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Abstract: Respiration of soil heterotrophs—mainly of bacteria and fungi—is a substantial part of
carbon balance in terrestrial ecosystems, which tie up organic matter decomposition with the rise of
atmospheric CO2 concentration. Deep understanding and prediction of seasonal and interannual
variation of heterotrophic and autotrophic components of CO2 efflux from soil is limited by the lack
of long-term, full-year measurements. To better understand the impact of current climate changes on
CO2 emissions from soils in the mixed forest and mowed grassland, we measured CO2 efflux every
week for 2 years. Heterotrophic (SOM-derived + leaf litter) and root-associated (root with rhizosphere
microorganisms) components were partitioned by the root exclusion method. The total CO2 efflux
from soil was averaged 500 g C m−2 yr−1 in the forest and 650 g C m−2 yr−1 in the grassland, with
shares of the no-growing cold season (Nov–Mar) of 22% and 14%, respectively. The heterotrophic
component of CO2 efflux from the soil averaged 62% in the forest and 28% in the grassland, and it
was generally stable across seasons. The redistribution of the annual precipitation amounts as well as
their deficit (droughts) reduced soil respiration by 33–81% and heterotrophic respiration by 24–57%
during dry periods. This effect was more pronounced in the grassland (with an average decline of
56% compared to 39% in the forest), which is related to lower soil moisture content in the grassland
topsoil during dry periods.

Keywords: microbial respiration; root derived respiration; grassland and forest ecosystems; seasonal
dynamics; interannual variability

1. Introduction

The CO2 efflux from soils, frequently termed as soil respiration (SR) [1,2], is the second-
largest flux between the Earth’s surface and atmosphere after photosynthesis [3,4]. SR
reflects mainly biological processes, but it includes two distinct components: respiration
of plant roots (RR) and heterotrophic microorganisms in soil (HR). The first, with above-
ground plant biomass respiration, constitutes losses of gross primary production (GPP), and
the second reflects the decomposition of organic matter entering and available in soil [5].
Therefore, only part of SR is linked with a pathway of carbon loss from soil. The specific
functional role of these CO2 sources in the ecosystem carbon cycle makes it necessary to
separate the SR into root and heterotrophic components to relate soil carbon turnover with
global warming. There are concerns that an increase in global temperature may increase the
ratio of HR to net primary production (NPP = GPP − plant respiration). Hence, increasing
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HR vs. NPP due to rising temperatures may reduce the ability of ecosystems to absorb CO2
released through anthropogenic activities due to the fertilization effect [6].

The proximity of global estimates of NPP in terrestrial ecosystems (56 Gt C/year) [7]
and HR (51 Gt C/year) [8–11] imposes special requirements to reduce their uncertainty.
However, all methods are characterized by a high degree of uncertainty in the estimates,
their spatial distribution and variability, as well as temporal dynamics, whether they
involve extrapolating SR and its components from local measurements to regional and
global scales (bottom-up approach) or estimating them using GPP and NPP data (top-down
approach) [4,8,10,12–14]. Despite the growth of observational data and the application of
machine learning techniques for their analysis, there has not been a convergence in global
estimates of SR. Instead, there has been an increase in the variability of these estimates [13].
Since HR is often calculated based on an empirical relationship with SR or obtained as a
product of Earth system models [10], or scaled based on a smaller HR dataset compared to
SR [15], it is clear that there is a problem with the scaling of HR, similar to the scaling of SR.

The type of ecosystem and vegetation cover have a strong effect on SR because they are
responsible for the input of organic compounds into soil, microclimate, biodiversity, and
food webs, as well as soil properties. Reflecting the total biological activity of an ecosystem,
SR and, particularly, HR are controlled both by the climatic conditions and vegetation
type [16–18]. The average contribution of root respiration to the total SR flux from the soils
varies from 38% in agrocenoses to 63–72% in the tundra and northern taiga ecosystems [1].
However, the contribution of RR to SR can vary significantly depending on the time, place,
and method of CO2 flow separation, with values ranging from less than 10% to more than
90% [19,20]. The seasonal and interannual soil CO2 fluxes and their structure are linked
with the ecosystem type [21–23], whereas the reaction of the SR to the climatic changes
and extremal events [24] may be associated with the individual soil carbon pools with
different turnover times [25]. The importance of regularly monitoring the SR structure is
highlighted by the presence of seasonal dynamics specific to different ecosystems [22,26,27].
The heterogeneous response of separate SOM components to changing climatic conditions
deepens our understanding of the relationship between global warming and the terrestrial
carbon cycle.

We estimated the seasonal dynamics of SOM-derived and root-derived components
of SR in forest and grassland ecosystems for two consecutive years. Our objectives were
(i) to compare ecosystem-driving seasonal dynamics of HR and RR; and (ii) to evaluate the
response of these components to changing weather conditions. In starting this monitoring,
we assumed that the contrast between plant life forms on the same soils allows us to
reveal the features of seasonal variation in the SR structure in various ecosystem types.
Additionally, we expected clear seasonal dynamics of the observed components, based
on previous estimates of seasonal dynamics of CO2 sources from the soil [22]. Given that
grassland ecosystems are enriched with thin, physiologically active roots compared to
forests, we hypothesized (i) that the main difference in yearly SR dynamics between these
two contrasting ecosystems is associated with RR dynamics. Considering the individual
microclimates and adaptation strategies of grassland and forest ecosystems to weather
anomalies, we hypothesized (ii) that there would be various magnitudes of HR and RR
responses to exceptional weather conditions.

2. Materials and Methods
2.1. Site Description

Study sites are located within the Prioksko-Terrasny Nature Biosphere Reserve (Moscow
region, Russia) near the integrated background monitoring of environmental pollution
station (IBMon; 54◦54.148′ N, 37◦33.377′ E). The first site (Figure 1a) was located in the
native mixed forest (>130 years; Pinus sylvestris, Tilia cordata, Populus tremula, Picea abies,
Acer platanoides, Betula spp.). The forest stand had formed during natural reforestation after
pine logging in the 1930s [28]. The second site (Figure 1b) was located at a distance of
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100 m on the moving grassland (>50 years developed) with a polydominant association
(Alchemilla sp., Viola tricolor L., Trisetum flavescens (L.) Beauv., Rumex acetose L.).

Land 2024, 13, x FOR PEER REVIEW 3 of 19 
 

native mixed forest (>130 years; Pinus sylvestris, Tilia cordata, Populus tremula, Picea abies, 
Acer platanoides, Betula spp.). The forest stand had formed during natural reforestation af-
ter pine logging in the 1930s [28]. The second site (Figure 1b) was located at a distance of 
100 m on the moving grassland (>50 years developed) with a polydominant association 
(Alchemilla sp., Viola tricolor L., Trisetum flavescens (L.) Beauv., Rumex acetose L.). 

 
Figure 1. General view of the vegetation and soils within the native mixed forest (a) and mowed 
grassland (b) ecosystems, along with chambers for soil respiration measurements during warm (b) 
and cold (c) periods. The process of installing soil chambers containing root-free soils (d). 

The soil was classified as a weak differential Entic Podzol (Arenic) [29] on sandy al-
luvial-glaciofluvial deposits of the Oka glaciofluvial alluvial plain (Figure 1a,b). The soil 
texture of topsoil (0~10 cm) is sandy loam with clay-silt content (<0.01 mm) of 8.4–9.4% 
and sand for the deeper soil layer (10~30 cm). The thickness of litter horizon in the forest 
is approximately 2–3 cm, and litter storage amounts to 550 ± 120 g C m−2. In contrast, the 
litter horizon in grassland is shallow and sparse, with a storage of approximately 100 ± 17 
g C m−2. Soil under grassland has a well-developed sod horizon (Ah) at a depth of 0–10 
cm. The soils of the two ecosystems showed no marked differences in their properties 
(Table 1). 

Table 1. Physicochemical soil properties of the monitoring plots in the forest and grassland. 

Place 
Depth 

pH 
Bulk Density Corg Ntot 

C/N 
Cmic 

cm g cm−3 g kg−1 g kg−1 mg kg−1 

Forest 

0–5 5.03 ± 0.12 a 0.93 ± 0.05 a 35.13 ± 3.42 a 2.23 ± 0.15 a 15.6 ± 0.6 a 150 ± 35 ab 
5–10 4.15 ± 0.12 bc 1.39 ± 0.06 b 16.59 ± 0.94 c 1.20 ± 0.10 b 13.9 ± 0.8 a 85 ± 11 bc 

10–20 4.01 ± 0.11 c 1.32 ± 0.05 b 7.85 ± 0.84 de 0.55 ± 0.05 cd 14.2 ± 0.9 a 42 ± 9 c 
20–30 4.06 ± 0.15 c 1.50 ± 0.08 b 4.00 ± 0.58 e 0.30 ± 0.04 d 13.4 ± 0.2 a 34 ± 4 c 

Grassland 

0–5 4.51 ± 0.03 b 0.93 ± 0.07 a 25.34 ± 1.25 b 2.34 ± 0.19 a 10.9 ± 0.5 b 211 ± 11 a 
5–10 3.97 ± 0.05 c 1.39 ± 0.12 b 11.64 ± 0.28 cd 1.21 ± 0.04 b 9.6 ± 0.3 b 83 ± 2 bc 

10–20 4.00 ± 0.04 c 1.53 ± 0.04 b 8.01 ± 0.57 de 0.84 ± 0.06 bc 9.5 ± 0.1 b 43 ± 1 c 
20–30 4.10 ± 0.05 bc 1.56 ± 0.06 b 4.00 ± 0.41 e 0.44 ± 0.04 cd 9.0 ± 0.2 b 31 ± 2 c 

Figure 1. General view of the vegetation and soils within the native mixed forest (a) and mowed
grassland (b) ecosystems, along with chambers for soil respiration measurements during warm (b)
and cold (c) periods. The process of installing soil chambers containing root-free soils (d).

The soil was classified as a weak differential Entic Podzol (Arenic) [29] on sandy
alluvial-glaciofluvial deposits of the Oka glaciofluvial alluvial plain (Figure 1a,b). The soil
texture of topsoil (0~10 cm) is sandy loam with clay-silt content (<0.01 mm) of 8.4–9.4%
and sand for the deeper soil layer (10~30 cm). The thickness of litter horizon in the forest
is approximately 2–3 cm, and litter storage amounts to 550 ± 120 g C m−2. In contrast,
the litter horizon in grassland is shallow and sparse, with a storage of approximately
100 ± 17 g C m−2. Soil under grassland has a well-developed sod horizon (Ah) at a depth
of 0–10 cm. The soils of the two ecosystems showed no marked differences in their
properties (Table 1).

Table 1. Physicochemical soil properties of the monitoring plots in the forest and grassland.

Place
Depth pH Bulk Density Corg Ntot C/N

Cmic
cm g cm−3 g kg−1 g kg−1 mg kg−1

Forest

0–5 5.03 ± 0.12 a 0.93 ± 0.05 a 35.13 ± 3.42 a 2.23 ± 0.15 a 15.6 ± 0.6 a 150 ± 35 ab
5–10 4.15 ± 0.12 bc 1.39 ± 0.06 b 16.59 ± 0.94 c 1.20 ± 0.10 b 13.9 ± 0.8 a 85 ± 11 bc
10–20 4.01 ± 0.11 c 1.32 ± 0.05 b 7.85 ± 0.84 de 0.55 ± 0.05 cd 14.2 ± 0.9 a 42 ± 9 c
20–30 4.06 ± 0.15 c 1.50 ± 0.08 b 4.00 ± 0.58 e 0.30 ± 0.04 d 13.4 ± 0.2 a 34 ± 4 c

Grassland

0–5 4.51 ± 0.03 b 0.93 ± 0.07 a 25.34 ± 1.25 b 2.34 ± 0.19 a 10.9 ± 0.5 b 211 ± 11 a
5–10 3.97 ± 0.05 c 1.39 ± 0.12 b 11.64 ± 0.28 cd 1.21 ± 0.04 b 9.6 ± 0.3 b 83 ± 2 bc
10–20 4.00 ± 0.04 c 1.53 ± 0.04 b 8.01 ± 0.57 de 0.84 ± 0.06 bc 9.5 ± 0.1 b 43 ± 1 c
20–30 4.10 ± 0.05 bc 1.56 ± 0.06 b 4.00 ± 0.41 e 0.44 ± 0.04 cd 9.0 ± 0.2 b 31 ± 2 c

±standard error (n = 3–4). pH was measured in KCl (1 M). Organic carbon (Corg) and total nitrogen (Ntot) contents
were determined by the dry combustion method (LECO-932, St. Joseph, MI, USA). Microbial carbon (Cmic) was
analyzed by the substrate-induced respiration method [30]. Different letters indicate pairs of average values, the
differences of which are detected during the multiple comparison procedure (Tukey test, α = 5%) after two-way
ANOVA (Ecosystem × Depth).
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2.2. Climate

The climate of the region is temperate continental (Dfb according to the Köppen climate
classification). Average annual temperature during 1991–2020 (with standard deviation)
provided by IBMon for the study region is 5.7 (0.8) ◦C, and annual amount of precipitation
is 640 (107) mm. Approximately 1/3 of precipitation falls over summer (June–August) and
2/3 during the warm season (April–October). The annual average temperatures of July
and January over this period were 18.8 (1.9) and −7.2 (3.2) ◦C, respectively. The permanent
snow cover in this region typically lasts from November–December to March–April. The
average duration of snow occurrence is 131 (23) days with an average maximum height of
53 (12) cm.

2.3. Soil Respiration Measurement

The nonsteady-state, nonthrough-flow close chamber method (in classification [31])
was used to measure the rate of CO2 efflux from soil. During the nonsnow period, 5 steel
chambers with a diameter of 10 cm and a height of 12 cm were used for SR measurements
(Figure 1b). The top of the chamber was equipped with a rubber septum for collecting
gas samples. These chambers were inserted into the soil at a depth of 4 cm after cutting
of green plant parts until 1 cm height. Gas samples were collected using 23 mL plastic
syringes at 0, 10, and 20 min after the installation of the chambers.

During the snow period, 5 chambers were PVC plastic pipes with a diameter of 20 cm
and a height of 60 cm, which were stationary inserted into the soil at a depth of 10 cm after
removing a living plant’s canopy (Figure 1c). These were installed shortly before the first
frost and removed after the melting of the snow cover. The chambers were supplied with
additional sections when the snow depth exceeded the chambers height. Gas samples were
collected using syringes at 0, 20, and 40 min after closing the chambers with cups. Gas
samples had been immediately moved to a laboratory and analyzed with an infrared CO2
analyzer (Li-Cor LI-820, Lincoln, NE, USA)

2.4. Partitioning of Total CO2 Efflux from Soil for Contribution of Heterotrophs and
Root-Derived CO2

HR was estimated by the root exclusion method. PVC plastic pipes of 20 cm diameter
were cut into the soil at the depth of 45 cm. The upper part of the pipes protruded from the
soil by 10–15 cm and was chamber walls that closed with cups with rubber septa. During
the cutting process, soil layers of 2-cm thickness were removed step by step from the inner
space of the pipes (Figure 1d). The soil had been freed from roots and was then sieved
through a 5-mm screen. Prepared soil was removed into the pipes while maintaining the
order of layers and density (compacting soil by a wooden pole) after the installation of the
pipes at the indicated depth. It was possible to install the pipes without severely disturbing
its structure due to the sandy structure of the soil. Leaf litter horizon was preserved in the
forest site. Due to the absence of litter horizon in the grassland site, the surface of the bare
soil in the chambers was covered by the nonwoven material that fits into the diameter of the
pipe. This prevents the disturbance of soil surface during rain and reduces overheating and
over-drying of the topsoil. HR measurements were performed similarly to soil respiration.

We prepared and installed 5 chambers for HR measurements at the end of May 2022.
The measurements of CO2 emissions began 1 month after the installation of HR chambers.
A posteriori comparison of CO2 efflux from HR chambers installed in different years
allowed us to establish that a period of 2–3 months is sufficient for the stabilization of CO2
efflux from the soil, but a major decrease in extra flux is observed during the first month
(Figure A1). There was no visible systematic decrease in HR observed over the two years
based on a comparison of two series of chambers that were installed in consecutive years.
The soil in the chambers was somewhat wetter than that around it due to the absence of
plant transpiration (Figure A2).

The above-described method allows us to measure HR associated with the decom-
position of SOM as well as litter in the forest. It is worth considering that when soil was
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sieved, the part detritus fraction (up to 5 mm) and the remains of thin roots remained
in the soil. Note that the pool of soil detritus in the topsoil of HR chambers in the for-
est was replenished by leaf and stem litter, whereas the replenishment of aboveground
plant residues in the grassland was absent. The RR included the CO2 from roots and
rhizosphere microbiomes.

2.5. Soil Temperature and Moisture Measurement

The air and soil temperatures were measured at a depth of 5 cm using a portable ther-
mometer (Hanna Checktemp-1, Nusfalau, Romania; the measurement error was ±0.3 ◦C)
directly at the measuring time of the SR rate. The moisture content of the soil in the 0–5 cm
layer and forest litter was determined using the gravimetric method (drying at 105 ◦C for
at least 6 h). The snow cover depth was also measured during the snow time period.

2.6. Data Processing

Rate of SR (mg C m−2 h−1) flux from soil was calculated by the Equation (1):

SR =
dCO2

dt
(Vch − Vsn)M

SVm100
, (1)

where dCO2/dt—rate of rise CO2 into chamber, ppm h−1; Vch—chamber volume, cm3, Vsn—
snow volume, cm3, S—chamber base area, cm2; M—molar mass of carbon (12 g mol−1),
Vm—molar volume of gas at standard conditions (22.4 mol L−1). Snow density data
was taken from specialized arrays for climate research for the nearest weather station,
Serpukhov [32].

The total SR flux (TSR, g C m−2 period−1) was calculated by linear interpolation of
the measured values between successive dates in accordance with Equation (2):

TSR =
n

∑
i=1

(
Rntn

)
, (2)

where Rn—average rate of CO2 flux between two consecutive dates (g C m−2 day−1),
tn—duration of the period between two consecutive dates (days).

Bootstrap analysis was used for estimation of seasonal SR, HR, and RR fluxes and
their 95% confidence intervals (5000 iterations). We used the R base library (v.4.4.1); part of
the measurements in June 2022 was calculated on the basis of a regression equation of HR
from SR due to missed HR measurements in the first month after installing soil chambers
(Figure A4). A standard error was used as a measure of variability for means. A standard
significance level of α = 5% has been accepted in general cases.

3. Results
3.1. Weather Conditions During the Monitoring Period

In general, the years 2022 and 2023 were characterized by similar mean annual tem-
perature (MAT) and annual precipitation amount (PA) that did not differ from the reference
period (1991–2020) but were characterized by important anomalies of weather conditions
in certain seasons (Table 2).

The wet and cool spring of 2022 was followed by a dry summer (June–August) with
the PA of 109 mm, which was half of the PA during the reference period. There were three
dry periods of 9–13 days from the end of July to the beginning of September, alternating
with two short-term wet periods (3–4 days each). These dry periods were accompanied by
the positive temperature anomaly in August. Autumn temperature, with the exception of
cool September, was close to the reference period. A low, stable snow cover was formed in
mid-November. A 50-year record amount of precipitation (liquid equivalent, mm) fell in
December. However, these precipitations did not lead to a sharp increase in a snow cover
amount due to the thaws. The snow cover reached maximum height by mid-March 2023,
after which it melted to the first days of April 2023.
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Table 2. The average monthly temperatures and sum of precipitations at the data of Integrated back-
ground monitoring of environmental pollution (54◦54.148′ N, 37◦33.377′ E) for the last meteorological
reference period and the years of the monitoring CO2 fluxes.

Period January February March April May June July August September October November December Year

Air temperature, ◦C

1991–
2020

−7.2
(3.2)

−6.6
(4.1)

−1.2
(3.0)

6.7
(1.8)

13.0
(2.2)

16.5
(1.7)

18.8
(1.9)

17.1
(1.4)

11.6
(1.5)

5.8
(1.6)

−1.1
(3.0)

−5.2
(3.8)

5.7
(0.8)

2022 −5.7 −1.9 ↑ −2.0 5.4 9.8 ↓ 17.2 18.9 19.6 ↑ 9.0 ↓ 6.5 −0.8 −4.5 6.0
2023 −5.4 −4.7 0.7 8.6↑ 11.2 15.2 17.5 18.4 13.2 ↑ 4.9 −0.6 −4.7 6.2
2024 −11.1 ↓ −4.8 0.1 10.4↑ −11.1 nd nd nd nd nd nd nd nd

Precipitation amount, mm

1991–
2020

44
(16)

39
(14)

36
(17)

39
(19)

56
(31)

75
(36)

82
(35)

63
(43)

57
(38)

61
(30)

44
(22)

44
(20)

640
(107)

2022 82 ↑ 19 ↓ 13 ↓ 98 ↑ 75 34 ↓ 54 22 87 73 37 125 ↑ 718
2023 22 ↓ 42 76 ↑ 52 19 ↓ 67 79 46 15 ↓ 113 ↑ 101 ↑ 85 ↑ 716
2024 55 43 7 ↓ 51 36 nd nd nd nd nd nd nd nd

Note: The standard deviation is shown in the brackets. The bold font with the signs ↑ or ↓ indicates meteorological
parameters that deviate from the reference period by more than 1 standard deviation.

May 2023 was anomalously dry. Although the total summer PA was close to the
reference period, its substantial part fell during short periods. In June, 52 out of 67 mm of
precipitation fell on the first and last days of the month, leading to a 21-day continuous dry
period. A similar pattern was observed in August, with most PA (38 mm) falling between
the 20th and 26th of the month. An anomaly dry and warm September was followed by an
anomaly wet October–December.

3.2. The Dynamics of CO2 Efflux from Soil

Overall, mean annual SR rates were higher than HR by 1.7–1.9 times in the forest and
by 4 times in the grassland (Figure A3). There are no marked interannual differences in
variability and summary statistics of SR and HR (Table A1). The annual dynamics of SR
and HR values reflected the changes in soil temperature. Short-term variations (less than
one month) include both the periods of calm and marked waves of SR fluxes, reaching
150–200 mg C m−2 h−1 (Figure 2). In November and December 2022, anomalous growth of
SR and HR values was observed after steady temperature transition from 0 and soil surface
freezing at snow cover height < 10 cm. These anomalously high winter SR fluxes were
excluded during calculations of total monthly and seasonal CO2 fluxes.

The remarkable decline of SR rate was observed during the dry periods in August
2022, June 2023, and September 2023 (Figure 3). Soil moisture content was a substantial
factor influencing SR dynamics during these periods (Figure 4). We estimated the effect
size of a dry period as the difference between CO2 fluxes on the first day of the dry period
and the minimum CO2 fluxes measured during that period. The decrease in CO2 efflux
during August 2022 was more pronounced compared to June 2023 and September 2023,
due to a longer dry period (37 days vs. 21–22 days, respectively). The decline of SR and HR
in the grassland during the dry periods was more than in the forest: 56% vs. 39% across all
fluxes and periods (paired t-test, n = 6, p < 0.001). It was found that HR was less affected by
dry periods compared to SR and, consequently, RR (Figure 3).
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Figure 2. Dynamics of air (Ta) and soil (Ts) temperatures and height of snow cover (a), soil and
forest litter moisture content (b) during the measurements of soil respiration (SR) and respiration
of SOM−derived microorganisms (HR) in the forest (c) and the grassland (d). The dotted lines for
HR show values reconstructed using the regression method for the first half of June 2022. Arrows
indicate the decrease in SR and HR values during prolonged dry periods: August 2022, June 2023,
and September 2023. Error bars are standard errors of the mean.
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3.3. Seasonal Fluxes of Total CO2

There were clear seasonal variations in total monthly SR, HR, and RR values (Figure 5).
Distinct differences were observed between total monthly HR and RR. Particularly, im-
pressive growth of total monthly RR has been observed from March to May, in contrast
to the smooth increase in HR values during this period. The decline of soil CO2 fluxes
observed during the summer dry periods has led to a reduction in total SR and RR in these
months, but has relatively weakly affected HR values. We observed significant correlations
between total monthly SR values (n = 24) in both ecosystems (r = 0.84) and between total
monthly HR values as well (r = 0.96). For total monthly RR values, the relationship between
ecosystems studied was weaker (r = 0.57).
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(RR) respiration values (a–c) and their distribution over two years (d–f): the median (bar), lower (Q1)
and upper (Q3) quartiles (“boxes”); X1 = Q1 − 1.5 IQR (interquartile range, IQR = Q3 − Q1) and
X2 = Q3 − 1.5 IQR (“moustaches”); all data are shown as dots.

For the formal analysis, we divided the year into two seasons: October–March and
April–September. Two-way ANOVA indicated a likely interaction between ecosystem type
and the seasonal factor for SR (p = 0.006), along with a formally nonsignificant effect of
the ecosystem at the annual scale (p = 0.06). For HR, the analysis revealed no interaction
between the ecosystem and the season (p = 0.59), while a significant ecosystem effect was
observed (p = 0.0006). All possible combinations of ecosystem and seasonal factors were
significant for RR (p << 0.001). Therefore, seasonal differences in total month SR between
the two ecosystems are caused mainly by the dynamics of RR flux (Figure 6a,c). The root
component of total SR was notably higher in the grassland than in the forest between April
and September, whereas it was similar in both ecosystems between October and March
(Figure 5c). Alternate HR values were consistently higher in the forest than in the grassland
during the entire year (Figure 5b). As with RR, the differences increased during the warm
period, reflecting the response of HR to temperature increasing (Figure 6a).
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derived (RR) respiration between the grassland and forest ecosystems (a); a positive value means
more intensive fluxes in the grassland. Dynamics of the share of monthly HR in SR values in the
ecosystems (b). The relationships between increments of HR or RR and SR (c) values presented in (a),
as well as the increments of HR shares between the forest and the grassland (d).

Surprisingly, there were no clear seasonal dynamics of the shares of HR and RR in the
total monthly SR in contrast to the differences between ecosystems (Figure 6b). However, a
small yet significant relationship was found between the dynamics of HR contributions in
the two ecosystems studied (Figure 6d). The annual shares of HR were 57–67% in the forest
and 28% in the grassland with minor variation across seasons. In the grassland, the mini-
mum of HR share was in the spring (17–19%) and the maximum in the summer (32–34%),
comprising 26–37% during the autumn and winter periods. In the forest ecosystems, the
maximum share of HR was registered in the summer (62–76%) and comprised 52–62%
during all other seasons. Nevertheless, the changes in HR shares between the two years
differed between the two ecosystems. In the grassland, the contribution of HR during the
cold season increased from 27% in the first year to 40% in the second year. However, this
dynamic did not lead to a change in the annual share of HR. In the forest, the share of HR
during the warm season decreased year-to-year from 69% to 57%, which led to a decrease
in the annual share of HR from 67% to 57%.

The total annual SR flux was 1.3 times higher in the grassland compared to the forest
for both years studied (Table 3). These differences were formed during a warm period
(1.4–1.5 times higher), and especially during spring (1.6–1.9 times higher) when rapid RR
growth was observed in the grassland. During the cold season, the alternate total SR was
1.2−1.3 times higher in the forest compared to grassland, due to the differences in HR
values between the ecosystems.

Contributions of total winter SR, HR, and RR to annual fluxes were similar and
comprised 10–15% in the forest ecosystem and 5–13% in the grassland. The cold season
(November–April) contributed to the total annual SR, HR, and RR fluxes of 18–26% and
11–23% in the forest and grassland ecosystems, respectively.
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Table 3. Mean values of the seasonal total soil (SR), SOM-derived heterotrophs (HR) and root-derived
(RR) respiration (CO2) in the forest (F) and the grassland (G) ecosystems for two years observation.

Period 1

SR HR RR

2022–2023 2023–2024 2022–2023 2023–2024 2022–2023 2023–2024

F G F G F G F G F G F G

Summer (January–August) 214
(10)

333
(13)

194
(9)

262
(7)

163
(7)

112
(5)

120
(2) 83 (9) 51

(13)
222
(14) 74 (9) 179

(11)

Autumn (September–November) 141
(7)

127
(5)

118
(6)

122
(5) 83 (3) 33 (2) 64 (2) 33 (3) 59 (7) 94 (6) 54 (7) 90 (6)

Winter (December–February) 55 (5) 37 (4) 72 (5) 63 (3) 32 (3) 10 (2) 43 (3) 23 (4) 23 (6) 27 (4) 28 (6) 40 (5)

Spring (March–May) 91 (5) 170
(8)

106
(5)

174
(12) 56 (3) 29 (2) 55 (3) 33 (3) 35 (6) 142

(8) 51 (6) 141
(12)

Cold season (November–April) 101
(6) 78 (5) 123

(6)
101
(3) 59 (4) 21 (2) 74 (3) 40 (5) 43 (7) 58 (5) 49 (7) 61 (6)

Warm season (May–October) 402
(16)

587
(16)

370
(11)

525
(15)

277
(8)

164
(6)

210
(4)

134
(9)

125
(15)

424
(17)

160
(12)

391
(17)

Year 504
(15)

667
(16)

495
(13)

626
(15)

336
(9)

185
(6)

284
(5)

174
(11)

168
(16)

483
(18)

210
(14)

453
(18)

1 June was taken at the beginning of the year. Confidence intervals (95%) are shown in brackets.

4. Discussion
4.1. Vegetation Type-Driven Effects on CO2 Fluxes

We did not observe marked differences between the soils studied, excluding some
distinctions in the topsoil layer (Table 1). The soil in the forest had a slightly higher pH in
the 0–5 cm layer, as well as a higher Corg content in the 0–10 cm layer in comparison to
grassland soil. A larger amount of Corg in the top 10 cm of the forest soil against grassland
is common for sandy soils [33]. In contrast to the differences in Corg and Ntot content
between forest and grassland soils, the C/N ratio in forest soil was systematically higher
at all depths. Nevertheless, there was no observed effect of Corg and Ntot content on the
Cmic. Since overall soil properties varied slightly, we assume that the main differences
in soil CO2 fluxes between these ecosystems are primarily due to the influence of plant
communities [34], rather than being driven by differences in soil properties. However,
higher soil organic carbon and C/N ratio in the forest can result in higher basal respiration
of the soil, ceteris paribus.

One of the substantial differences between the ecosystems is the existence of the
litter horizon in the forest soil and the sod horizon in the grassland soil. This reflects the
predominant pathways of carbon entering the soil, its transformation, and release [35,36].
Additionally, a relative abundance of active thin roots in the grassland provides differences
in an SR structure and its dynamics. The second major factor affecting the SR flux dynamics
is the difference in the microclimate. Because of strong isolation of soil by vegetation
canopy and litter layer from direct solar radiation, the forest soil was cooler and wetter than
the soil in the grassland. The low water-holding capacity of the sandy soil also contributes
to these differences. Thus, the consequences of weather anomalies on the hydrothermal
regime of the soil in the grassland may be stronger than in the forest [37]. The microclimate
effect can mediate the response of communities to extreme weather conditions [38] as well
as the CO2 source ratio in the soil.

4.2. Structure of Soil CO2 Efflux

One of the main reasons for the lack of HR and RR data from regular long-term obser-
vations is the difficulty and complexity of separating the components of soil respiration
in the field [19,20]. Most of the approaches are not suitable for long-term, full-year, fre-
quent (not less than 1 per month, but, actually, 1/Mo is not frequent) observations. This is
probably why the few regular observations of HR in the field are based on simple methods
for separating HR from SR, such as girdling, trenching, root exclusion, and component
integrations [39,40]. However, these methods vary in the degree to which they isolate HR.
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For instance, the HR contribution estimates we obtained here were lower than the previ-
ously conducted SR component determined in these areas using the component integration
method: 45–80% vs. 80–99% in the forest and 15–40% vs. 40–90% in the grassland [22,41].
These differences were expected due to the methodological underestimation of HR from
the rhizosphere and root decomposition [42,43]. If the RR contribution obtained using the
component integration method is subtracted from our RR estimates, the contribution of the
rhizosphere and detritus to SR will be 1/2 in the grassland and 1/3 in the forest. On the other
hand, these will contribute to a total HR of 2/3 in the grassland and 2/5 in the forest. This is
a very rough estimate, but it provides an overview of the sources of CO2 emissions in the
two contrasting ecosystems.

The absence of clear seasonal patterns in HR share was unexpected. This means that
CO2 fluxes from roots, rhizodeposits, and detritus vs. from SOM and forest floor litter are
generally in balance throughout the year. However, the mean share of HR in total seasonal
SR during the offseason was a little, but significantly, lower than during summer or winter.
These mean differences (in absolute share HR in SR) were 7% in the forest and 10% in the
grassland (two-way ANOVA, p < 0.05). The composition of soil microbial communities
changes with the seasons [44]. A possible explanation for the decline of HR share in SR is
that microbial communities that consume SOM might have a longer adapting period to
changes in the temperature regime of the soil, which is characterized by warm and cold
seasons. Another explanation for this phenomenon could be the death and decay of the
thin roots, which are absent in the HR chambers.

Apparently, the source of the seasonal variation in HR, which was previously found
for the studied area [22,41], is associated with short-lived soil carbon pools, such as rhizode-
posits, root, and detritus/litter. If these pools reflect the seasonal dynamics of the function
of the ecosystems, seasonal SR differences between the two ecosystems will be determined
entirely by the dynamics of these short-lived components of the soil carbon cycle, as we as-
sumed in the first hypothesis. Indirectly, this can be seen by the close relationship between
the HR dynamics in the grassland and the forest (R2 = 0.86, n = 105) and the explanation
of the differences in SR between ecosystems, which is almost exclusively related to RR
dynamics (R2 = 0.96, n = 24). Additionally, it is difficult to expect large differences in the
SOM mineralization rates of soils with close properties without direct or indirect influence
of ecosystem communities. Therefore, systematic monitoring in two or more contrasting
ecosystems will allow us to extract additional information about the carbon cycle processes
under various weather conditions.

4.3. Soil Respiration and CO2 Sources Throughout Climate Change

The definition of drought can affect the conclusions drawn from manipulative experi-
ments [45] and monitoring. Two years with similar mean annual temperatures and total
precipitation amounts have allowed us to study several patterns in precipitation distri-
bution. During summer, decreases in total monthly SR and HR were related both to the
deficit of the total amount of precipitations and to a decrease in stratiform precipitations in
favor of convective precipitations. Soils do not retain more water than their water-holding
capacity. Thus, a portion of intense precipitation is excluded from biological consumption
due to surface runoff and subsurface drainage. Rising precipitation in the warming world
is a fact, but it has complex patterns [46]. Seasonal redistribution of precipitation can
increase the length of the dry period, as well as a shift in the total amount of precipitation
between seasons [47–49]. These are examples of an increase in aridity in some regions,
despite the absence of a decrease in the total precipitation amount. There were specific
effects of dry periods of varying lengths and intensities on HR and SR [50,51]. The link
between CO2 efflux reduction and the duration of the dry period is consistent with our
previous results from the field experiment [50,52]. The magnitude and direction of the
effects can be determined by comparing the positive impact of temperature on biochemical
reactions with the negative impact of decreased soil moisture on substrate transport and
availability [50]. Thus, soil hydrology properties will establish a threshold of the duration
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of dry periods and a total amount of precipitation for effect on SR and HR. The sandy
soil in the research area has a low water-holding capacity, making the ecosystems more
vulnerable to dry periods. Previously, contrary trends in long-term SR dynamics were
observed between this forest and a forest placed on the opposite side of the Oka River [53].
Perhaps these different trends in SR reflect the contrasting soil textures of the two forest
ecosystems (sandy vs. loamy) and their respective water retention abilities. Therefore, it is
necessary to account for not only the indicators of overall moisture availability, but also
parameters that reflect the distribution of precipitation over time, such as the duration of
dry periods and land features.

Rather warm and wet October 2022 favored fresh litter decomposition in the forest.
This will not only affect the actual amount of CO2 emissions in different years, but it may
also have an impact on the microbial immobilization of carbon and nitrogen from labile
organic compounds during the autumn–winter period [54]. In a broader sense, the effects
relate to those that are a legacy from the conditions of ecosystem functioning in previous
periods [55]. We observed a consistent 6% decrease in annual HR and RR from the first
to the second year in the grassland, attributed to a dry summer at the beginning of our
observation. The aforementioned effect of an increased duration of dry periods in the
second year may include both the direct impact of weather conditions and the legacy effect
of a deficit in summer precipitation from the previous year. In contrast, this has not been
observed in the forest, where the topsoil moisture content was higher than in the grassland.
In the forest, the decrease in HR was balanced by the increase in RR. Therefore, weather
conditions affected the contribution of CO2 sources to SR, but not its total amount in the
forest. These observations, coupled with the specific response in HR and RR to the dry
periods, are consistent with the second hypothesis. It is important in the context of specific
responses of grassland and forest ecosystems to anomalous weather conditions [38,56].

Long-term observations of SR in these ecosystems reveal their negative trends in
total annual SR fluxes [57,58]. They are accompanied by an increase in the annual air
temperature, aridity during a growing season, and a reduction of a period with stable
snow cover [53,57]. However, the contribution of certain soil CO2 sources to the observed
decrease in SR is not known. This is crucial to estimate carbon uptake by ecosystems and
the risk of carbon loss due to climate extremes. For example, the proposed acceleration
of the turnover of carbon pools under elevated CO2 levels in the atmosphere [59] could
lead to an increased risk of losing more carbon during secondary succession due to the
previous depletion of recalcitrant SOM. Therefore, long-term continuous monitoring of
soil respiration sources is just as important as monitoring soil respiration itself and the
ecosystem’s CO2 fluxes in general [60].

5. Conclusions

The main differences in seasonal dynamics of CO2 efflux from soil (SR) between nearby
grassland and forest ecosystems were related to root-associated CO2 (root with rhizosphere
microorganisms; RR). This component of SR was also more valuable for the impact of
prolonged dry periods than the respiration of soil heterotrophs (SOM-derived and leaf
litter; HR). Remarkable drying of grassland soil results in the more pronounced SR and HR
decreases during dry periods in the grassland compared to the forest one. In contrast to HR,
the total seasonal RR fluxes were not consistent across the two ecosystems at the interannual
scale. It remains to be investigated whether this is a direct result of the weather conditions
or the dynamics of more complex ecosystem processes. The absence of pronounced seasonal
variation of HR contribution to SR (primarily SOM-derived) is likely due to the fact that
the main source of seasonal variability in HR arises from short-lived components of the
soil C cycle, such as rhizodeposits, dead fine roots, detritus, and litter. Consequently,
developing long-term monitoring programs that include the assessment of soil respiration
components, particularly short-lived ones, would strongly reduce uncertainty in carbon
balance estimates for terrestrial ecosystems.
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Figure A1. Offset of SOM-derived respiration of heterotrophs (HR) measured in young (installed in
June–July 2023) soil chambers relative to mature (installed in May 2022) soil chambers, in terms of
absolute (a) and relative (b) values. A cross mark indicates days with no significant differences (t-test
with equal variances, n = 4–5, p < 0.05).
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Appendix B

Table A1. Summary statistics of soil respiration (SR) and respiration of SOM-derived microorganisms
(HR) in the forest and grassland ecosystems for the two consequent years (June was taken at the
beginning of the year) from 2022 to 2024 (n = 46–48; mg C m−2 h−1).

Flux Ecosystem Year Min Q1 Median Q3 Max

SR
Forest

2022–2023 13.9 38.7 51.8 72.4 229.4
2023–2024 11.4 36.0 53.3 91.0 125.9

Grassland
2022–2023 13.1 27.7 65.5 105.7 239.9
2023–2024 12.2 32.7 65.5 124.3 227.1

HR
Forest

2022–2023 9.5 19.7 32.4 53.5 102.5
2023–2024 8.3 21.6 27.1 51.2 80.3

Grassland
2022–2023 2.3 7.9 16.9 27.5 71.0
2023–2024 2.9 9.7 15.7 30.6 56.3
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