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Abstract: Ecosystem resilience, the ability of an ecosystem to recover from disturbances, is a critical
indicator of environmental health and stability, particularly under the impacts of climate change and
anthropogenic pressures. This study focuses on the Three-River Headwater Region (TRHR), a critical
ecological area for East and Southeast Asia, often referred to as the “Water Tower of China”. We used
the Normalized Difference Vegetation Index (NDVI) as a proxy for vegetation growth and productivity
and calculated Critical Slowing Down (CSD) indicators to assess the spatiotemporal dynamics of
grassland ecosystem resilience in the TRHR from 1984 to 2021. Our research revealed a sustained
improvement in ecosystem resilience in the TRHR starting in the late 1990s, with a reversal in this
trend observed after 2011. Spatially, ecosystem resilience was higher in areas with greater precipitation
and higher vegetation productivity. Temporally, changes in grazing intensity were most strongly
correlated with resilience dynamics, with explanatory power far exceeding that of NDVI, temperature,
and precipitation. Our study underscores the importance of incorporating ecosystem resilience into
assessments of ecosystem function changes and the effectiveness of ecological conservation measures,
providing valuable insights for similar research in other regions of the world.

Keywords: ecosystem resilience; alpine meadow; Three-River Headwater Region; critical slowing
down; ecological management; tipping point; grazing; NDVI

1. Introduction

The Three-River Headwater Region (TRHR), known as the “Water Tower of China” [1],
serves as the source of the Yangtze, Yellow, and Lantsang (Mekong) Rivers and plays a
crucial role in water conservation, providing substantial ecological services to East and
Southeast Asia and ensuring ecological security [2–4]. It is also one of the highest-altitude
regions worldwide with the richest biodiversity, acting as a refuge for rare species [5]. As a
river headwater area, its vegetation cover is vital for erosion control, flood mitigation, and
water supply [6]. However, due to the TRHR’s fragile ecological environment [7,8]; climate
change; and social, economic, cultural, and policy influences leading to dramatic shifts in
grazing intensity over recent decades [9], widespread and persistent grassland degradation
has been observed since the mid-1970s, with desertification issues also present in semi-arid
and arid areas [10]. These ecological risks have drawn widespread attention. Consequently,
the Chinese government established the TRH reserve in 2000, injecting substantial funding
and initiating large-scale ecological migration to protect the ecological environment of the
TRHR [5]. Thus, the ecological environment of the TRHR is a typical area affected by both
climate change and human activities, particularly the Kobresia meadows [11], the most
widespread vegetation type in the region and the primary fodder type for livestock on the
Qinghai-Tibetan Plateau, making it a focal area for grassland degradation [12]. Therefore, a
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comprehensive analysis of the impact of climate change and human activities on vegetation
in the TRHR is particularly crucial today.

Ecosystem resilience refers to the ability of an ecosystem to return to its original state
after a disturbance or the rate at which it can do so, serving as a crucial indicator for assess-
ing ecosystem health and stability, especially under uncertain future climate events [13–16].
With the intensification of global climate change and human activities, research on ecosys-
tem resilience has increasingly gained attention. Numerous studies utilizing satellite remote
sensing and ground observation data have demonstrated that since the establishment of
the conservation area, vegetation productivity in the Three-River Headwater Region has
significantly improved, enhancing ecosystem service functions [4,8,17]. For instance, the
study by Zhai et al. (2020) [17] analyzing long-term NDVI data series showed a continuous
increase in vegetation cover and biomass since 1998, particularly in alpine meadow and
steppe ecosystems, closely associated with regional climate warming and management
improvements. However, these studies primarily focused on changes in vegetation pro-
ductivity, with few addressing the assessment of ecosystem resilience. To date, almost
no research has evaluated the changes in ecological quality of the Three-River Headwa-
ter Region from the perspective of ecosystem resilience, which limits our comprehensive
understanding of the region’s ecosystem recovery and conservation effectiveness.

This study aims to fill this research gap by analyzing the changes in ecosystem re-
silience in the Three-River Headwater Region from 1984 to 2021, assessing the improve-
ments in ecological quality since the establishment of the conservation area. To evaluate
the vegetation growth condition of the ecosystem, we employed the Normalized Difference
Vegetation Index (NDVI) as a proxy indicator. Vegetation productivity is a vital aspect of
ecosystem function, and the NDVI is a widely used index in remote sensing research to
estimate vegetation growth conditions and coverage. In grassland ecosystems in partic-
ular, which lack complex canopy structures and have lower biomass compared to forest
ecosystems, the growth condition of grasslands can be more accurately reflected by satellite
remote sensing data [18]. Therefore, the NDVI has been extensively used to estimate
the vegetation status of grassland ecosystems [19–21], providing a reliable indicator of
ecosystem productivity for our study.

We further adopted Critical Slowing Down (CSD) indicators as proxy variables for
ecosystem resilience, constructing a dynamic model to characterize ecosystem resilience.
The CSD approach is based on the principle that as an ecosystem approaches a critical
threshold, its recovery rate from disturbances decreases and it exhibits greater fluctuations,
which manifest as increased first-order time autocorrelation (AR(1)) and variance in growth
conditions [22]. As a direct and quantitative modeling method, it has been widely used in
recent years for evaluating ecosystem resilience. For example, Boulton et al. (2022) first
pointed out that the Amazon rainforest experienced a tipping point in resilience in the early
2000s, providing evidence that the stability of the Amazon is under threat [23]. Global-scale
analyses indicate that, in the long term, resilience has generally increased in tropical regions
but decreased in high-latitude regions since the early 1990s [24]. Despite significant spatial
heterogeneity, a tipping point in ecosystem resilience was widely observed globally in the
early 2000s, especially in equatorial rainforest areas, which supported Boulton’s findings,
and the validation of different datasets mitigated concerns about data quality [24,25].
Focusing on smaller, specific study areas, Wu et al. (2023) analyzed changes in the resilience
of grassland in Mongolia and Inner Mongolia since 2000, highlighting the significant
impact of human activities [26]. However, there is still a lack of understanding regarding
the dynamics and drivers of resilience in alpine grassland ecosystems, which is critical due
to their unique ecological characteristics and vulnerability to climate change.

Therefore, by assessing the dynamics and driving factors of the ecosystem resilience of
the TRHR, we aim to provide a scientific basis for the ecological restoration and sustainable
management of this region, while also offering references for conservation and restoration
efforts of similar ecosystems globally.
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2. Materials and Methods
2.1. Study Area

The Three-River Headwater Region (TRHR) is located in the hinterland of the Qinghai-
Tibetan Plateau (QTP), characterized by mountainous terrain and a dense river network,
with altitudes ranging from 2700 m to 6600 m [27]. It features a plateau continental climate
with low average annual temperatures, resulting in extensive permanently frozen ground.
Precipitation increases from the northwest to the southeast, transitioning from semi-arid
to semi-humid zones [4,28]. Our study area was defined according to the boundaries of
the TRHR as published by the National Tibetan Plateau Data Center in 2018 [29], spanning
longitudes from 89.40 E to 102.45 E and latitudes from 31.55 N to 37.10 N, covering a total
area of 382,410 km2 (Figure 1). From 1982 to 2018, the average annual temperature for the
years 1982–2018 was 2.4 ◦C, gradually increasing with decreasing altitude (from −8.3 ◦C to
14.2 ◦C); the average annual precipitation was 589.3 mm, ranging from less than 50 mm
to more than 1000 mm, although 86% of the area received annual precipitation between
200 and 800 mm [30–37]. The region’s vegetation primarily consists of alpine steppes and
meadows, which account for nearly 80% of the area’s vegetation cover (Figure 1) [11]. The
detailed physical characteristics of the Three-River Headwaters Region are shown in Table 1
(Table 1).
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Figure 1. Location, terrain, and vegetation types of the study area.

Table 1. Physical characteristics of the three subregions of the TRHR.

Subregions Mean
Temperature

Mean
Precipitation

Average
Elevation Dominant Vegetation Type

Yangtze River Source Region 1.68 ◦C 539.8 mm/year 4807.7 m Alpine steppe
Yellow River Source Region 3.89 ◦C 617.4 mm/year 4035.4 m Alpine meadow

Lantsang River Source Region 2.93 ◦C 717.7 mm/year 4603.3 m Alpine meadow

In the 21st century, due to relevant national policies, 88% of the area has been pro-
hibited or restricted from development, with cropland and built-up land accounting for
only 1.2% [38]. Therefore, land use in the Three-River Headwater Region (TRHR) is mainly
dominated by natural grassland used for grazing. As for the socioeconomic condition,
the rural population accounts for 75%, and free grazing and mobile grazing are the main
lifestyles of the local residents [38]. In 2015, the per capita disposable income in the TRHR
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was CNY 12,605, only 57.4% of the national average level for that year [39]. Nearly 70% of
the population is concentrated in the Yellow River source area, located in the northeastern
part of the TRHR [40].

2.2. Data Acquisition and Preprocessing

We first downloaded the daily AVHRR NDVI dataset for the Three-River Headwater
Region from 1982 to 2018 from the Big Earth Data Platform for Three Poles [41]. Addi-
tionally, we extended the dataset to cover the years 2019 to 2023 by downloading the
corresponding AVHRR NDVI data from NASA’s LAAD DAAC, which can be accessed at
https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/M1_AVH09C1--466 (accessed
on 11 June 2024). Both datasets are derived from NOAA’s AVHRR products, ensuring
continuity and compatibility in the analysis. This dataset was processed to create monthly
maximum value composites and denoised using linear interpolation, and areas with no
vegetation such as water bodies and snow cover were removed to obtain a monthly reso-
lution NDVI dataset that accurately reflects vegetation growth conditions. Subsequently,
we downloaded monthly average precipitation datasets for the Qinghai-Tibetan Plateau
(QTP) [35–37], monthly average temperature datasets for China [30–34], annual grazing
intensity datasets for the QTP [42], and a 1:1,000,000 vegetation type dataset [11]. Monthly
data from January 1984 to December 2015 were selected (except for the grazing intensity
dataset, 1984–2015 annually; relatively reliable grazing distribution data beyond 2015 were
unavailable, thus restricting our study period), and the vector boundaries of the Three-
River Headwater Region [29] were used to clip these datasets, resampling them to a spatial
resolution of 0.05 degrees (approximately 5 km) (Table 2). The raster files produced in this
step were used for subsequent data analysis.

Table 2. Dataset information and preprocessing methods.

Datasets Temporal
Resolution

Spatial
Resolution
(Original)

Resample
Method

AVHRR NDVI Dataset of TRHR [38] Day 1/20◦ Bilinear
Monthly Average Temperature Dataset of China [30–34] Month 1/150◦ Bilinear
Monthly Average Precipitation Dataset of QTP [35–37] Month 1/30◦ Bilinear

Grazing Intensity Dataset of QTP Grasslands [39] Year 1/12◦ Bilinear
Vegetation Type Dataset of China (Vector) [11] 2001 1:1,000,000 Majority

2.3. Ecosystem Resilience Assessment

To apply the Critical Slowing Down (CSD) method for calculating trends in ecosystem
resilience, we first employed the statsmodels package in Python 3.8.5 (the same below) for
Seasonal and Trend decomposition using Loess (STL) of NDVI time series data spanning
1982 to 2023 (STL function, seasonal = 13, trend = 37). This method decomposes time series
data with clear seasonal cycles into seasonal, trend, and residual components. The residual
components were employed for resilience assessment, thereby eliminating the impacts of
seasonal cycles and long-term trends on AR(1) and variance and highlighting short-term
productivity fluctuations, consistent with previous studies [23,43]. Next, we used a 60-
month sliding window to calculate the local AR(1) and CV (coefficient of variation) of the
residual series, obtaining a time series of 445 AR(1) and CV values for each pixel (from June
1984 to June 2021). AR(1) measures the linear correlation between data points in a time
series and their immediate predecessors, which can be expressed as follows:

Xt = αXt−1 + εt, (1)

https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/M1_AVH09C1--466
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where Xt is the observation at time t, α is the AR(1) regression coefficient, and εt is the error
term. α can be estimated using the following formula (calculated using the acf function in
the statsmodels package, tsa module, Python):

α =
∑n−1

t=1
(
Xt − X

)(
Xt+1 − X

)
∑n

t=1
(
Xt − X

)2 (2)

where n is the length of the sliding window, and X is the mean of the data within the
window. The coefficient of variation (CV) is the ratio of the standard deviation to the mean
of the sample, used instead of variance to exclude the impact of the dimension:

CV =
S
X

(3)

We then calculated the Kendall rank correlation coefficient (τ) between the AR(1) and
CV series for each pixel. This metric evaluates the consistency of trends between AR(1) and
CV, where −1 indicates opposite trends and 1 indicates completely identical trends, and
the formula is as follows:

τ =
2

n(n − 1) ∑
i<j

sgn
(
Xi − Xj

)
sgn

(
Yi − Yj

)
(4)

where n is the length of the series being evaluated, Xi and Xj are elements of the first series,
Yi and Yj are elements of the second series, and sgn is the sign function.

To verify the significance of resilience trend changes over two specific periods, we
calculated Kendall’s τ for the AR(1) series with time during 1996–2011 and 2012–2021,
where 1 represents a consistent increase in AR(1), −1 represents a consistent decrease, and
0 indicates no significant trend. Simultaneously, the fftpack module of the Python package
scipy was utilized to perform phase surrogates on each pixel’s AR(1) series over these
two periods. This process involves generating phase surrogate sequences by randomly
rearranging the phases of the original time series’ Fourier transform and then inverting
it back [23]. This maintains the overall statistical characteristics of the series, such as
variance and means, while disrupting its temporal structure, thereby creating a null model
distribution to test the significance of the original series trend. We then used the Wilcoxon
signed rank test to examine whether the original series’ Kendall τ significantly differed from
that of the phase surrogate series. Histograms were also used to depict the distribution of
Kendall τ. We also conducted the BFAST (Breaks For Additive Season and Trend) analysis
to detect breakpoints in the AR(1) time series where a transition from a decreasing trend
to an increasing trend occurs. BFAST analysis decomposes time series data into trend,
seasonal, and residual components to identify structural changes; subsequently, we used
the Chow test to determine the significance (p < 0.001) of the trend differences on either side
of the breakpoints. This part of the analysis was conducted using the bfast and strucchange
packages in R 4.4.0, as described in previous studies [43,44].

2.4. Attribution of Resilience

We attempted to determine the factors contributing to the resilience of the Kobresia
meadow region from 1996 to 2015 by performing a multivariate linear regression based on
ordinary least squares (OLS). This regression analyzed the impacts of average temperature,
average precipitation, average productivity (NDVI), and average grazing intensity of each
pixel, utilizing the api module of the Python statsmodels package. The regression model can
be expressed as follows:

AR(1) = β0 + β1 × Temp + β2 × Prcp + β3 × NDVI + β4 × Graz + ε (5)
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where β0 is the intercept; β1, β2, β3, and β4 are the coefficients for the independent variables
(temperature (Temp), precipitation (Prcp), NDVI, and grazing intensity (Graz), respectively);
and ε is the error term.

Thereafter, the influences of the AR(1) series across regions with varying levels of
temperature, precipitation, productivity, and grazing intensity were visualized using a
stratified sampling approach. Specifically, the independent variables were categorized into
three groups (Table 2), and 100 samples were drawn from each category according to the
principle of minimizing the Euclidean distance for the control variables normalized by
Z-scores. The clusters centered around the vector of the control variables’ mean values.
By plotting the average AR(1) series for these samples, the mean and distribution of the
control variables within each category were controlled as consistently as possible. The
Z-score normalization is expressed by the following formula:

Z =
X − µ

σ
(6)

where the variable X represents the original data value, µ is the average of the original
data, and σ is the standard deviation of the original data, with Z being the value after
standardization. The calculation of the Euclidean distance can be described as follows:

d(Z1, Z2) =
√

∑n
i=1(z1i − z2i)

2 (7)

where Z1 and Z2 are two data points that have been normalized, with n representing the
number of control variables, and z1i and z2i represent the ith feature (controlled variable
value) of Z1 and Z1, respectively. Subsequently, AR(1) trend line charts were plotted for
each level of grazing intensity, temperature, precipitation, and NDVI (vegetation growth
condition) to visualize the independent impact of each factor on resilience.

Finally, we conducted an attribution to the temporal dynamics of ecosystem resilience
by calculating the Kendall τ for each pixel between AR(1) and each of the following
variables respectively: temperature, precipitation, NDVI, and grazing intensity.

3. Results
3.1. Trend of Ecosystem Resilience in the TRHR

First of all, we plotted the average AR(1) trends for each subregion of the TRHR based
on the obtained AR(1) time series, with the coefficient of variation (CV) used for validation
(Figure 2). The graphs revealed a good match between the two indicators, indicating the
reliability of the assessment (Figure 2). Meanwhile, despite some differences in the AR(1)
trends across the three regions, there appeared to be a steady decline between 1996 and
2011, corresponding to an increase in ecosystem resilience. Although there was a rebound
in the trend after 2012, the average AR(1) distribution graphs before and after the year 2000,
when protected areas were established, indicate a general trend of increasing resilience in
the Three-River Headwater Region within our study period (Figure 3a,b). To verify the
significance of the AR(1) trends from 1996 to 2011 and 2012 to 2021 at the pixel scale, we
calculated the Kendall τ of AR(1) over time for each pixel, and the results are presented
as raster and histogram charts Figures 3c,d and 4). The images show that the resilience of
the ecosystems in all subregions experienced a significant rising trend (AR(1) decreased)
between 1996 and 2011 and then significantly decreased (AR(1) increased) from 2012 to
2021, despite some extent of spatial heterogeneity. Specifically, from 1996 to 2011, the
Yangtze River Source Region, the Yellow River Source Region, and the Lantsang River
Source Region experienced a decrease in AR(1) in 82.7%, 83.9%, and 67.8% of the areas,
respectively; in 2012–2021, this proportion dropped to 23.0%, 19.0%, and 10.0%, indicating
a rebound in resilience trends. Phase surrogate series were also constructed and Wilcoxon
signed rank tests were conducted, and all p-values were far less than 0.001.



Land 2024, 13, 1224 7 of 16Land 2024, 13, x FOR PEER REVIEW 7 of 16 
 

 
Figure 2. AR(1) trends across the subregions of the TRHR. 

 
Figure 3. Average AR(1) distribution maps and Kendall τ distribution maps of different periods. 

Figure 2. AR(1) trends across the subregions of the TRHR.

Land 2024, 13, x FOR PEER REVIEW 7 of 16 
 

 
Figure 2. AR(1) trends across the subregions of the TRHR. 

 
Figure 3. Average AR(1) distribution maps and Kendall τ distribution maps of different periods. Figure 3. Average AR(1) distribution maps and Kendall τ distribution maps of different periods.

Furthermore, we divided the study area according to vegetation type and plotted the
AR(1) time series curves for areas with different types of vegetation (Figure 5). The results
indicate that the AR(1) values for different vegetation types generally share the same trend,
despite slight differences in absolute values.

The breakpoint identification results indicate that 85.2% of the pixels experienced at
least one significant transition from a decreasing to an increasing trend in AR(1) between
1996 and 2021, with 53.7% of these transitions occurring between 2006 and 2011.

In summary, the establishment of the protected area and the grazing restrictions
implemented in 2000 have led to an improvement in ecosystem resilience in the TRHR.
Additionally, it has been confirmed that around 2011, the TRHR underwent a significant
resilience transition affecting the majority of the area and all major vegetation types.
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3.2. Impact of Average Variable Levels on Resilience

Next, we conducted an attribution analysis of the AR(1) patterns in the Kobresia
meadow area (consisting of 4323 pixels). The results of multiple linear regression showed
that the average AR(1) of the pixels was significantly correlated with average annual
precipitation and NDVI, but not with annual average temperature or grazing intensity
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(Table 3). The model explained 10.6% of the variation in AR(1) (R2 = 0.106). Grouped
plots of the levels of independent variables indicated that AR(1) predominantly decreased
with increasing precipitation and NDVI, while showing no clear linear relationship with
temperature and grazing intensity (Figure 6, Table 4), consistent with the findings of the
linear regression analysis.

Table 3. Regression analysis of ecosystem resilience based on temperature, precipitation, vegetation
productivity, and grazing intensity.

Variables Coefficient Std Err t-Value p-Value Confidence Interval (0.95) VIF

Const 0.2958 0.009 34.245 <0.001 [0.279, 0.313] --
X1: Mean Temperature 0.0002 6.61 × 10−5 2.751 0.006 [5.23 × 10−5, 0] 1.993
X2: Mean Precipitation −0.9019 0.115 −7.871 <0.001 [−1.127, −0.677] 1.480

X3: Mean Grazing Intensity 2.736 × 10−7 2.04 × 10−7 1.339 0.181 [−1.27 × 10−7, 6.74 × 10−7] 1.889
X4: Mean NDVI −0.3429 0.031 −10.938 <0.001 [−0.404, −0.281] 3.340

Land 2024, 13, x FOR PEER REVIEW 9 of 16 
 

The breakpoint identification results indicate that 85.2% of the pixels experienced at 
least one significant transition from a decreasing to an increasing trend in AR(1) between 
1996 and 2021, with 53.7% of these transitions occurring between 2006 and 2011. 

In summary, the establishment of the protected area and the grazing restrictions im-
plemented in 2000 have led to an improvement in ecosystem resilience in the TRHR. Ad-
ditionally, it has been confirmed that around 2011, the TRHR underwent a significant re-
silience transition affecting the majority of the area and all major vegetation types. 

3.2. Impact of Average Variable Levels on Resilience 
Next, we conducted an attribution analysis of the AR(1) patterns in the Kobresia 

meadow area (consisting of 4323 pixels). The results of multiple linear regression showed 
that the average AR(1) of the pixels was significantly correlated with average annual pre-
cipitation and NDVI, but not with annual average temperature or grazing intensity (Table 
3). The model explained 10.6% of the variation in AR(1) (R2 = 0.106). Grouped plots of the 
levels of independent variables indicated that AR(1) predominantly decreased with in-
creasing precipitation and NDVI, while showing no clear linear relationship with temper-
ature and grazing intensity (Figure 6, Table 4), consistent with the findings of the linear 
regression analysis. 

Table 3. Regression analysis of ecosystem resilience based on temperature, precipitation, vegetation 
productivity, and grazing intensity. 

Variables Coefficient Std Err t-Value p-Value Confidence Interval (0.95) VIF 
Const 0.2958 0.009 34.245 <0.001 [0.279, 0.313] -- 

X1: Mean Temperature 0.0002 6.61 × 10−5 2.751 0.006 [5.23 × 10−5, 0] 1.993 
X2: Mean Precipitation −0.9019 0.115 −7.871 <0.001 [−1.127, −0.677] 1.480 

X3: Mean Grazing Intensity 2.736 × 10−7 2.04 × 10−7 1.339 0.181 [−1.27 × 10−7, 6.74 × 10−7] 1.889 
X4: Mean NDVI −0.3429 0.031 −10.938 <0.001 [−0.404, −0.281] 3.340 

 
Figure 6. Mean AR(1) trend under different levels of grazing intensity, temperature, precipitation, 
and vegetation growth condition (NDVI). 

  

Figure 6. Mean AR(1) trend under different levels of grazing intensity, temperature, precipitation,
and vegetation growth condition (NDVI).

Table 4. Categorization of factors by level.

Factors Low Middle High

Mean Temperature (◦C) <0 0–7.5 >7.5
Mean Precipitation (mm/year) <500 500–800 >800

Mean NDVI 0.1 < 0.25 0.25–0.4 >0.4
Mean Grazing Intensity (SU/(pixel × year)) 5000–10,000 10,000–15,000 15,000–20,000

3.3. Impact of Temporal Dynamics of Variables on Resilience

For this section of the analysis, we computed the temporal correlation (Kendall’s τ)
between AR(1) and temperature, precipitation, NDVI, and grazing intensity for each pixel
(Figure 7). The findings reveal that grazing intensity significantly outperforms the other
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three variables in explaining the variation in AR(1) trends. Specifically, 60.9% of the areas
exhibit a positive Kendall’s τ with grazing intensity, and 23.6% of the areas (primarily in
the southern part of the Yellow River Source Region) have a Kendall’s τ greater than 0.25,
whereas the proportions for NDVI, temperature, and precipitation are only 8.2%, 1.9%,
and 1.2%, respectively. These results indicate that anthropogenic activities, represented by
grazing, are the primary drivers of changes in ecosystem resilience in the TRHR, compared
to natural factors.
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4. Discussion
4.1. Reliability of Ecosystem Resilience Assessment

The assessment of ecosystem resilience using the CSD method based on remote sensing
NDVI data can be quite sensitive to data noise due to the calculation involving the dynamics
of NDVI data over short periods. Taking this into account, although we already denoised
the NDVI data, we also calculated both AR(1) and CV, the two indicators of the CSD method,
for verification. Theoretically, when random noise occurs in the time data, the CV increases;
at the same time, the correlation between data points and their adjacent temporal data
points weakens, leading to a decrease in AR(1). However, our results showed that the two
indicators shared similar trends, which is contrary to the effects of random noise. Therefore,
our assessment of the resilience trend changes is considered to be relatively reliable.

4.2. Spatial Dimension Attribution

Multivariate linear regression analysis of the average levels of NDVI, surface tempera-
ture, precipitation, grazing intensity, and AR(1) for each pixel (Kobresia meadows only)
from 1996 to 2015 indicated that during this period, when ecosystem resilience experienced
continuous increases and decreases, the spatial distribution patterns of precipitation and
vegetation growth condition (NDVI) were the primary factors influencing resilience distri-
bution, rather than temperature and grazing intensity. The impact of annual precipitation
can be attributed to plant physiological responses; under the same vegetation type, a lower
water supply leads to increased water stress in plants, reducing their internal water regula-
tion ability and slowing their response to disturbances [23]. This aligns with findings from
other grassland resilience studies [45], particularly in arid and semi-arid areas, where water
is a key factor influencing vegetation dynamics [46–48]. The effect of vegetation growth
conditions (or productivity) on resilience is complex. Although some studies suggest a
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positive correlation, the definitive relationship between productivity and resilience remains
under debate [49]. This variability may result from different dominant mechanisms in
different ecosystems. However, within our study area, this relationship is significant,
suggesting that a higher population density in the Kobresia meadow may provide more
propagules and a more stable microenvironment conducive to the establishment of new
individuals [50]. Additionally, areas with dense vegetation tend to have higher species
diversity and functional redundancy, allowing redundant species to compensate for the
loss of functionally similar species when disturbances occur, thereby enhancing ecosystem
resilience [51].

4.3. Impact of Grazing Intensity on Resilience

In our analysis, changes in grazing levels were the most effective factor in explaining
changes in ecosystem resilience, surpassing the explanatory power of NDVI, temperature,
and precipitation, despite the spatial analysis indicating that grazing levels’ spatial pat-
tern was not significantly related to ecosystem resilience. This suggests that long-term,
stable grazing does not harm ecosystem resilience; rather, continuously increasing grazing
intensity may disrupt this balance, leading to a decline in resilience and approaching
critical thresholds. The high Kendall τ also indicates that this impact can be reversed with
decreased grazing intensity. It is important to note that this relationship varies significantly
across different spatial areas. For example, in the northern part of the Yellow River Source
Region, resilience is positively correlated with grazing intensity, opposite to the southern
region. We speculate that the impact of grazing intensity on grassland resilience is complex
and nonlinear. For instance, although grassland degradation is exacerbated and the soil
structure is damaged by overgrazing, moderate grazing can promote plant growth and
maintain higher species diversity by reducing canopy shading of solar radiation and provid-
ing excrement to enhance soil fertility [52,53]. In addition to the direct slowing of grassland
recovery due to livestock feeding, grazing activities can significantly alter the community
structure of meadows, damaging or maintaining their diversity [54,55]. Different grazing
intensities may lead the Kobresia alpine meadow community to several distinct stable
states [12,56,57]. As the grazing intensity increases, the total biomass decreases, while
the ratio of Kobresia biomass to grass biomass increases [56,57]. Different community
compositions will exhibit dissimilar responses to disturbances. Although the mechanisms
by which grazing intensity affects grassland resilience require further investigation, we
recommend that a seasonal grazing system be prioritized over year-round grazing to reduce
the impact of grazing activities on vegetation composition [55], thereby maintaining the
relative stability of ecosystem properties and minimizing the likelihood of regime shifts.

4.4. Resilience and Ecosystem Critical Tipping Points

A critical tipping point in an ecosystem refers to the threshold at which the system
transitions from one state to another under certain pressures or disturbances. Beyond
this point, the ecosystem may undergo rapid and drastic changes. In systems ecology, the
approach of an ecosystem to a critical tipping point is often marked by a significant decline
in resilience; therefore, AR(1) not only is an indicator of the speed at which an ecosys-
tem recovers from disturbances but also often reflects the system’s proximity to regime
shifts [22,58]. The dynamics of the annual average NDVI in the Three-River Headwaters
Region are plotted in Figure 8, where the blue dashed line represents the regression line of
NDVI over the entire study period, with its equation indicated in the top left corner; the
positions indicated by the dark blue vertical solid lines represent the two tipping points,
dividing the NDVI changes into several significantly different periods, which are marked
by the red dashed lines (Figure 8). We can see a significant jump in NDVI around 1996,
corresponding to a peak in AR(1); another jump occurred around 2019, with AR(1) reaching
nearly the same level as in 1996 (Figure 8). Therefore, in the TRHR region, the rise in
AR(1) is likely associated with the system approaching critical points, underscoring the
importance of monitoring resilience indicators for the conservation of grassland ecosystems
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in this area. Based on the trend of AR(1), the current ecosystem is likely undergoing a
critical transition (with our data ending in December 2023). Conducting more detailed
community-level analyses based on recent field survey data from the region will help
deepen our understanding of the mechanism of this regime shift.
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4.5. Limitations and Challenges

Data preprocessing is not the main focus of this study. Therefore, we adopted a simple
interpolation method after monthly maximum value synthesis. Specifically, data points
with an NDVI difference exceeding 0.15 from the adjacent months were replaced with their
average. We believe this method is sufficient to eliminate obvious outliers while preserving
the original fluctuations as much as possible. Indeed, the choice of dataset and filtering
method may impact the analysis [59]. In future research, we will consider using better
datasets and evaluating the effects of different filtering methods on resilience assessment.

Theoretically, vegetation types have some impact on resilience. However, our findings
indicate that for the most part, the resilience trends of different vegetation types were
generally similar, although low-productivity vegetation (alpine steppe, cushion vegetation,
desert) appeared to differ from alpine meadows and shrubs during the period from 1988 to
1992. Some studies suggest that the vegetation types on the Tibetan Plateau have undergone
some changes over the past 40 years [60]. In the future, we may consider using remote
sensing and machine learning methods to account for the dynamics of vegetation types to
better reveal the relationship between ecosystem resilience and vegetation types.

Ecosystem resilience, as an advanced characteristic of complex adaptive systems [61],
is influenced by natural factors and human activities in a nonlinear manner. Therefore,
we are concerned that multivariate linear regression and Kendall τ calculations may not
fully reveal the reasons behind the spatial and temporal patterns of ecosystem resilience.
Few studies effectively determine the factors affecting changes in resilience. For example,
Boulton et al. (2022) failed to identify the clear cause for the decline in Amazon rainforest
resilience starting in the early 2000s, although they believed climate change played a signif-
icant role [23]. Additionally, the attribution results of simple models (such as multivariate
linear regression) need to be carefully scrutinized to rule out the possibility of spurious
correlations. For instance, Hu et al. (2023) found that after the tipping point, the fertilization
effect of CO2 was most closely related to the rise in AR(1) [43]. However, attributing the in-
crease in AR(1) solely to the continuously rising CO2 concentration may not be convincing,
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and the possibility of spurious correlations needs careful consideration. To better explore
the factors influencing ecosystem resilience, more complex statistical models or a focus on
specific ecological processes are required.

5. Conclusions

Our study utilized Critical Slowing Down (CSD) indicators to reveal the trends in
ecosystem resilience in the Three-River Headwater Region (TRHR), an ecologically sig-
nificant area, from 1984 to 2021. Compared to the period before the establishment of the
nature reserve in 2000, the average ecosystem resilience in the TRHR significantly improved
between 2000 and 2021. We observed a significant decreasing trend since the late 1990s
in most areas of the TRHR, including all major vegetation types, followed by a notable
rebound after 2012.

An analysis of the factors affecting ecosystem resilience indicated that, spatially, grass-
lands with higher average annual precipitation and greater vegetation cover exhibited
higher resilience. Temporally, variations in annual grazing intensity were the primary
drivers of resilience changes in the TRHR, particularly in the southern part of the Yel-
low River Headwater Region, with effects far exceeding those of NDVI, temperature,
and precipitation.

Our research highlights the importance of effective ecological management measures,
such as establishing protected areas and restricting grazing, in improving ecosystem re-
silience. Additionally, monitoring resilience helps in understanding the emergence of
ecological tipping points. Future research should employ more sophisticated statistical
models to analyze the causes of changes in ecosystem resilience and focus on experimental
studies of specific ecological processes to better understand the mechanisms underlying
resilience changes.
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