Comparing Two Geostatistical Simulation Algorithms for Modelling the Spatial Uncertainty of Texture in Forest Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Survey and Data
2.3. Geostatistical Approach
- Defining a random path through all grid nodes;
- Computing a simple kriging estimate of using the measured data and kriging variance ;
- Drawing a random value Y with standard normal distribution;
- Assigning to (which is the local conditional expectation in the multi-Gaussian model);
- Adding the new value to the conditioning data set;
- Repeating steps 2 to 5 in the next nodes in the random path until all nodes are simulated.
2.4. The Compositional Data Approach
- To represent the D-part compositional vectors at all soil sampling locations as (D-1)-dimensional real vectors of coordinates by means of the ilr transformation;
- To apply the standard geostatistical methods to the ilr transformed data;
- To back transform the simulated scores using the ilr inverse.
2.5. The Performance Criteria for Comparing the Geostatistical Simulation Algorithms
3. Results and Discussion
3.1. Comparison of the Simulation Approaches
3.1.1. Reproduction of the Model Statistics
3.1.2. Reproduction of the Variograms
3.1.3. Checking Data Reproduction Through Swath Plots
3.1.4. Reproduction of the Texture Data Statistics
3.2. Maps of the Mean Values and Standard Deviations of Soil Fractions Size (Sand, Silt, and Clay) Data
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Binkley, D.; Fisher, R.F. Ecology and Management of Forest Soils, 5th ed.; John Wiley & Sons Ltd.: Glasgow, UK, 2020; ISBN 9781119455653. [Google Scholar]
- Adhikari, K.; Hartemink, A.E. Linking Soils to Ecosystem Services—A Global Review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Blum, W.E.H. Functions of Soil for Society and the Environment. Rev. Environ. Sci. Biotechnol. 2005, 4, 75–79. [Google Scholar] [CrossRef]
- Osman, K.T. Forest Soils; Springer International Publishing: Cham, Switzerland, 2013; Volume 9783319025, ISBN 978-3-319-02540-7. [Google Scholar]
- Dilustro, J.J.; Collins, B.; Duncan, L.; Crawford, C. Moisture and Soil Texture Effects on Soil CO2 Efflux Components in Southeastern Mixed Pine Forests. For. Ecol. Manag. 2005, 204, 87–97. [Google Scholar] [CrossRef]
- Telles, E.d.C.C.; de Camargo, P.B.; Martinelli, L.A.; Trumbore, S.E.; da Costa, E.S.; Santos, J.; Higuchi, N.; Oliveira, R.C. Influence of Soil Texture on Carbon Dynamics and Storage Potential in Tropical Forest Soils of Amazonia. Glob. Biogeochem. Cycles 2003, 17, 1040. [Google Scholar] [CrossRef]
- Cheng, P.; Liu, F.; Chen, X.; Zhang, Y.; Yao, K. Estimation of the Installation Torque–Capacity Correlation of Helical Pile Considering Spatially Variable Clays. Can. Geotech. J. 2024, 61, 2064–2074. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Bristow, K.L. Comparison of Different Approaches to the Development of Pedotransfer Functions for Water-Retention Curves. Geoderma 1999, 93, 225–253. [Google Scholar] [CrossRef]
- Van Looy, K.; Bouma, J.; Herbst, M.; Koestel, J.; Minasny, B.; Mishra, U.; Montzka, C.; Nemes, A.; Pachepsky, Y.A.; Padarian, J.; et al. Pedotransfer Functions in Earth System Science: Challenges and Perspectives. Rev. Geophys. 2017, 55, 1199–1256. [Google Scholar] [CrossRef]
- Heuvelink, G.B.M.; Webster, R. Modelling Soil Variation: Past, Present, and Future. Geoderma 2001, 100, 269–301. [Google Scholar] [CrossRef]
- Matheron, G. The Intrinsic Random Functions and Their Applications. Adv. Appl. Probab. 1973, 5, 439–468. [Google Scholar] [CrossRef]
- Chilès, J.-P.; Delfiner, P. Geostatistics: Modeling Spatial Uncertainty, 2nd ed.; Wiley Series in Probability and Statistics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; ISBN 9781118136188. [Google Scholar]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: New York, NY, USA, 1997; ISBN 0195115384. [Google Scholar]
- Isaaks, E.H.; Srivastava, R.M. Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989; Volume 21, ISBN 0195050134. [Google Scholar]
- Wackernagel, H. Multivariate Geostatistics: An Introduction with Applications; Springer: Berlin/Heidelberg, Germany, 2003; ISBN 3540441425. [Google Scholar]
- Journel, A.G.; Huijbregts, C.J. Mining Geostatistics; Academic Press: London, UK, 1978; ISBN 0123910501. [Google Scholar]
- Burgess, T.M.; Webster, R. Optimal Interpolation and Isarithmic Mapping of Soil Properties: II Block Kriging. J. Soil. Sci. 1980, 31, 333–341. [Google Scholar] [CrossRef]
- Lark, R.M.; Minasny, B. Classical Soil Geostatistics. In Pedometrics; McBratney, A., Minasny, B., Stockmann, U., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 291–340. ISBN 978-3-319-63437-1. [Google Scholar]
- Lucà, F.; Buttafuoco, G.; Terranova, O. 2.03—GIS and Soil A2. In Comprehensive Geographic Information Systems; Huang, B., Ed.; Elsevier: Oxford, UK, 2018; pp. 37–50. ISBN 978-0-12-804793-4. [Google Scholar]
- Malone, B.P.; Minasny, B.; McBratney, A.B. Using R for Digital Soil Mapping; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-44325-6. [Google Scholar]
- McBratney, A.; Minasny, B.; Stockmann, U. (Eds.) Pedometrics; Progress in Soil Science; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-63437-1. [Google Scholar]
- Journel, A.G.; Alabert, F. Non-Gaussian Data Expansion in the Earth Sciences. Terra Nova 1989, 1, 123–134. [Google Scholar] [CrossRef]
- Heuvelink, G.B.M. Uncertainty and Uncertainty Propagation in Soil Mapping and Modelling. In Pedometrics; McBratney, A., Minasny, B., Stockmann, U., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 439–461. ISBN 978-3-319-63437-1. [Google Scholar]
- Caers, J. Modeling Uncertainty in the Earth Sciences; John Wiley & Sons Ltd.: Chichester, UK, 2011; ISBN 9781119995920. [Google Scholar]
- Padarian, J.; McBratney, A.B. QuadMap: Variable Resolution Maps to Better Represent Spatial Uncertainty. Comput. Geosci. 2023, 181, 105480. [Google Scholar] [CrossRef]
- Leuangthong, O.; Khan, K.D.; Deutsch, C.V. Solved Problems in Geostatistics; Wiley: Hoboken, NJ, USA, 2008; ISBN 9780470177921. [Google Scholar]
- Pawlowsky-Glahn, V.; Olea, R.A.; Davis, J.C. Estimation of Regionalized Compositions: A Comparison of Three Methods. Math. Geol. 1995, 27, 105–127. [Google Scholar] [CrossRef]
- Tolosana-Delgado, R.; Mueller, U.; van den Boogaart, K.G. Geostatistics for Compositional Data: An Overview. Math. Geosci. 2019, 51, 485–526. [Google Scholar] [CrossRef]
- Aitchison, J. The Statistical Analysis of Compositional Data; Chapman and Hall: London, UK; New York, NY, USA, 1986; Volume 44, ISBN 978-94-010-8324-9. [Google Scholar]
- Pawlowsky-Glahn, V.; Egozcue, J.J.; Tolosana-Delgado, R. Modelling and Analysis of Compositional Data. Statistics in Practice; John Wiley & Sons, Ltd.: Chichester, UK, 2015; ISBN 9781118443064. [Google Scholar]
- Pawlowsky-Glahn, V.; Buccianti, A. Compositional Data Analysis: Theory and Applications; John Wiley & Sons: Chichester, UK, 2011; ISBN 978-0-470-71135-4. [Google Scholar]
- Pawlowsky-Glahn, V.; Egozcue, J.J. Spatial Analysis of Compositional Data: A Historical Review. J. Geochem. Explor. 2016, 164, 28–32. [Google Scholar] [CrossRef]
- Tolosana-Delgado, R.; Mueller, U. Geostatistics for Compositional Data with R; Use R! Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-82567-6. [Google Scholar]
- Fuks, S.D.; Voltz, M. A Comparison of Geostatistical Simulation Approaches for Estimating the Spatial Uncertainty of Soil Texture. In geoENV III—Geostatistics for Environmental Applications, Proceedings of the Third European Conference on Geostatistics for Environmental Applications, Avignon, France, 22–24 November 2000; Monestiez, P., Allard, D., Froidevaux, R., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 463–474. [Google Scholar]
- Buttafuoco, G.; Conforti, M.; Aucelli, P.P.C.; Robustelli, G.; Scarciglia, F. Assessing Spatial Uncertainty in Mapping Soil Erodibility Factor Using Geostatistical Stochastic Simulation. Environ. Earth Sci. 2012, 66, 1111–1125. [Google Scholar] [CrossRef]
- Walvoort, D.J.J.; De Gruijter, J.J. Compositional Kriging: A Spatial Interpolation Method for Compositional Data. Math. Geol. 2001, 33, 951–966. [Google Scholar] [CrossRef]
- Sun, X.-L.; Wu, Y.-J.; Wang, H.-L.; Zhao, Y.-G.; Zhang, G.-L. Mapping Soil Particle Size Fractions Using Compositional Kriging, Cokriging and Additive Log-Ratio Cokriging in Two Case Studies. Math. Geosci. 2014, 46, 429–443. [Google Scholar] [CrossRef]
- Lark, R.M.; Bishop, T.F.A.A. Cokriging Particle Size Fractions of the Soil. Eur. J. Soil. Sci. 2007, 58, 763–774. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, W. Robust Variogram Estimation Combined with Isometric Log-Ratio Transformation for Improved Accuracy of Soil Particle-Size Fraction Mapping. Geoderma 2018, 324, 56–66. [Google Scholar] [CrossRef]
- Li, J.; Wan, H.; Shang, S. Comparison of Interpolation Methods for Mapping Layered Soil Particle-Size Fractions and Texture in an Arid Oasis. Catena 2020, 190, 104514. [Google Scholar] [CrossRef]
- Odeh, I.O.A.; Todd, A.J.; Triantafilis, J. Spatial Prediction of Soil Particle-Size Fractions as Compositional Data. Soil. Sci. 2003, 168, 501–515. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, W. Mapping Soil Particle-Size Fractions: A Comparison of Compositional Kriging and Log-Ratio Kriging. J. Hydrol. 2017, 546, 526–541. [Google Scholar] [CrossRef]
- Muzzamal, M.; Huang, J.; Nielson, R.; Sefton, M.; Triantafilis, J. Mapping Soil Particle-Size Fractions Using Additive Log-Ratio (ALR) and Isometric Log-Ratio (ILR) Transformations and Proximally Sensed Ancillary Data. Clays Clay Miner. 2018, 66, 9–27. [Google Scholar] [CrossRef]
- Huang, J.; Subasinghe, R.; Triantafilis, J. Mapping Particle-Size Fractions as a Composition Using Additive Log-Ratio Transformation and Ancillary Data. Soil. Sci. Soc. Am. J. 2014, 78, 1967–1976. [Google Scholar] [CrossRef]
- Buchanan, S.; Triantafilis, J.; Odeh, I.O.A.; Subansinghe, R. Digital Soil Mapping of Compositional Particle-Size Fractions Using Proximal and Remotely Sensed Ancillary Data. Geophysics 2012, 77, WB201–WB211. [Google Scholar] [CrossRef]
- Heuvelink, G.B.M. Error Propagation in Environmental Modelling with GIS, 1st ed.; CRC Press: Chichester, UK, 1998; ISBN 9780748407439. [Google Scholar]
- Leuangthong, O.; McLennan, J.A.; Deutsch, C.V. Minimum Acceptance Criteria for Geostatistical Realizations. Nat. Resour. Res. 2004, 13, 131–141. [Google Scholar] [CrossRef]
- Deutsch, C.V.; Journel, A.G. GSLIB: Geostatistical Software Library and User’s Guide; Oxford University Press: New York, NY, USA, 1997; ISBN 978-0195100150. [Google Scholar]
- Maesano, M.; Santopuoli, G.; Moresi, F.; Matteucci, G.; Lasserre, B.; Scarascia Mugnozza, G. Above Ground Biomass Estimation from UAV High Resolution RGB Images and LiDAR Data in a Pine Forest in Southern Italy. IForest 2022, 15, 451–457. [Google Scholar] [CrossRef]
- Le Pera, E.; Sorriso-Valvo, M. Weathering and Morphogenesis in a Mediterranean Climate, Calabria, Italy. Geomorphology 2000, 34, 251–270. [Google Scholar] [CrossRef]
- Molin, P.; Fubelli, G.; Dramis, F. Evidence of Tectonic Influence on Drainage Evolution in an Uplifting Area: The Case of Northern Sila (Calabria, Italy). Geogr. Fis. Din. Quat. 2012, 35, 49–60. [Google Scholar] [CrossRef]
- ARSSA. Carta Dei Suoli Della Regione Calabria—Scala 1:250,000. In Monografia Divulgativa; Servizio Agropedologia; Agenzia Regionale per Lo Sviluppo e per i Servizi in Agricoltura: Soveria Mannelli, Italy, 2003. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 13th ed.; USDA Natural Resources Conservation Service: Washington, DC, USA, 2022. [Google Scholar]
- van Groenigen, J.W.; Stein, A. Constrained Optimization of Spatial Sampling Using Continuous Simulated Annealing. J. Environ. Qual. 1998, 27, 1078–1086. [Google Scholar] [CrossRef]
- van Groenigen, J.W.; Pieters, G.; Stein, A. Optimizing Spatial Sampling for Multivariate Contamination in Urban Areas. Environmetrics 2000, 11, 227–244. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer Method Improved for Making Particle Size Analyses of Soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Soil Science Division Staff. Soil Survey Manual. USDA Handbook 18; Ditzler, C., Scheffe, K., Monger, H.C., Eds.; Government Printing Office: Washington, DC, USA, 2017. [Google Scholar]
- Matheron, G. Principles of Geostatistics. Econ. Geol. 1963, 58, 1246–1266. [Google Scholar] [CrossRef]
- Armstrong, M. Basic Linear Geostatistics; Springer: Berlin/Heidelberg, Germany, 1998; ISBN 978-3-540-61845-4. [Google Scholar]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists; Statistics in Practice; John Wiley & Sons, Ltd.: Chichester, UK, 2007; ISBN 9780470517277. [Google Scholar]
- Goulard, M.; Voltz, M. Linear Coregionalization Model: Tools for Estimation and Choice of Cross-Variogram Matrix. Math. Geol. 1992, 24, 269–286. [Google Scholar] [CrossRef]
- Deutsch, C.V.; Journel, A.G. GSLIB: Geostatistical Software Library, 2nd ed.; Oxford University Press: New York, NY, USA, 1998; ISBN 0195100158. [Google Scholar]
- Lantuéjoul, C. Geostatistical Simulation; Springer: Berlin/Heidelberg, Germany, 2002; ISBN 978-3-642-07582-7. [Google Scholar]
- Paravarzar, S.; Emery, X.; Madani, N. Comparing Sequential Gaussian and Turning Bands Algorithms for Cosimulating Grades in Multi-Element Deposits. C. R. Geosci. 2015, 347, 84–93. [Google Scholar] [CrossRef]
- Pyrcz, M.J.; Deutsch, C.V. Geostatistical Reservoir Modeling, 2nd ed.; Oxford University Press: New York, NY, USA, 2014; ISBN 9780199731442. [Google Scholar]
- Remy, N.; Boucher, A.; Wu, J. Applied Geostatistics with SGeMS: A User’s Guide; Cambridge University Press: Cambridge, UK, 2009; Volume 9780521514, ISBN 9781139150019. [Google Scholar]
- Bleines, C.; Deraisme, J.; Geffroy, F.; Jeannée, N.; Perseval, S.; Rambert, F. Isatis.Neo Technical References; Geovariances: Avon, France, 2024. [Google Scholar]
- Tolosana-Delgado, R.; Otero, N.; Pawlowsky-Glahn, V. Some Basic Concepts of Compositional Geometry. Math. Geol. 2005, 37, 673–680. [Google Scholar] [CrossRef]
- Pawlowsky-Glahn, V.; Egozcue, J.J.; Lovell, D. Tools for Compositional Data with a Total. Stat. Model. 2015, 15, 175–190. [Google Scholar] [CrossRef]
- Pawlowsky-Glahn, V.; Olea, R.A. Geostatistical Analysis of Compositional Data; Oxford University Press: New York, NY, USA, 2004; ISBN 0195171667. [Google Scholar]
- Pawlowsky-Glahn, V. Cokriging of Regionalized Compositions. Math. Geol. 1989, 21, 513–521. [Google Scholar] [CrossRef]
- Tolosana-Delgado, R.; van den Boogaart, K.G.; Pawlowsky-Glahn, V. Geostatistics for Compositions. In Compositional Data Analysis: Theory and Applications; John Wiley & Sons, Ltd.: Chichester, UK, 2011; pp. 73–86. ISBN 9780470711354. [Google Scholar]
- Pawlowsky-Glahn, V.; Egozcue, J.J. Compositional Data in Geostatistics: A Log-Ratio Based Framework to Analyze Regionalized Compositions. Math. Geosci. 2020, 52, 1067–1084. [Google Scholar] [CrossRef]
- Egozcue, J.J.; Pawlowsky-Glahn, V.; Mateu-Figueras, G.; Barceló-Vidal, C. Isometric Logratio Transformations for Compositional Data Analysis. Math. Geol. 2003, 35, 279–300. [Google Scholar] [CrossRef]
- Pawlowsky-Glahn, V.; Egozcue, J.J. Compositional Data and Their Analysis: An Introduction. In Geological Society, London, Special Publications; Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V., Eds.; Geological Society: London, UK, 2006; Volume 264, pp. 1–10. [Google Scholar]
- Comas-Cufi, M.; Thió-Henestrosa, S. CoDaPack 2.0: A Stand-Alone, Multi-Platform Compositional Software. In Proceedings of the CoDaWork’11: 4th International Workshop on Compositional Data Analysis, Sant Feliu de Guixols, Spain, 9–13 May 2011; Egozcue, J.J., Tolosana-Delgado, R., Ortego, M.I., Eds.; Universitat de Girona: Girona, Spain, 2011. [Google Scholar]
- Wilde, B.J.; Deutsch, C.V. Programs for Swath Plots. Canada, 2012. [Google Scholar]
- Deutsch, C.V. Direct Assessment of Local Accuracy and Precision. In Geostatistics Wollongong ’96; Baafi, E.Y., Schofield, N.A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Vann, J.; Bertoli, O.; Jackson, S. An Overview of Geostatistical Simulation for Quantifying Risk. In Proceedings of the Symposium on Quantifying Risk and Error, Perth Western, Australia, 21–22 March 2002; Geostatistical Association of Australian: Fremantle, Australia, 2002. [Google Scholar]
- Schmidinger, J.; Heuvelink, G.B.M. Validation of Uncertainty Predictions in Digital Soil Mapping. Geoderma 2023, 437, 116585. [Google Scholar] [CrossRef]
- Arrouays, D.; Grundy, M.G.; Hartemink, A.E.; Hempel, J.W.; Heuvelink, G.B.M.; Hong, S.Y.; Lagacherie, P.; Lelyk, G.; McBratney, A.B.; McKenzie, N.J.; et al. GlobalSoilMap; Elsevier: Amsterdam, The Netherlands, 2014; pp. 93–134. [Google Scholar]
- Journel, A.G. Modeling Uncertainty: Some Conceptual Thoughts. In Geostatistics for the Next Century: An International Forum in Honour of Michel David’s Contribution to Geostatistics, Montreal, 1993; Dimitrakopoulos, R., Ed.; Springer: Dordrecht, The Netherlands, 1994; pp. 30–43. ISBN 978-94-011-0824-9. [Google Scholar]
Statistics | Sand (%) | Silt (%) | Clay (%) | ilr.1 (−) | ilr.2 (−) |
---|---|---|---|---|---|
Minimum | 39.00 | 1.00 | 7.00 | −0.276 | −0.018 |
Lower quartile | 57.00 | 17.00 | 12.00 | 0.462 | 0.567 |
Median | 63.00 | 22.00 | 15.00 | 0.730 | 0.755 |
Mean | 62.63 | 21.34 | 16.03 | 0.680 | 0.799 |
Upper quartile | 69.00 | 26.00 | 19.00 | 0.898 | 1.023 |
Maximum | 86.00 | 40.00 | 29.00 | 1.271 | 3.150 |
Stand. Dev. | 9.72 | 6.72 | 5.04 | 0.282 | 0.389 |
Skewness (-) | −0.26 | 0.00 | 0.73 | −0.403 | 1.678 |
Kurtosis (-) | 2.86 | 3.01 | 3.11 | 2.842 | 11.338 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buttafuoco, G. Comparing Two Geostatistical Simulation Algorithms for Modelling the Spatial Uncertainty of Texture in Forest Soils. Land 2024, 13, 1835. https://doi.org/10.3390/land13111835
Buttafuoco G. Comparing Two Geostatistical Simulation Algorithms for Modelling the Spatial Uncertainty of Texture in Forest Soils. Land. 2024; 13(11):1835. https://doi.org/10.3390/land13111835
Chicago/Turabian StyleButtafuoco, Gabriele. 2024. "Comparing Two Geostatistical Simulation Algorithms for Modelling the Spatial Uncertainty of Texture in Forest Soils" Land 13, no. 11: 1835. https://doi.org/10.3390/land13111835
APA StyleButtafuoco, G. (2024). Comparing Two Geostatistical Simulation Algorithms for Modelling the Spatial Uncertainty of Texture in Forest Soils. Land, 13(11), 1835. https://doi.org/10.3390/land13111835