Microbial Source Tracking in a Watershed Dominated by Swine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Host-origin Isolates
2.3. Water Sample Isolates
2.4. Antibiotic Resistance Analysis (ARA)
Antibiotics | Concentrations (µg/mL) | No. of Variables |
---|---|---|
Erythromycin | 60, 70, 90 and 100 | 4 |
Neomycin | 2.5, 5.0 and 10 | 3 |
Oxytetracycline | 2.5, 5.0, 7.5, 10 and 15 | 5 |
Streptomycin | 2.5, 5.0, 7.5, 10 and 15 | 5 |
Tetracycline | 2.5, 5.0, 7.5, 10 and 15 | 5 |
Cephalothin | 15, 25 and 35 | 4 |
Apramycin | 8, 16, 32, 64 and 128 | 3 |
Trimethoprim | 8, 16, 32, 64 and 128 | 5 |
Rifamicin | 60, 75 and 90 | 3 |
Total antibiotic variables | 38 | |
Control | No antibiotic | 2 |
2.5. Host-Origin Library
2.6. Calculation of ARCC, AFM and MDP
3. Results
3.1. Fecal Coliform Monitoring
3.2. Host Origin Library
3.3. Host Source Identification of E. coli from Six Runs Creek
Categories into which isolates from the library were classified | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source of Isolates | Beaver | Bird | Cattle | Deer | Dog | Lagoon | Nutria | Raccoon | Swine | Total (ni) | |||||||||||
CC* | MC† | CC | MC | CC | MC | CC | MC | CC | MC | CC | MC | CC | MC | CC | MC | CC | MC | ||||
Beaver | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | |||||||||||
Bird | 0 | 24 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 27 | |||||||||||
Cattle | 0 | 1 | 183 | 0 | 0 | 15 | 1 | 0 | 17 | 217 | |||||||||||
Deer | 0 | 0 | 1 | 34 | 0 | 0 | 0 | 0 | 0 | 35 | |||||||||||
Dog | 0 | 0 | 1 | 0 | 22 | 0 | 0 | 0 | 1 | 24 | |||||||||||
Lagoon | 0 | 0 | 19 | 0 | 0 | 246 | 0 | 0 | 59 | 324 | |||||||||||
Nutria | 0 | 0 | 0 | 0 | 0 | 0 | 23 | 2 | 0 | 25 | |||||||||||
Raccoon | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 3 | |||||||||||
Swine | 0 | 0 | 29 | 0 | 0 | 56 | 0 | 0 | 204 | 289 | |||||||||||
Total | 4 | 0 | 24 | 1 | 183 | 51 | 34 | 0 | 22 | 0 | 246 | 72 | 23 | 2 | 2 | 2 | 204 | 78 | |||
Total isolates (n) | 948 | ||||||||||||||||||||
% n CC=(100)(CC)/ni) | 100.0 | 88.9 | 84.3 | 97.1 | 91.7 | 75.9 | 92.0 | 66.7 | 70.6 | 85.2‡ | |||||||||||
%n MC=(100)(MC)/(n-ni) | 0.0 | 0.1 | 5.7 | 0.0 | 0.0 | 8.2 | 0.2 | 0.2 | 9.0 |
Categories into which isolates from the library were classified | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source of Isolates | Beaver | Bird | Cattle | Deer | Dog | Lagoon | Nutria | Raccoon | Swine | Total (ni) | |||||||||||
CC* | MC† | CC | MC | CC | MC | CC | MC | CC | MC | CC | MC | CC | MC | CC | MC | CC | MC | ||||
Beaver | 4 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | |||||||||||
Bird | 0 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19 | |||||||||||
Cattle | 0 | 0 | 136 | 0 | 0 | 1 | 1 | 0 | 0 | 138 | |||||||||||
Deer | 0 | 0 | 0 | 28 | 0 | 0 | 0 | 0 | 0 | 28 | |||||||||||
Dog | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | 20 | |||||||||||
Lagoon | 0 | 0 | 0 | 0 | 0 | 125 | 0 | 0 | 9 | 134 | |||||||||||
Nutria | 0 | 0 | 0 | 0 | 0 | 0 | 22 | 1 | 0 | 23 | |||||||||||
Raccoon | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 0 | 5 | |||||||||||
Swine | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 93 | 98 | |||||||||||
Total | 4 | 0 | 19 | 0 | 136 | 1 | 28 | 0 | 20 | 0 | 125 | 6 | 22 | 3 | 3 | 1 | 93 | 9 | |||
Total isolates(n) | 470 | ||||||||||||||||||||
% n CC=(100CC)/(ni) | 100.0 | 100.0 | 99.3 | 100.0 | 100.0 | 95.4 | 88.0 | 75.0 | 91.2 | 94.3‡ | |||||||||||
%n MC=(100)MC/(n-ni) | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 | 1.8 | 0.7 | 0.2 | 2.4 |
3.4. Seasonal Host Source Allocations
4. Discussion
5. Conclusions
Acknowledgements
References
- Simpson, J.M.; Santo Domingo, J.W; Reasoner, D.J. Microbial source tracking: State of the science. Environ. Sci. Technol. 2002, 36, 5279–5288. [Google Scholar]
- Scott, T.M.; Rose, J.B.; Jenkins, T.M.; Farrah, S.R.; Lukasik, J. Microbial source tracking: Current methodology and future directions. Appl. Environ. Microbiol. 2002, 68, 5796–5803. [Google Scholar] [CrossRef]
- Aillery, M.; Gollehon, N.; Johansson, R.; Key, N.; Ribaudo, M. Managing manure to improve air and water quality. Agric. Nutr. Manag. 2006, 2, 13–20. [Google Scholar]
- United States Environmental Protection Agency (USEPA). National pollutant discharge elimination system permit regulation and effluent limitation guidelines and standards for concentrated animal feeding operations (CAFOs); final rule. Federal Register 2003, 68, 7176–7274. [Google Scholar]
- Burkholder, J.; Libra, B.; Weyer, P.; Heathcote, S.; Kolpin, D.; Thorne, P.S.; Wichman, M. Impacts of waste from concentrated animal feeding operations on water quality. Environ. Health Perspect. 2007, 115, 308–312. [Google Scholar] [CrossRef]
- Carson, A.C.; Shear, B.L.; Ellersieck, M.R.; Asfaw, A. Identification of fecal Escherichia coli from humans and animals by ribotyping. Appl. Environ. Microbiol. 2001, 67, 1503–1507. [Google Scholar] [CrossRef] [PubMed]
- Evenson, J.C.; Strevett, K.A. Discrininant analysis of fecal bacterial species composition for use as a phenotypic microbial source tracking method. Res. Microbiol. 2006, 157, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Amor, K.; Heinrichs, D.E.; Frirdich, E.; Ziebell, K.; Johnson, R.P.; Whitfield, C. Distribution of core oligosaccharide types in lipopolysaccharides from Escherichia coli. Infect. Immun. 2000, 68, 1116–1124. [Google Scholar] [CrossRef] [PubMed]
- Dombek, P.E.; Johnson, L.K.; Zimmerley, S.T.; Sadowsky, M.J. Use of repetitive DNA sequences and the PCR to differentiate Escherichia coli isolates from human and animal sources. Appl. Environ. Microbiol. 2000, 66, 2572–2577. [Google Scholar] [CrossRef] [PubMed]
- McLellan, S.L.; Daniels, A.D.; Salmore, A.K. Genetic characterization of Escherichia coli populations from host sources of fecal pollution by using DNA fingerprinting. Appl. Environ. Microbiol. 2003, 69, 2587–2594. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.A.K.; Brown, M.B.; Carruthers, E.A.; Ferguson, J.A.; Dombek, P.E.; Sadowskyl, M.J. Sample size, library composition, and genotypic diversity among natural populations of Escherichia coli from different animals influence accuracy of determining sources of fecal pollution. Appl. Environ. Microbiol. 2004, 70, 4478–4485. [Google Scholar] [CrossRef] [PubMed]
- Kon, T.; Weir, S.C.; Howell, E.T.; Lee, H.; Trevors, J.T. Repetitive element (REP)-polymerase chain reaction (PCR) analysis of Escherichia coli isolates from recreational waters of southeastern Lake Huron. Can. J. Microbiol. 2009, 55, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Parveen, S.; Portier, K.M.; Robinson, K.; Edmiston, L.; Tamplin, M.L. Discriminant analysis of ribotype profiles of Escherichia coli for differentiating human and nonhuman sources of fecal pollution. Appl. Environ. Microbiol. 1999, 65, 3142–3147. [Google Scholar] [PubMed]
- Leung, K.T.; Mackereth, R.; Tien, Y.C.; Topp, E. A comparison of AFLP and ERIC-PCR analyses for discriminating Escherichia coli from cattle, pig and human sources. FEMS Microbiol. Ecol. 2004, 47, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Myoda, S.P.; Carson, C.A.; Fuhrmann, J.J.; Hahm, B.K.; Hartel, P.G.; Yampara-Lquise, H.; Johnson, L.; Kuntz, R.L.; Nakatsu, C.H.; Sadowsky, M.J.; Samadpour, M. Comparison of genotypic-based microbial source tracking methods requiring a host origin database. J. Water Health 2003, 1, 167–180. [Google Scholar] [PubMed]
- Buchan, A.; Alber, M.; Hodson, R.E. Strain-specific differentiation of environmental Escherichia coli isolates via denaturing gradient gel electrophoresis (DGGE) analysis of the 16S-23S intergenic spacer region. FEMS Microbiol. Ecol. 2001, 35, 313–321. [Google Scholar] [PubMed]
- Field, K.G; Bernhard, A.E; Brodeur, T.J. Molecular approaches to microbiological monitoring: Fecal Source Detection. Environ. Monit. Assess. 2003, 81, 313–32. [Google Scholar] [CrossRef] [PubMed]
- Khatib, L.A.; Tsai, Y.L.; Olson, B.H. A biomarker for the identification of swine fecal pollution in water, using the STII toxin gene from enterotoxigenic Escherichia coli. Appl. Microbiol. Biotechnol. 2003, 63, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Hagedorn, C.; Crozier, J.B.; Mentz, K.A.; Booth, A.M.; Graves, A.K.; Nelson, N.J.; Reneau, R.B., Jr. Carbon source utilization profiles as a method to identify sources of faecal pollution in water. J. Appl. Microbiol. 2003, 94, 792–799. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Katouli, M. Phenotypic variations of enterococci in surface waters: analysis of biochemical fingerprinting data from multi-catchments. J. Appl. Microbiol. 2008, 105, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Graves, A.K.; Hagedorn, C.; Brooks, A.; Hagedorn, R.L.; Martin, E. Microbial source tracking in a rural watershed dominated by cattle. Water Res. 2007, 41, 3729–3739. [Google Scholar] [CrossRef] [PubMed]
- Harwood, V.J.; Whitlock, J.; Withington, V. Classification of antibiotic resistance patterns of indicator bacteria by discriminant analysis: Use in predicting the source of fecal contamination in subtropical waters. Appl. Environ. Microbiol. 2000, 66, 3698–3704. [Google Scholar] [CrossRef] [PubMed]
- Harwood, V.J.; Wiggins, B.; Hagedorn, C.; Ellender, R.D.; Gooch, J.; Kern, J.; Samadpour, M.; Chapman, A.; Robinson, B.J.; Thompson, B.C. Phenotypic library-based microbial source tracking methods: Efficacy in the California collaborative study. J. Water Health 2003, 1, 153–166. [Google Scholar] [PubMed]
- Wiggins, B.A. Discriminant analysis of antibiotic resistance patterns in fecal streptococci, a method to differentiate human and animal sources of fecal pollution in natural waters. Appl. Environ. Microbiol. 1996, 62, 3997–4002. [Google Scholar] [PubMed]
- Hagedorn, C.; Robinson, S.L.; Filtz, J.R.; Grubbs, S.M.; Angier, T.A.; Reneau, R.B. Determining sources of fecal pollution in a rural Virginia watershed with antibiotic resistance patterns in fecal streptococci. Appl. Environ. Microbiol. 1999, 65, 5522–5531. [Google Scholar] [PubMed]
- Carroll, S.; Hargreaves, M.; Goonetilleke, A. Sourcing faecal pollution from onsite wastewater treatment systems in surface waters using antibiotic resistance analysis. J. Appl. Microbiol. 2005, 99, 471–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orosz-Coghlan, P.A.; Rusin, P.A.; Karpiscak, M.M.; Gerba, C.P. Microbial source tracking of E. coli in constructed wetlands. Water Environ. Res. 2006, 78, 227–32. [Google Scholar] [CrossRef] [PubMed]
- Carroll, S.P.; Dawes, L.; Hargreaves, M.; Goonetilleke, A. Faecal pollution source identification in an urbanizing catchment using antibiotic resistance profiling, discriminant analysis and partial least squares regression. Water Res. 2009, 43, 1237–1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenberg, J.; Price, B.; Ware, A. Alternative estimate of source distribution in microbial source tracking using posterior probabilities. Water Res. 2010, 44, 2629–2637. [Google Scholar] [CrossRef]
- Booth, A.M.; Hagedorn, C.; Graves, A.K.; Hagedorn, S.C.; Mentz, K.H. Sources of fecal pollution in Virginia’s Blackwater river. J. Environ. Eng. 2003, 129, 547–552. [Google Scholar] [CrossRef]
- Choi, S.; Chu, W.; Brown, J.; Becker, S.J.; Harwood, V.J.; Jiang, S.C. Application of enterococci antibiotic resistance patterns for contamination source identification at Huntington Beach, California. Mar. Pollut. Bull. 2003, 46, 748–755. [Google Scholar] [CrossRef] [PubMed]
- Graves, A.K.; Hagedorn, C.; Teetor, A.; Mahal, M.; Booth, A.M.; Reneau, R.B., Jr. Antibiotic resistance profiles to determine sources of fecal contamination in a rural Virginia watershed. J. Environ. Qual. 2002, 31, 1300–1308. [Google Scholar] [CrossRef] [PubMed]
- Whitlock, J.E.; Jones, D.T.; Harwood, V.J. Identification of the sources of fecal coliforms in an urban watershed using antibiotic resistance analysis. Water Res. 2002, 36, 4273–4282. [Google Scholar] [CrossRef] [PubMed]
- Wiggins, B.A.; Cash, P.W.; Creamer, W.S.; Dart, S.E.; Garcia, P.P.; Gerecke, T.M.; Han, J.; Henry, B.L; Hoover, K.B.; Johnson, E.L.; Jones, K.C.; McCarthy, J.G.; McDonough, J.A.; Mercer, S.A.; Noto, M.J.; Park, H.; Phillips, M.S.; Purner, S.M.; Smith, B.M.; Stevens, E.N.; Varner, A.K. Use of antibiotic resistance analysis for representativeness testing of multiwatershed libraries. Appl. Environ. Microbiol. 2003, 69, 3399–3405. [Google Scholar] [CrossRef]
- Stewart, J.R.; Ellender, R.D; Gooch, J.A.; Jiang, S.; Myoda, S.P.; Weisberg, S.B. Recommendations for microbial source tracking: lessons learned from a methods comparison study. J. Water Health 2003, 1, 225–231. [Google Scholar] [PubMed]
- Stoeckel, D.M.; Mathes, M.V.; Hyer, K.E.; Hagedorn, C.; Kator, H.; Lukasik, J.; O’Brien, T.L.; Fenger, T.W.; Samadpour, M.; Strickler, K.M.; Wiggins, B.A. Comparison of seven protocols to identify fecal contamination sources using E. coli. Environ. Sci. Technol. 2004, 38, 6109–6117. [Google Scholar] [CrossRef]
- Olivas, Y.; Faulkner, B.R. Fecal source tracking by antibiotic resistance analysis on a watershed exhibiting low resistance. Environ. Monit. Assess. 2008, 139, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Price, B.; Venso, E.; Frana, M.; Greenberg, J.; Ware, A. A comparison of ARA and DNA data for microbial source tracking based on source-classification models developed using classification trees. Water Res. 2007, 41, 3575–3584. [Google Scholar] [CrossRef] [PubMed]
- USDA. Soil Survey of Sampson County, North Carolina; USDA-SCS: Washington DC, USA, 1985; Map no. 4. [Google Scholar]
- Mathew, A.G.; Upchurch, W.G.; Chattin, S.E. Incidence of antibiotic resistance in fecal Eschericia coli isolated from commercial swine farms. J. Animal Sci. 1998, 76, 429–434. [Google Scholar]
- Ritter, K.J.; Carruthers, E.; Carson, C.A.; Ellender, R.D.; Harwood, V.J.; Kingsley, K.; Nakatsu, C.; Sadowsky, M.; Shear, B.; West, B.; Whitlock, J.E.; Wiggins, B.A.; Wilbur, J.D. Assessment of statistical methods used in library-based approaches to microbial source tracking. J. Water Health 2003, 1, 209–223. [Google Scholar] [PubMed]
- North Carolina Department of Environment and Natural Resources. In Classifications and Water Quality Standards Applicable to Surface Water and Wetlands of North Carolina; Division of Water Quality: Raleigh, NC, USA, 1997; p. 41.
- Fincher, L.M.; Parker, C.D.; Chauret, C.P. Surface Water Quality: Occurrence and Antibiotic Resistance of Escherichia coli O157:H7 in a Watershed in North-Central Indiana. J. Environ. Qual. 2009, 38, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Burnes, B.S. Antibiotic resistance analysis of fecal coliforms to determine fecal pollution sources in a mixed-use watershed. Environ. Monit. Assess. 2003, 85, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Wiggins, B.A.; Andrews, R.W.; Conway, R.A.; Corr, C.L.; Dobratz, E.J.; Dougherty, D.P.; Eppard, J.R.; Knupp, S.R.; Limjoco, M.C.; Mettenburg, J.M.; Rinehardt, J.M.; Sonsino, J.; Torrijos, R.L.; Zimmerman, M.E. Use of antibiotic resistance analysis to identify nonpoint sources of fecal pollution. Appl. Environ. Microbiol. 1999, 65, 3483–3486. [Google Scholar] [PubMed]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Liwimbi, L.; Graves, A.K.; Israel, D.W.; Heugten, E.v.; Robinson, B.; Cahoon, C.W.; Lubbers, J.F. Microbial Source Tracking in a Watershed Dominated by Swine. Water 2010, 2, 587-604. https://doi.org/10.3390/w2030587
Liwimbi L, Graves AK, Israel DW, Heugten Ev, Robinson B, Cahoon CW, Lubbers JF. Microbial Source Tracking in a Watershed Dominated by Swine. Water. 2010; 2(3):587-604. https://doi.org/10.3390/w2030587
Chicago/Turabian StyleLiwimbi, Lloyd, Alexandria K. Graves, Daniel W. Israel, Eric van Heugten, Bradford Robinson, Charles W. Cahoon, and Joice F. Lubbers. 2010. "Microbial Source Tracking in a Watershed Dominated by Swine" Water 2, no. 3: 587-604. https://doi.org/10.3390/w2030587