupled Lattice Boltzmann–Discrete Element Method. J. Pet. Sci. Eng. 2015, 135, 218–231. [Google Scholar] [CrossRef]
- Song, Y.; Ranjith, P.G.; Wu, B. Development and experimental validation of a computational fluid dynamics-discrete element method sand production model. J. Nat. Gas Sci. Eng. 2020, 73, 103052. [Google Scholar] [CrossRef]
- Huang, L.; Liu, J.; Zhang, F.; Dontsov, E.; Damjanac, B. Exploring the influence of rock inherent heterogeneity and grain size on hydraulic fracturing using discrete element modeling. Int. J. Solids Struct. 2019, 176–177, 207–220. [Google Scholar] [CrossRef]
- Damjanac, B.; Detournay, C.; Cundall, P.A. Application of particle and lattice codes to simulation of hydraulic fracturing. Comput. Part. Mech. 2016, 3, 249–261. [Google Scholar] [CrossRef]
- Li, G.; Ye, T.; Li, X. Parallel modeling of cell suspension flow in complex micro-networks with inflow/outflow boundary conditions. J. Comput. Phys. 2020, 401, 109031. [Google Scholar] [CrossRef]
- Cheng, K.; Wang, Y.; Yang, Q. A semi-resolved CFD-DEM model for seepage-induced fine particle migration in gap-graded soils. Comput. Geotech. 2018, 100, 30–51. [Google Scholar] [CrossRef]
- Xiong, H.; Zhang, Z.; Yin, Z.-Y.; Chen, X.; Zhou, W. Microscopic origins of shape effects on migration and clogging of fines in porous media using coupled CFD-iDEM. Acta Geotech. 2024, 19, 5001–5029. [Google Scholar] [CrossRef]
- Itasca Consulting Group. PFC3D Version 5.0 Manual; Itasca Consulting Group: Minneapolis, MI, USA, 2015. [Google Scholar]
- Tsuji, Y.; Kawaguchi, T.; Tanaka, T. Discrete particle simulation of two-dimensional fluidized bed. Powder Technol. 1993, 77, 79–87. [Google Scholar] [CrossRef]
- El Shamy, U.; Zeghal, M. Coupled Continuum-Discrete Model for Saturated Granular Soils. J. Eng. Mech. 2005, 131, 413–426. [Google Scholar] [CrossRef]
- Zeng, J.; Li, H.; Zhang, D. Numerical simulation of proppant transport in hydraulic fracture with the upscaling CFD-DEM method. J. Nat. Gas Sci. Eng. 2016, 33, 264–277. [Google Scholar] [CrossRef]
- Terzaghi, K.; Peck, R.B.; Mesri, G. Soil Mechanics in Engineering Practice, 3rd ed.; John Wiley: New York, NY, USA, 1995. [Google Scholar]
- Indraratna, B.; Raut Ashok, K.; Khabbaz, H. Constriction-Based Retention Criterion for Granular Filter Design. J. Geotech. Geoenviron. Eng. 2007, 133, 266–276. [Google Scholar] [CrossRef]
- Zou, Y.-H.; Chen, Q.; Chen, X.-Q.; Cui, P. Discrete numerical modeling of particle transport in granular filters. Comput. Geotech. 2013, 47, 48–56. [Google Scholar] [CrossRef]
- Huang, Q.-f.; Zhan, M.-l.; Sheng, J.-c.; Luo, Y.-l.; Su, B.-y. Investigation of fluid flow-induced particle migration in granular filters using a DEM-CFD method. J. Hydrodyn. 2014, 26, 406–415. [Google Scholar] [CrossRef]
- Zhang, G.; Israr, J.; Ma, W.; Wang, H. Modeling Water-Induced Base Particle Migration in Loaded Granular Filters Using Discrete Element Method. Water 2021, 13, 1976. [Google Scholar] [CrossRef]
- Rimon, Y.; Cheng, S.I. Numerical Solution of a Uniform Flow over a Sphere at Intermediate Reynolds Numbers. Phys. Fluids 1969, 12, 949–959. [Google Scholar] [CrossRef]
- Bradford, S.A.; Bettahar, M. Concentration dependent transport of colloids in saturated porous media. J. Contam. Hydrol. 2006, 82, 99–117. [Google Scholar] [CrossRef]
- McDowell-Boyer, L.M.; Hunt, J.R.; Sitar, N. Particle transport through porous media. Water Resour. Res. 1986, 22, 1901–1921. [Google Scholar] [CrossRef]
- Li, H.; Wang, S.; Wang, R.; Liu, Y.; Shao, B.; Yuan, Z.; Chen, Y.; Ma, Y. Simulation on flow behavior of particles and its effect on heat transfer in porous media. J. Pet. Sci. Eng. 2021, 197, 107974. [Google Scholar] [CrossRef]
- Yousif, O.S.Q.; Karakouzian, M.; Rahim, N.O.A.; Rashed, K.A. Physical Clogging of Uniformly Graded Porous Media Under Constant Flow rates. Transp. Porous Media 2017, 120, 643–659. [Google Scholar] [CrossRef]
Parameters | Material Type | |||
---|---|---|---|---|
Porous Medium Particle | Migrating Fine Particle | Wall | Fluid | |
Density (kg/m3) | 2450 | 2160 | - | 1000 |
Normal stiffness, kn (N/m) | 6.0 × 103 | 4.0 × 103 | 1.0 × 104 | - |
Shear stiffness, ks (N/m) | 3.0 × 103 | 2.0 × 103 | 1.0 × 104 | - |
Friction coefficient | 0.5 | 0.5 | 0.5 | - |
Viscous coefficient | - | - | - | 1.0 × 10−3 |
Radius (m) | 2.5 × 10−3 | - | - | - |
Analysis Case | Group | Radius (m) | Particle Size Ratio (D/d) | Number | Density (kg/m3) |
---|---|---|---|---|---|
Series A | AG-1 | 8.30 × 10−4 | 3 | 200 | 2160 |
AG-2 | 5.00 × 10−4 | 5 | 200 | 2160 | |
AG-3 | 2.50 × 10−4 | 10 | 200 | 2160 | |
AG-4 | 1.78 × 10−4 | 14 | 200 | 2160 | |
AG-5 | 1.25 × 10−4 | 20 | 200 | 2160 | |
Series B | BG-1 | 8.30 × 10−4 | 3 | 43 | 2160 |
BG-2 | 5.00 × 10−4 | 5 | 200 | 2160 | |
BG-3 | 2.50 × 10−4 | 10 | 1600 | 2160 | |
BG-4 | 1.78 × 10−4 | 14 | 4432 | 2160 | |
BG-5 | 1.25 × 10−4 | 20 | 12,800 | 2160 | |
Series C | CG-1 | 5.00 × 10−4 | 5 | 100 | 2160 |
CG-2 | 5.00 × 10−4 | 5 | 200 | 2160 | |
CG-3 | 5.00 × 10−4 | 5 | 400 | 2160 | |
CG-4 | 5.00 × 10−4 | 5 | 800 | 2160 | |
CG-5 | 5.00 × 10−4 | 5 | 1600 | 2160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Deng, Y.; Su, H.; Li, P.; Chen, L.; Wang, N. Numerical Simulation of Fine Particle Migration in Loose Soil Under Groundwater Seepage Based on Computational Fluid Dynamics–Discrete Element Method. Water 2025, 17, 740. https://doi.org/10.3390/w17050740
Yang H, Deng Y, Su H, Li P, Chen L, Wang N. Numerical Simulation of Fine Particle Migration in Loose Soil Under Groundwater Seepage Based on Computational Fluid Dynamics–Discrete Element Method. Water. 2025; 17(5):740. https://doi.org/10.3390/w17050740
Chicago/Turabian StyleYang, Hongkun, Yinger Deng, Hu Su, Pengjie Li, Lin Chen, and Ning Wang. 2025. "Numerical Simulation of Fine Particle Migration in Loose Soil Under Groundwater Seepage Based on Computational Fluid Dynamics–Discrete Element Method" Water 17, no. 5: 740. https://doi.org/10.3390/w17050740
APA StyleYang, H., Deng, Y., Su, H., Li, P., Chen, L., & Wang, N. (2025). Numerical Simulation of Fine Particle Migration in Loose Soil Under Groundwater Seepage Based on Computational Fluid Dynamics–Discrete Element Method. Water, 17(5), 740. https://doi.org/10.3390/w17050740