Heavy Metal Spatial Variation Mechanism and Ecological Health Risk Assessment in Volcanic Island Soils: A Case Study of Weizhou Island, China
Abstract
:1. Introduction
2. Material and Methods
2.1. Geological and Geographical Settings
2.2. Sampling and Analytical Methods
2.3. Data Analysis
2.3.1. Chemical Index of Alteration
2.3.2. Geostatistical Interpolation
2.3.3. Leaching Ratio
2.3.4. Geo-Accumulation Index
2.3.5. Potential Ecological Risk Index
3. Results
3.1. Spatial Distribution of Heavy Metals in the Soil of Weizhou Island
3.2. Heavy Metal Speciation in Soil Parent Materials of Weizhou Island
3.3. Influence of Parent Rock on Heavy Metal Leaching in Soil
4. Discussion
4.1. Sources and Distribution of Heavy Metals in the Soil of Weizhou Island
4.2. Health Ecological Risk Assessment and Implications of Weizhou Island
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.; Shen, Z.; Liu, L.; Zhang, Y.; Yu, C.; Cui, L.; Gao, Y. Integrating ecosystem services conservation into the optimization of urban planning policies in eco-fragile areas: A scenario-based case study. Cities 2023, 134, 104200. [Google Scholar] [CrossRef]
- Zhao, J.; Li, C.; Wang, T.; Shi, J.; Song, X.; Liu, Y. Composition and Long-Term Variation Characteristics of Coral Reef Fish Species in Yongle Atoll, Xisha Islands, China. Biology 2023, 12, 1062. [Google Scholar] [CrossRef] [PubMed]
- Zisopoulos, F.K.; Noll, D.; Singh, S.J.; Schraven, D.; de Jong, M.; Fath, B.D.; Ulanowicz, R.E. Regenerative economics at the service of islands: Assessing the socio-economic metabolism of Samothraki in Greece. J. Clean. Prod. 2023, 408, 137136. [Google Scholar] [CrossRef]
- Huang, H.; Xiao, Y.; Ding, G.; Liao, L.; Yan, C.; Liu, Q.; Xie, X. Comprehensive Evaluation of Island Habitat Quality Based on the Invest Model and Terrain Diversity: A Case Study of Haitan Island, China. Sustainability 2023, 15, 11293. [Google Scholar] [CrossRef]
- Zheng, Y.; Ren, C.; Shi, Y.; Yim, S.H.; Lai, D.Y.; Xu, Y.; Li, W. Mapping the spatial distribution of nocturnal urban heat island based on Local Climate Zone framework. Build. Environ. 2023, 234, 110197. [Google Scholar] [CrossRef]
- Rost, M.J.; Jacobse, L.; Koper, M.T. Non-Random Island Nucleation in the Electrochemical Roughening on Pt (111). Angew. Chem. 2023, 135, e202216376. [Google Scholar] [CrossRef]
- Xu, Y.; Ji, M.; Klemeš, J.J.; Tao, H.; Zhu, B.; Varbanov, P.S.; Wang, B. Optimal renewable energy export strategies of islands: Hydrogen or electricity? Energy 2023, 269, 126750. [Google Scholar] [CrossRef]
- Afzal, M.S.; Tahir, F.; Al-Ghamdi, S.G. Recommendations and strategies to mitigate environmental implications of artificial island developments in the Gulf. Sustainability 2022, 14, 5027. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, H. Durability of seawater coral aggregate concrete under seawater immersion and dry-wet cycles. J. Build. Eng. 2023, 66, 105894. [Google Scholar] [CrossRef]
- Lyu, L.; Wang, X.; Sui, X.; Liu, Z.; Yuan, Y.; Lin, C. Heavy metal pollution and ecological risk assessment of cultivated land soil in the farming areas of coastal China: A case study of Donghai County, Jiangsu Province. Agric. Biotechnol. 2018, 7, 125–129. [Google Scholar]
- Zhao, H.; Wu, Y.; Lan, X.; Yang, Y.; Wu, X.; Du, L. Comprehensive assessment of harmful heavy metals in contaminated soil in order to score pollution level. Sci. Rep. 2022, 12, 3552. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Zhao, Y.Y.; Chen, D.L.; Huang, H.T.; Zhao, Y.; Wu, Y.J. Ecological risk assessment and early warning of heavy metal cumulation in the soils near the Luanchuan molybdenum polymetallic mine concentration area, Henan Province, central China. China Geol. 2023, 6, 15–26. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Eladawy, A.; Yu, T.; Sha, J. A multi-dimensional vulnerability assessment of Pingtan Island (China) and Nile Delta (Egypt) using ecological Sensitivity-Resilience-Pressure (SRP) model. Hum. Ecol. Risk Assess. Int. J. 2021, 27, 1860–1882. [Google Scholar] [CrossRef]
- Wang, Q.J.; Li, Z.C.; Chen, Y. Characteristics of the Geological Tourism Resources in Hainan Island, China. IOP Conf. Ser. Earth Environ. Sci. 2022, 1004, 012001. [Google Scholar] [CrossRef]
- Alava, J.J.; McMullen, K.; Jones, J.; Barragán-Paladines, M.J.; Hobbs, C.; Tirape, A.; Schofield, J. Multiple anthropogenic stressors in the Galápagos Islands’ complex social–ecological system: Interactions of marine pollution, fishing pressure, and climate change with management recommendations. Integr. Environ. Assess. Manag. 2023, 19, 870–895. [Google Scholar] [CrossRef] [PubMed]
- Che, Z.; Ahmed, W.; Weng, J.; Wenjie, L.; Mahmood, M.; Alatalo, J.M.; Mehmood, S. Distribution, pollution, and human health risks of persistent and potentially toxic elements in the sediments around Hainan Island, China. Mar. Pollut. Bull. 2022, 174, 113278. [Google Scholar] [CrossRef] [PubMed]
- Imo, T.; Amosa, B.; Latu, F.; Ieremia, R.; Gese, G.; Simi, I. Preliminary Assessment of Heavy Metals in Soil along the Vaisigano River in Samoa. J. Agric. Chem. Environ. 2022, 11, 222–230. [Google Scholar] [CrossRef]
- Xu, Q.; Chu, Z.; Gao, Y.; Mei, Y.; Yang, Z.; Huang, Y.; Sun, L. Levels, sources and influence mechanisms of heavy metal contamination in topsoils in Mirror Peninsula, East Antarctica. Environ. Pollut. 2020, 257, 113552. [Google Scholar] [CrossRef]
- Centurion, V.B.; Silva, J.B.; Duarte, A.W.F.; Rosa, L.H.; Oliveira, V.M. Comparing resistome profiles from anthropogenically impacted and non-impacted areas of two South Shetland Islands–Maritime Antarctica. Environ. Pollut. 2022, 304, 119219. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Sun, Y.; Wang, Z.; Gong, J.; Gao, J.; Tang, S.; Duan, Z. Heavy metal pollution in agricultural soils of a typical volcanic area: Risk assessment and source appointment. Chemosphere 2022, 304, 135340. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Fu, T.; Hu, B.; Shi, Z.; Zhou, L.; Zhu, Y. Identification of the potential risk areas for soil heavy metal pollution based on the source-sink theory. J. Hazard. Mater. 2020, 393, 122424. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, E.; Yan, M.; Zheng, S.; Fan, Y.; Sun, Y. Contamination and source apportionment of metals in urban road dust (Jinan, China) integrating the enrichment factor, receptor models (FA-NNC and PMF), local Moran’s index, Pb isotopes and source-oriented health risk. Sci. Total Environ. 2023, 878, 163211. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Gong, J.; Yang, J.; Wang, Z.; Fu, Y.; Tang, S.; Ma, S. Spatial distribution and ecological risk assessment of soil heavy metals in a typical volcanic area: Influence of parent materials. Heliyon 2023, 9, e12993. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.A.; Li, D.; Liu, W.; Wu, T.; Yang, C. High-precision zinc isotope measurement of chemically different geostandards by multicollector inductively coupled plasma mass spectrometry. Rapid Commun. Mass Spectrom. 2023, 37, e9606. [Google Scholar] [CrossRef] [PubMed]
- Talas, E.; Duman, M.; Eronat, A.H.; Küçüksezgin, F. Multi-index assessment of sea bottom sediments of the Izmir Gulf, Aegean Sea: A study of interrelation between anthropogenic and hydrodynamic effects. Mar. Pollut. Bull. 2023, 194, 115293. [Google Scholar] [CrossRef]
- Ahn, J.S.; Chon, C.M. Geochemical distributions of heavy metals and Cr behavior in natural and cultivated soils of volcanic Jeju island, Korea. Geosyst. Eng. 2010, 13, 9–20. [Google Scholar] [CrossRef]
- Bong, K.M.; Yang, H.J.; Kang, T.W.; Han, J.H.; Jeong, H.J.; Yang, W.J. Assessment of Riverbed Sediments Originated from Volcanic Ash Soils in Jeju Island. J. Environ. Anal. Health Toxicol. 2019, 22, 303–311. [Google Scholar] [CrossRef]
- Cotas, J.; Gomes, L.; Pacheco, D.; Pereira, L. Ecosystem Services Provided by Seaweeds. Hydrobiology 2023, 2, 75–96. [Google Scholar] [CrossRef]
- Wu, W.; Hu, J.; Song, D. Assessment of marine ecosystem health and its key influencing factors in Laizhou Bay, China. Front. Mar. Sci. 2023, 10, 1115896. [Google Scholar] [CrossRef]
- Yousuf, A.H. Integrating Ecosystem–Based Management and Marine Spatial Planning for Sustainable Ocean Governance in the Bay of Bengal. 2023. Available online: https://hdl.handle.net/1959.7/uws:70680 (accessed on 1 December 2024).
- Cai, Y.S.; Zhang, J.B.; Lu, S.L. Distribution and risk assessment of soil heavy metals in Weizhou Island. Jiangsu Agric. Sci. 2020, 48, 247–256. [Google Scholar]
- Wu, J.Y.; Fu, W.; Cai, Q.; Zhao, Q.; Yu, Y.S.; Shao, Y.; Luo, P.; Qin, J.X. Spatial Differentiation and Enrichment Mechanism of Selenium in Volcanic Island Soils—A Case Study of Weizhou Island, Guangxi Province. Soils 2021, 53, 1309–1317. [Google Scholar]
- Shi, S.; Tang, C. Analysis of the change of land use types in Weizhou Island of Guangxi. Pop. Sci. Technol. 2017, 19, 30–32. [Google Scholar]
- Georgopoulos, G.; Roy, A.; Yonone-Lioy, M.J.; Opiekun, R.E.; Lioy, P.J. Environmental copper: Its dynamics and human exposure issues. J. Toxicol. Environ. Health Part B Crit. Rev. 2001, 4, 341–394. [Google Scholar] [CrossRef] [PubMed]
- Szynkowska, M.I.; Pawlaczyk, A.; Maćkiewicz, E. Bioaccumulation and biomagnification of trace elements in the environment. Recent Adv. Trace Elem. 2018, 251–276. [Google Scholar] [CrossRef]
- Shin, H.; Hyun, M.; Jeong, S.; Ryu, H.; Lee, M.G.; Chung, W.; Kim, Y. A correlation study of road dust pollutants, tire wear particles, air quality, and traffic conditions in the Seoul (South Korea). Atmos. Pollut. Res. 2024, 15, 102309. [Google Scholar] [CrossRef]
- White, R.; Jobling, S.; Hoare, S.A.; Sumpter, J.P.; Parker, M.G. Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology 1994, 135, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Huiya, Z.; Rongyong, H.; Kefu, Y. Simulation of living coral cover changes around the Weizhou Island. Trop. Geogr. 2019, 39, 329–336. [Google Scholar]
- Hailun, W.; Zhou, L.; Xu, H.; Shen, X.; Chai, M.; Li, R. Evaluation and Promotion Countermeasures of Bird Carrying Capacity of Mangrove Wetland in Guangdong-Hong Kong-Macau Greater Bay Area: A Case Study of Futian Mangrove, Shenzhen Bay. Beijing Da Xue Bao 2020, 56, 1056–1064. [Google Scholar]
- Yang, Y.; Chen, Y.; Liu, Y.; He, T.; Chen, L. Evaluation and Optimization of Cultural Perception of Coastal Greenway Landscape Based on Structural Equation Model. Int. J. Environ. Res. Public Health 2023, 20, 2540. [Google Scholar] [CrossRef]
- Graham, D.W.; Reid, M.R.; Jordan, B.T.; Grunder, A.L.; Leeman, W.P.; Lupton, J. Mantle source provinces beneath the northwestern USA delimited by helium isotopes in young basalts. J. Volcanol. Geotherm. Res. 2009, 188, 128–140. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, H.; Gu, J.; Liao, B.; Zhang, J.; Wu, P. Application of rapeseed residue increases soil organic matter, microbial biomass, and enzyme activity and mitigates cadmium pollution risk in paddy fields. Environ. Pollut. 2020, 264, 114681. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, R.S.; Quartau, R.; Trenhaile, A.S.; Mitchell, N.C.; Woodroffe, C.D.; Ávila, S.P. Coastal evolution on volcanic oceanic islands: A complex interplay between volcanism, erosion, sedimentation, sea-level change and biogenic production. Earth-Sci. Rev. 2013, 127, 140–170. [Google Scholar] [CrossRef]
- Sun, Y.B.; Zhang, Y.F.; Xi, A.H.; Tang, Y.; Zhang, B.J.; Pei, S.Q. Hydrothermal alteration and corresponding reservoir significance of the Permian Emeishan basaltic lavas, west Sichuan, China. Aust. J. Earth Sci. 2023, 70, 393–410. [Google Scholar] [CrossRef]
- Zhang, G.M.; Wang, Y.M.; Gao, H.B.; Zhou, X.D. ICP-AES Determination of Aluminium in Rare Earth Products and the Intermediate Control Samples. PTCA (Part B Chem. Anal.) 2016, 52, 328. [Google Scholar] [CrossRef]
- Xue, S.; Korna, R.; Fan, J.; Ke, W.; Lou, W.; Wang, J.; Zhu, F. Spatial distribution, environmental risks, and sources of potentially toxic elements in soils from a typical abandoned antimony smelting site. J. Environ. Sci. 2023, 127, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.N.; Liu, X.J.; Shi, Y. A Comparative Study of Geological Samples using XRF through Laminating and Melting Method. Acta Mineral. Sin. 2015, 35, 1115–1116. [Google Scholar] [CrossRef]
- Yuan, Y.H.; Yang, F.; Wu, J. Determination of calcium fluorideinfluorite by X-ray fluorescence spectrometry with fusion sample preparation after separation by calcium-containing acetic acid. Metall. Anal. 2023, 43, 34–39. [Google Scholar] [CrossRef]
- Nesbitt, H.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- McLennan, S.M. Weathering and·global denudation. J. Geol. 1993, 101, 295–303. [Google Scholar] [CrossRef]
- Cressie, N. Spatial prediction and ordinary kriging. Math. Geol. 1988, 20, 405–421. [Google Scholar] [CrossRef]
- Bogunovic, I.; Pereira, P.; Brevik, E.C. Spatial distribution of soil chemical properties in an organic farm in Croatia. Sci. Total Environ. 2017, 584, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Cambardella, C.A.; Moorman, T.; Novak, J.; Parkin, T.; Karlen, D.; Turco, R.; Konopka, A. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Chen, P.; Sun, J.; Ma, L.; Chen, Y.; Xia, J. Effects of shell sand content on soil physical properties and salt ions under simulated rainfall leaching. Geoderma 2022, 406, 115520. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, Y.; Hu, Q.; Han, M.; Li, X.; Zhang, Y. Accumulation characteristics and pollution evaluation of soil heavy metals in different land use types: Study on the whole region of Tianjin. Int. J. Environ. Res. Public Health 2022, 19, 10013. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Xuan, B.; Lu, X.; Wang, J.; Cai, X.; Duan, Z.; Hu, F. Spatial Distribution Characteristic and Assessment of Total and Available Heavy Metals in Karst Peri-Urban Vegetable Soil. IOP Conf. Ser. Mater. Sci. Eng. 2018, 392, 042022. [Google Scholar] [CrossRef]
- Hegde, R.; Bardhan, G.; Niranjana, K.V.; Bhaskar, B.P.; Singh, S.K. Spatial variability and mapping of selected soil properties in Kaligaudanahalli Microwatershed, Gundlupet Taluk, Chamarajanagar District, under hot semi arid agrosubregion of Central Karnataka Plateau, India. SN Appl. Sci. 2019, 1, 518. [Google Scholar] [CrossRef]
- Lu, J.; Cai, H.; Fu, Y.; Zhang, X.; Zhang, W.A. Study on the impacts of landscape structures on water quality under different spatial scales in the Xiangjiang River Basin. Water Air Soil Pollut. 2022, 233, 164. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, C. Natural and human factors affect the distribution of soil heavy metal pollution: A review. Water Air Soil Pollut. 2020, 231, 350. [Google Scholar] [CrossRef]
- Dror, I.; Yaron, B.; Berkowitz, B. The human impact on all soil-forming factors during the anthropocene. ACS Environ. Au 2021, 2, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Zinn, Y.L.; de Faria, J.A.; de Araujo, M.A.; Skorupa, A.L.A. Soil parent material is the main control on heavy metal concentrations in tropical highlands of Brazil. Catena 2020, 185, 104319. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, Z.; Filippelli, G.M.; Ji, J.; Ji, W.; Liu, X. Distribution and secondary enrichment of heavy metal elements in karstic soils with high geochemical background in Guangxi, China. Chem. Geol. 2021, 567, 120081. [Google Scholar] [CrossRef]
- Ayoubi, S.; Bahmani, S. Variation of heavy metals, magnetic susceptibility, and some chemical properties in the Lichen-rock interface on various parent rocks in west of Iran. Phys. Chem. Earth Parts A/B/C 2023, 129, 103303. [Google Scholar] [CrossRef]
- Canfield, D.E.; Zhang, S.; Frank, A.B.; Wang, X.; Wang, H.; Su, J. Highly fractionated chromium isotopes in Mesoproterozoic-aged shales and atmospheric oxygen. Nat. Commun. 2018, 9, 2871. [Google Scholar] [CrossRef]
- Kutyrev, A.V.; Sidorov, E.G.; Antonov, A.V.; Chubarov, V.M. Platinum-group mineral assemblage of the Prizhimny Creek (Koryak Highland). Russ. Geol. Geophys. 2018, 59, 935–944. [Google Scholar] [CrossRef]
- Mateus, A.C.C.; Varajão, A.F.D.C.; Oliveira, F.S.D.; Petit, S.; Schaefer, C.E.G.R. Geochemical evolution of soils developed from pyroclastic rocks of Trindade Island, South Atlantic. Braz. J. Geol. 2020, 51, e20200073. [Google Scholar] [CrossRef]
- Gaeta, M.; Aldega, L.; Astolfi, M.L.; Bonechi, B.; Marra, F.; Pacheco, P. Soils developed on the Si-poor, alkali-rich pyroclastic rocks of the Colli Albani volcanic district (Central Italy): The effect of leucite, clinopyroxene and phlogopite on the base cations mobility. Appl. Geochem. 2022, 145, 105430. [Google Scholar] [CrossRef]
- Jiang, K.; Qi, H.W.; Hu, R.Z. Element mobilization and redistribution under extreme tropical weathering of basalts from the Hainan Island, South China. J. Asian Earth Sci. 2018, 158, 80–102. [Google Scholar] [CrossRef]
- Qu, S.; Wu, W.; Nel, W.; Ji, J. The behavior of metals/metalloids during natural weathering: A systematic study of the mono-lithological watersheds in the upper Pearl River Basin, China. Sci. Total Environ. 2020, 708, 134572. [Google Scholar] [CrossRef]
- Liu, J.C.; He, H.P.; Michalski, J.; Cuadros, J.; Yao, Y.Z.; Tan, W. Reflectance spectroscopy applied to clay mineralogy and alteration intensity of a thick basaltic weathering sequence in Hainan Island, South China. Appl. Clay Sci. 2021, 201, 105923. [Google Scholar] [CrossRef]
- Wille, M.; Babechuk, M.G.; Kleinhanns, I.C.; Stegmaier, J.; Suhr, N.; Widdowson, M. Silicon and chromium stable isotopic systematics during basalt weathering and lateritisation: A comparison of variably weathered basalt profiles in the Deccan Traps, India. Geoderma 2018, 314, 190–204. [Google Scholar] [CrossRef]
- Ao, M.; Sun, S.; Deng, T.; Zhang, F.; Liu, T.; Tang, Y. Natural source of Cr (VI) in soil: The anoxic oxidation of Cr (III) by Mn oxides. J. Hazard. Mater. 2022, 433, 128805. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Gao, Y.; Yang, Y. Leaching of heavy metals from lead-zinc mine tailings and the subsequent migration and transformation characteristics in paddy soil. Chemosphere 2022, 291, 132792. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.S.; Yun, S.T.; Lee, J.H.; Kim, S.O.; Jo, H.Y. Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic (III) from aqueous solutions using scoria: Kinetics and equilibria of sorption. J. Hazard. Mater. 2010, 174, 307–313. [Google Scholar] [CrossRef]
- Hara, J.; Kawabe, Y. Geochemical characteristics and risk assessment of minor elements in subsurface soils of abandoned mine-rich Shikoku region, Japan. J. Soils Sediments 2023, 23, 718–730. [Google Scholar] [CrossRef]
- Wang, P.; Sun, Z.; Hu, Y.; Cheng, H. Leaching of heavy metals from abandoned mine tailings brought by precipitation and the associated environmental impact. Sci. Total Environ. 2019, 695, 133893. [Google Scholar] [CrossRef] [PubMed]
- Ke, X.; Zhang, F.J.; Zhou, Y.; Zhang, H.J.; Guo, G.L.; Tian, Y. Removal of Cd, Pb, Zn, Cu in smelter soil by citric acid leaching. Chemosphere 2020, 255, 126690. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.S.; Ao, M.; Geng, K.R.; Chen, J.Q.; Li, J.J.; Guan, Z.T. Enrichment and speciation of chromium during basalt weathering: Insights from variably weathered profiles in the Leizhou Peninsula, South China. Sci. Total Environ. 2022, 822, 153304. [Google Scholar] [CrossRef]
- Innocenzi, F.; Ronca, S.; Agostini, S.; Brandano, M.; Caracausi, A.; Lustrino, M. The pyroclastic breccias from Cabezo Negro de Tallante (SE Spain): Is there any relation with carbonatitic magmatism? Lithos 2021, 392, 106140. [Google Scholar] [CrossRef]
- Kogure, T.; Sueyoshi, R.; Ohira, H.; Sampei, Y.; Shin, K.C.; Abe, Y. Formation processes of tafoni on pyroclastic rock surfaces with hydrothermal alteration on the Isotake coast, Shimane, Japan. Geomorphology 2022, 398, 108050. [Google Scholar] [CrossRef]
- Litasov, K.D.; Kagi, H.; Bekker, T.B. Enigmatic super-reduced phases in corundum from natural rocks: Possible contamination from artificial abrasive materials or metallurgical slags. Lithos 2019, 340, 181–190. [Google Scholar] [CrossRef]
- Germinario, L.; Oguchi, C.T. Underground salt weathering of heritage stone: Lithological and environmental constraints on the formation of sulfate efflorescences and crusts. J. Cult. Herit. 2021, 49, 85–93. [Google Scholar] [CrossRef]
- Qu, X.; Zhang, Y.; Li, Q.; Du, T.; Li, Y. Geological features and occurrence conditions of dawsonite as a main Carbon-Fixing mineral. Alex. Eng. J. 2022, 61, 2997–3011. [Google Scholar] [CrossRef]
- Manu Prasanth, M.P.; Hari, K.R.; Chalapathi Rao, N.V.; Hou, G.; Pandit, D. An island-arc tectonic setting for the Neoarchean Sonakhan Greenstone Belt, Bastar Craton, Central India: Insights from the chromite mineral chemistry and geochemistry of the siliceous high-Mg basalts (SHMB). Geol. J. 2018, 53, 1526–1542. [Google Scholar] [CrossRef]
- Li, X.; Wang, J. Zircon U-Pb geochronology and geochemistry of the middle Permian siliceous clastics and basalt from Central Qiangtang, Northern Tibet: Implications for the evolution of Permian. J. Earth Sci. 2019, 30, 286–295. [Google Scholar] [CrossRef]
- Wang, P.; Du, Y.; Yu, W. The chemical index of alteration (CIA) as a proxy for climate change during glacial-interglacial transitions in earth history. Earth Sci. Rev. 2020, 201, 103032. [Google Scholar] [CrossRef]
- Çelik, M. Clay minerals in hydrothermally altered volcanic rocks eastern pontides, turkey. Clays Clay Miner. 1999, 47, 708–717. [Google Scholar] [CrossRef]
- Inoue, A.; Lanson, B.; Marques-Fernandes, M. Illite-smectite mixed-layer minerals in hydrothermal alteration of volcanic rocks: I. one-dimensional xrd structure analysis and characterisation of component layers. Clays Clay Miner. 2005, 53, 423–439. [Google Scholar] [CrossRef]
- Eskisehir, S.K. Mineralogy, geochemistry and genesis of smectite in pliocene volcaniclastic rocks of the doanbey formation, beyehir basin, konya, turkey. Clays Clay Miner. 2007, 55, 402–422. [Google Scholar] [CrossRef]
- Remy, R.R. Porosity reduction and major controls on diagenesis of cretaceous-paleocene volcaniclastic and arkosic sandstone, middle park basin, Colorado. J. Sediment. Res. Sect. A Sediment. Petrol. Process. 1994, 64, 797–806. [Google Scholar] [CrossRef]
- Uddin, M.K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Frost, R.R. Effect of ph on adsorption of arsenic and selenium from landfill leachate by clay minerals. Soil 1977, 41, 53–57. [Google Scholar] [CrossRef]
- Griffin, R.A.; Au, A.K.; Frost, R.R. Effect of ph on adsorption of chromium from landfill-leachate by clay minerals. Environ. Lett. 1977, 12, 431–449. [Google Scholar] [CrossRef]
- Gaspar, L.; Lizaga, I.; Navas, A. Elemental mobilisation by sheet erosion affected by soil organic carbon and water fluxes along a radiotraced soil catena with two contrasting parent materials. Geomorphology 2020, 370, 107387. [Google Scholar] [CrossRef]
- Delbecque, N.; Dondeyne, S.; Gelaude, F.; Mouazen, A.M.; Vermeir, P.; Verdoodt, A. Urban soil properties distinguished by parent material, land use, time since urbanization, and pre-urban geomorphology. Geoderma 2022, 413, 115719. [Google Scholar] [CrossRef]
- Geng, H.; Wang, F.; Yan, C.; Tian, Z.; Chen, H.; Zhou, B. Leaching behavior of metals from iron tailings under varying pH and low-molecular-weight organic acids. J. Hazard. Mater. 2020, 383, 121136. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Fu, Y.; Liu, S.; Ma, T.; Tao, X.; Ma, Y. Spatial and temporal variations of metal fractions in paddy soil flooding with acid mine drainage. Environ. Res. 2022, 212, 113241. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.R.; Liu, W.S.; Tang, Y.T.; Wang, S.Z.; Cao, Y.J.; Chen, Z.W. Effects of in situ leaching on the origin and migration of rare earth elements in aqueous systems of South China: Insights based on REE patterns, and Ce and Eu anomalies. J. Hazard. Mater. 2022, 435, 128959. [Google Scholar] [CrossRef] [PubMed]
- Dymov, A.A.; Milanovskii, E.Y. Assessing the complexing properties of soil organic matter by IMAC (case study of copper ions). Eurasian Soil Sci. 2020, 53, 178–186. [Google Scholar] [CrossRef]
- Kramareva, T.; Gorbunova, N.; Tikhonova, E.; Gromovik, A.; Kulikova, E. Features of the migration of heavy metals in the forest landscapes of the ‘Kamennaya Steppe’. IOP Conf. Ser. Earth Environ. Sci. 2021, 875, 012021. [Google Scholar] [CrossRef]
- Medvedeva, A.M.; Biryukova, O.A.; Kucherenko, A.V.; Ilchenko, Y.I.; Minkina, T.M.; Mandzhieva, S.S.; Mazarji, M. The effect of resource-saving tillage technologies on the mobility, distribution and migration of trace elements in soil. Environ. Geochem. Health 2023, 45, 85–100. [Google Scholar] [CrossRef]
- Guan, J.; Wang, J.; Pan, H.; Yang, C.; Qu, J.; Lu, N.; Yuan, X. Heavy metals in Yinma River sediment in a major Phaeozems zone, Northeast China: Distribution, chemical fraction, contamination assessment and source apportionment. Sci. Rep. 2018, 8, 12231. [Google Scholar] [CrossRef]
- Song, K.R.; Tang, L.; Zhang, S.T.; Santosh, M.; Spencer, C.J.; Zhao, Y. Genesis of the Bianjiadayuan Pb-Zn polymetallic deposit, Inner Mongolia, China: Constraints from in-situ sulfur isotope and trace element geochemistry of pyrite. Geosci. Front. 2019, 10, 1863–1877. [Google Scholar] [CrossRef]
- Baragaño, D.; Ratié, G.; Sierra, C.; Chrastný, V.; Komárek, M.; Gallego, J.R. Multiple pollution sources unravelled by environmental forensics techniques and multivariate statistics. J. Hazard. Mater. 2022, 424, 127413. [Google Scholar] [CrossRef]
- Jiang, S.; Dai, G.; Liu, Z.; He, T.; Zhong, J.; Ma, Y.; Shu, Y. Field-scale fluorescence fingerprints of biochar-derived dissolved organic matter (DOM) provide an effective way to trace biochar migration and the downward co-migration of Pb, Cu and As in soil. Chemosphere 2022, 301, 134738. [Google Scholar] [CrossRef]
- Liu, X.; Tian, R.; Ding, W.; He, Y.; Li, H. Adsorption selectivity of heavy metals by Na-clinoptilolite in aqueous solutions. Adsorption 2019, 25, 747–755. [Google Scholar] [CrossRef]
- Song, P.; Ma, W.; Gao, X.; Ai, S.; Wang, J.; Liu, W. Remediation mechanism of Cu, Zn, As, Cd, and Pb contaminated soil by biochar-supported nanoscale zero-valent iron and its impact on soil enzyme activity. J. Clean. Prod. 2022, 378, 134510. [Google Scholar] [CrossRef]
- Hou, S.; Zheng, N.; Tang, L.; Ji, X.; Li, Y. Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays L.) rhizospheric soil of non-ferrous metals smelting area. Environ. Monit. Assess. 2019, 191, 634. [Google Scholar] [CrossRef]
- Lasota, J.; Błońska, E.; Łyszczarz, S.; Tibbett, M. Forest humus type governs heavy metal accumulation in specific organic matter fractions. Water Air Soil Pollut. 2020, 231, 80. [Google Scholar] [CrossRef]
- Li, Y.; Gong, X. Effects of dissolved organic matter on the bioavailability of heavy metals during microbial dissimilatory iron reduction: A review. In Reviews of Environmental Contamination and Toxicology; Springer Nature: Cham, Switzerland, 2021; Volume 257, pp. 69–92. [Google Scholar] [CrossRef]
- Hoz, R.; Edwards, C. Heavy metals in rocks and stream sediments from the Northwestern part of Baja California, México. Revista internacional de contaminacion ambiental. Tlaxcala 1994, 10, 77–82. Available online: https://www.researchgate.net/publication/26474227 (accessed on 1 December 2024).
- Stefanowicz, A.M.; Kapusta, P.; Zubek, S.; Stanek, M.; Woch, M.W. Soil organic matter prevails over heavy metal pollution and vegetation as a factor shaping soil microbial communities at historical Zn-Pb mining sites. Chemosphere 2020, 240, 124922. [Google Scholar] [CrossRef] [PubMed]
- Ni, M.; Mao, R.; Jia, Z.; Dong, R.; Li, S. Heavy metals in soils of Hechuan County in the upper Yangtze (SW China): Comparative pollution assessment using multiple indices with high-spatial-resolution sampling. Ecotoxicol. Environ. Saf. 2018, 148, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Gajjar, S.; Kulahci, M.; Palazoglu, A. Real-time fault detection and diagnosis using sparse principal component analysis. J. Process Control 2018, 67, 112–128. [Google Scholar] [CrossRef]
- Shrestha, N. Factor analysis as a tool for survey analysis. Am. J. Appl. Math. Stat. 2021, 9, 4–11. [Google Scholar] [CrossRef]
- Gupta, V. Vehicle-generated heavy metal pollution in an urban environment and its distribution into various environmental components. In Environmental Concerns and Sustainable Development: Volume 1: Air, Water and Energy Resources; Springer: Singapore, 2020; pp. 113–127. [Google Scholar]
Profile | Depth/ cm | Cu/ ppm | Zn/ ppm | Pb/ ppm | Cr/ ppm | Al/ ppm | Fe2O3/ mass% | P2O5/ mass% | pH | OM/ mass% | CIA |
---|---|---|---|---|---|---|---|---|---|---|---|
Profile W01 | 0–20 | 32.78 | 81.81 | 107.79 | 99.61 | 10.726 | 10.032 | 0.17 | 7.15 | 3.018 | 69.0 |
20–40 | 32.72 | 58.95 | 130.12 | 126.04 | 9.402 | 10.751 | 0.119 | 6.76 | 2.765 | 73.8 | |
40–60 | 72.94 | 110.20 | 218.76 | 182.18 | 10.589 | 11.187 | 0.118 | 6.82 | 2.772 | 73.8 | |
60–80 | 50.84 | 102.30 | 162.58 | 140.94 | 10.939 | 9.065 | 0.105 | 6.50 | 2.811 | 78.2 | |
80–100 | 67.90 | 86.57 | 199.28 | 356.64 | 10.468 | 10.411 | 0.138 | 6.14 | 2.445 | 84.8 | |
100–120 | 58.99 | 76.33 | 181.28 | 177.01 | 11.178 | 10.831 | 0.129 | 6.00 | 2.402 | 81.4 | |
120–140 | 58.67 | 82.43 | 223.33 | 298.31 | 11.232 | 11.520 | 0.165 | 6.04 | 2.091 | 87.5 | |
140–160 | 50.83 | 86.52 | 178.82 | 250.73 | 9.305 | 9.373 | 0.145 | 5.68 | 1.324 | 88.0 | |
160–180 | 52.24 | 109.19 | 170.75 | 246.68 | 7.901 | 9.365 | 0.154 | 5.68 | 1.449 | 86.6 | |
180–200 | 52.17 | 124.46 | 149.58 | 255.75 | 7.827 | 7.651 | 0.125 | — | — | 86.3 | |
Profile W02 | 0–15 | 129.72 | 174.86 | 172.68 | 406.67 | 18.375 | 17.155 | 0.802 | 5.80 | 3.067 | 66.4 |
15–30 | 123.62 | 168.80 | 106.95 | 328.71 | 18.168 | 16.692 | 0.807 | 6.10 | 2.810 | 63.2 | |
30–45 | 123.77 | 158.01 | 137.23 | 332.80 | 18.4951 | 17.024 | 0.686 | 5.60 | 3.031 | 70.2 | |
45–60 | 162.36 | 187.45 | 165.31 | 449.12 | 18.901 | 17.210 | 0.721 | 5.70 | 2.737 | 69.5 | |
60–75 | 120.67 | 136.47 | 72.86 | 320.93 | 18.6999 | 17.077 | 0.716 | 5.30 | 2.908 | 69.2 | |
75–90 | 123.69 | 168.50 | 131.45 | 326.70 | 18.024 | 16.290 | 0.718 | 5.80 | 2.562 | 63.5 | |
90–105 | 84.91 | 160.07 | 46.68 | 187.00 | 14.436 | 13.354 | 0.875 | 6.50 | 1.653 | 41.7 | |
105–120 | 99.25 | 154.71 | 29.68 | 197.49 | 14.032 | 13.559 | 0.905 | 6.80 | 1.640 | 40.2 | |
120–135 | 115.55 | 190.24 | 124.69 | 315.18 | 16.545 | 15.702 | 1.053 | 7.10 | 1.223 | 53.6 | |
135–150 | 116.13 | 168.77 | 243.23 | 379.79 | 15.891 | 15.261 | 1.025 | 7.20 | 1.881 | 50.2 | |
150–165 | 107.66 | 143.21 | 170.80 | 300.66 | 15.683 | 14.312 | 0.922 | 7.40 | 1.519 | 46.8 | |
165–180 | 118.52 | 195.19 | 18.54 | 280.58 | 12.8634 | 12.304 | 0.839 | — | — | 34.3 |
Igeo | Level | Contamination Level |
---|---|---|
≤ 0 | 0 | Non-pollution |
0 < ≤ 1 | 1 | Slight-Moderate pollution |
1 < ≤ 2 | 2 | Moderate pollution |
2 < ≤ 3 | 3 | Medium-Strong pollution |
3 < ≤ 4 | 4 | Strong pollution |
4 < ≤ 5 | 5 | Strong-Extremely strong pollution |
5 < ≤ 10 | 6 | Extremely strong pollution |
Cu/ppm | Zn/ppm | Pb/ppm | Cr/ppm | |
---|---|---|---|---|
Mean | 59.18 | 119.06 | 35.63 | 159.78 |
Median | 53.16 | 109.03 | 30.86 | 146.18 |
Std. | 43.52 | 91.84 | 26.97 | 104.73 |
Min | 0.45 | 0.17 | 0.62 | 1.45 |
5% | 6.01 | 2.78 | 1.60 | 5.52 |
10% | 18.94 | 19.50 | 4.03 | 32.88 |
20% | 28.21 | 54.91 | 18.64 | 86.62 |
50% | 53.16 | 109.03 | 30.86 | 146.18 |
80% | 87.35 | 167.41 | 51.34 | 228.26 |
90% | 105.42 | 213.99 | 63.90 | 273.08 |
95% | 119.32 | 242.95 | 89.18 | 345.61 |
Max | 343.20 | 757.80 | 178.30 | 743.17 |
Cumulative of variance% | 73.54 | 77.14 | 75.69 | 65.55 |
Profile | Depth/cm | WWC/Cu | WWC/Zn | WWC/Pb | WWC/Cr |
---|---|---|---|---|---|
W01 | 20–40 | 1.00 | 1.39 | 0.83 | 0.79 |
40–60 | 0.45 | 0.53 | 0.59 | 0.69 | |
60–80 | 1.43 | 1.08 | 1.35 | 1.29 | |
80–100 | 0.75 | 1.18 | 0.82 | 0.40 | |
100–120 | 1.15 | 1.13 | 1.10 | 2.01 | |
120–140 | 1.01 | 0.93 | 0.81 | 0.59 | |
140–160 | 1.15 | 0.95 | 1.25 | 1.19 | |
160–180 | 0.97 | 0.79 | 1.05 | 1.02 | |
180–200 | 1.00 | 0.88 | 1.14 | 0.96 | |
W02 | 15–30 | 1.05 | 1.04 | 1.61 | 1.24 |
30–45 | 1.00 | 1.07 | 0.78 | 0.99 | |
45–60 | 0.76 | 0.84 | 0.83 | 0.74 | |
60–75 | 1.35 | 1.37 | 2.27 | 1.40 | |
75–90 | 0.98 | 0.81 | 0.55 | 0.98 | |
90–105 | 1.46 | 1.05 | 2.82 | 1.75 | |
105–120 | 0.86 | 1.03 | 1.57 | 0.95 | |
120–135 | 0.86 | 0.81 | 0.24 | 0.63 | |
135–150 | 0.99 | 1.13 | 0.51 | 0.83 | |
150–165 | 1.08 | 1.18 | 1.42 | 1.26 | |
165–180 | 0.91 | 0.73 | 9.21 | 1.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, R.; Fu, W.; Fu, X. Heavy Metal Spatial Variation Mechanism and Ecological Health Risk Assessment in Volcanic Island Soils: A Case Study of Weizhou Island, China. Land 2025, 14, 35. https://doi.org/10.3390/land14010035
Bi R, Fu W, Fu X. Heavy Metal Spatial Variation Mechanism and Ecological Health Risk Assessment in Volcanic Island Soils: A Case Study of Weizhou Island, China. Land. 2025; 14(1):35. https://doi.org/10.3390/land14010035
Chicago/Turabian StyleBi, Ran, Wei Fu, and Xuanni Fu. 2025. "Heavy Metal Spatial Variation Mechanism and Ecological Health Risk Assessment in Volcanic Island Soils: A Case Study of Weizhou Island, China" Land 14, no. 1: 35. https://doi.org/10.3390/land14010035
APA StyleBi, R., Fu, W., & Fu, X. (2025). Heavy Metal Spatial Variation Mechanism and Ecological Health Risk Assessment in Volcanic Island Soils: A Case Study of Weizhou Island, China. Land, 14(1), 35. https://doi.org/10.3390/land14010035