Spatiotemporal Heterogeneity and Zoning Strategies of Multifunctional Trade-Offs and Synergies in Cultivated Land in the Hexi Corridor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Methodology
2.3.1. Selection of Evaluation Units
2.3.2. Index System Construction
- (1)
- Production function
- (2)
- Social security function
- (3)
- Ecological function
- (4)
- Landscape recreation function
2.3.3. Gridded Socioeconomic Data
2.3.4. Calculation Method of Carbon Fixation and the Oxygen Release Capacity
2.3.5. Habitat Quality Calculation Methodology
2.3.6. Calculation of the Soil Conservation Capacity
2.3.7. Standardization of Indicators for Multifunctional Evaluation of Arable Land
2.3.8. Determination of Evaluation Indicator Weights
2.3.9. Evaluation of a Multifunctional Index for Cultivated Land
2.3.10. Getis-Ord Gi* Statistics
2.3.11. Trade-Offs and Synergy Analysis
2.3.12. Bivariate Local Spatial Autocorrelation
2.3.13. Self-Organizing Mapping Feature Networks
3. Results
3.1. Spatial and Temporal Analysis of the Multifunctional Evolution of Arable Land
3.1.1. Spatial and Temporal Analysis of the Evolution of the Production Functions of Arable Land
3.1.2. Spatial and Temporal Analysis of the Evolution of the Social Security Functions of Arable Land
3.1.3. Spatial and Temporal Analysis of the Evolution of the Ecological Functions of Arable Land
3.1.4. Spatial and Temporal Analysis of the Evolution of Recreational Functions in Arable Landscapes
3.2. Multifunctional Trade-Offs and Synergistic Analysis of Arable Land
3.2.1. Multifunctional Trade-Offs and Synergistic Temporal Changes in Croplands
3.2.2. Multifunctional Trade-Offs and Synergistic Spatial Changes in Croplands
3.3. Optimization of Multifunctional Zoning of Cultivated Land in the Hexi Corridor
3.3.1. Agricultural Production-Led Zone
3.3.2. Agricultural–Social Security Zone
3.3.3. Ecological–Agricultural Zone
3.3.4. Balanced Development Zone
4. Discussion
4.1. In-Depth Exploration of the Spatiotemporal Evolution Characteristics of Cultivated Land Multifunctionality
4.2. Discussion of the Trade-Offs and Synergies of Multifunctional Cultivated Land
4.3. Reflections on Zoning Management Strategies
4.4. Deficiencies and Future Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lai, Z.; Chen, M.; Liu, T. Changes in and prospects for cultivated land use since the reform and opening up in China. Land Use Policy 2020, 97, 104781. [Google Scholar] [CrossRef]
- Bao, J.; Mao, L.; Liu, Y.; Fan, S. Investigation of Spatiotemporal Changes and Impact Factors of Trade-Off Intensity in Cultivated Land Multifunctionality in the Min River Basin. Agriculture 2024, 14, 1666. [Google Scholar] [CrossRef]
- Li, S.; Shao, Y.; Hong, M.; Zhu, C.; Dong, B.; Li, Y.; Lin, Y.; Wang, K.; Gan, M.; Zhu, J.; et al. Impact mechanisms of urbanization processes on supply-demand matches of cultivated land multifunction in rapid urbanization areas. Habitat Int. 2023, 131, 102726. [Google Scholar] [CrossRef]
- Song, X.-Q.; Ouyang, Z. Route of multifunctional cultivated land management in China. J. Nat. Resour. 2012, 27, 540–551. [Google Scholar]
- Long, H.L.; Ma, L.; Zhang, Y.N.; Qu, L. Multifunctional rural development in China: Pattern, process and mechanism. Habitat Int. 2022, 121, 102530. [Google Scholar] [CrossRef]
- Fielke, S.J.; Wilson, G.A. Multifunctional intervention and market rationality in agricultural governance: A comparative study of England and South Australia. Geo J. 2017, 82, 1067–1083. [Google Scholar] [CrossRef]
- Lerouge, F.; Sannen, K.; Gulinck, H.; Vranken, L. Revisiting production and ecosystem services on the farm scale for evaluating land use alternatives. Environ. Sci. Policy 2016, 57, 50–59. [Google Scholar] [CrossRef]
- Manson, S.M.; Jordan, N.R.; Nelson, K.C.; Brummel, R.F. Modeling the effect of social networks on adoption of multifunctional agriculture. Environ. Model. Softw. 2016, 75, 388–401. [Google Scholar] [CrossRef]
- Fagioli, F.F.; Rocch, L.; Paolotti, L.; Słowiński, R.; Boggia, A. From the farm to the agri-food system: A multiple criteria framework to evaluate extended multifunctional value. Ecol. Indic. 2017, 79, 91–102. [Google Scholar] [CrossRef]
- Jang, G.; Wang, M.; Qu, Y.; Zhou, D.; Ma, W. Towards cultivated land multifunction assessment in China: Applying the “influencing factors-functions-products-demands” integrated framework. Land Use Policy 2020, 99, 104982. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, J.; Zhao, F.; Wang, C.; Zhang, F.; Teng, Y.; Chu, X.; Kumi, M.A. Spatiotemporal variations of ecosystem services and their drivers in the Pearl River Delta, China. J. Clean. Prod. 2022, 337, 130466. [Google Scholar] [CrossRef]
- Tao, J.; Lu, Y.; Ge, D.; Dong, P.; Gong, X.; Ma, X. The spatial pattern of agricultural ecosystem services from the production-living-ecology perspective: A case study of the Huaihai Economic Zone, China. Land Use Policy 2022, 122, 106355. [Google Scholar] [CrossRef]
- Zhu, Y.; Luo, P.; Zhang, S.; Sun, B. Spatiotemporal analysis of hydrological variations and their impacts on vegetation in semiarid areas from multiple satellite data. Remote Sens. 2020, 12, 4177. [Google Scholar] [CrossRef]
- Liang, X.; Li, Y. Identification of spatial coupling between cultivated land functional transformation and settlements in Three Gorges Reservoir area, China. Habitat Int. 2020, 104, 102236. [Google Scholar] [CrossRef]
- Wu, B.; Liu, M.; Wan, Y.; Song, Z. Evolution and coordination of cultivated land multifunctionality in Poyang lake ecological economic zone. Sustainability 2023, 15, 5307. [Google Scholar] [CrossRef]
- Liu, Y.; Wan, C.; Xu, G.; Chen, L.; Yang, C. Exploring the relationship and influencing factors of cultivated land multifunction in China from the perspective of trade-off/synergy. Ecol. Indic. 2023, 149, 110171. [Google Scholar] [CrossRef]
- Liu, J.; Jin, X.; Xu, W.; Sun, R.; Han, B.; Yang, X.; Gu, Z.; Xu, C.; Sui, X.; Zhou, Y. Influential factors and classification of cultivated land fragmentation, and implications for future land consolidation: A case study of Jiangsu Province in eastern China. Land Use Policy 2019, 88, 104185. [Google Scholar] [CrossRef]
- Li, B.; Wang, W. Trade-offs and synergies in ecosystem services for the Yinchuan Basin in China. Ecol. Indic. 2018, 84, 837. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, H.; Hu, Y.; Peng, Y.; Liu, L.; Su, S.; Wang, W.; Wu, J. Multifunctional trade-off/synergy relationship of cultivated land in Guangdong: A long time series analysis from 2010 to 2030. Ecol. Indic. 2023, 154, 110700. [Google Scholar] [CrossRef]
- Li, X.; Xiao, P.; Zhou, Y.; Xu, J.; Wu, Q. The Spatiotemporal Evolution Characteristics of Cultivated Land Multifunction and Its Trade-Off/Synergy Relationship in the Two Lake Plains. Int. J. Environ. Res. Public Health 2022, 19, 15040. [Google Scholar] [CrossRef]
- Qian, F.; Chi, Y.; Lal, R. Spatiotemporal characteristics analysis of multifunctional cultivated land: A case of Shenyang, Northeast China. Land Degrad. Dev. 2020, 31, 1812–1822. [Google Scholar] [CrossRef]
- Yang, H.; Zou, R.; Hu, Y.; Wang, L.; Xie, Y.; Tan, Z.; Zhu, Z.; Zhu, A.X.; Gong, J.; Mao, X. Sustainable utilization of cultivated land resources based on “element coupling-function synergy” analytical framework: A case study of Guangdong, China. Land Use Policy 2024, 146, 107316. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, W.; Li, M.; Guo, Z.; Wang, L.; Wu, L. Multiscale research on spatial supply-demand mismatches and synergic strategies of multifunctional cultivated land. J. Environ. Manag. 2021, 299, 113605. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Xu, Y.; Huang, A.; Liu, Y.; Wang, H.; Lu, L.; Sun, P.; Zheng, W. Spatial identification of land use multifunctionality at grid scale in farming-pastoral area: A case study of Zhangjiakou City, China. Habitat Int. 2018, 76, 48–61. [Google Scholar] [CrossRef]
- Chen, X.J.; Wang, J. Quantitatively determining the priorities of regional ecological compensation for cultivated land in different main functional areas: A case study of Hubei Province, China. Land 2021, 10, 247. [Google Scholar] [CrossRef]
- Xiang, J.W.; Han, P.; Chen, W.X. Coordinated development efficiency between cultivated land spatial morphology and agricultural economy in underdeveloped areas in China: Evidence from western Hubei Province. J. Geogr. Sci. 2023, 33, 801–822. [Google Scholar] [CrossRef]
- Yin, C.; Nie, Y.; Li, Y.; Zhou, Y.; Yu, L.; Qin, H.; Yu, J. Multifunctional trade-off and compensation mechanism of arable land under the background of rural revitalization: A case study in the West Mountain Regions of Hubei Province. Environ. Sci. Pollut. Res. 2023, 30, 96329–96349. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Long, H.; Tu, S.; Ge, D.; Ma, L.; Wang, L. Spatial identification of land use functions and their tradeoffs/synergies in China: Implications for sustainable land management. Ecol. Indic. 2019, 107, 105550.1–105550.14. [Google Scholar] [CrossRef]
- Yang, W.; Pan, J. The role of vegetation carbon sequestration in offsetting energy carbon emissions in the Yangtze River Basin, China. Environ. Dev. Sustain. 2024, 26, 22689–22714. [Google Scholar] [CrossRef]
- Ran, Y.J.; Zhao, X.Q.; Ye, X.M.; Wang, X.; Pu, J.; Huang, P.; Zhou, Y.; Tao, J.; Wu, B.; Dong, W.; et al. A framework for territorial spatial ecological restoration zoning integrating “Carbon neutrality” and “Human-geology-ecology”: Theory and application. Sustain. Cities Soc. 2024, 115, 105824. [Google Scholar] [CrossRef]
- Li, Y.; Luo, H. Trade-off/synergistic changes in ecosystem services and geographical detection of its driving factors in typical karst areas in southern China. Ecol. Indic. 2023, 154, 110811. [Google Scholar] [CrossRef]
- Zeng, S.; Jiang, C.; Bai, Y.; Wang, H.; Liu, E.; Guo, L.; Chen, S.; Zhang, J. Understanding scale effects and differentiation mechanisms of ecosystem services tradeoffs and synergies relationship: A case study of the Lishui River Basin, China. Ecol. Indic. 2024, 167, 112648. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, X.; Feng, X.; Ma, J.; Wang, X.; Zhang, X.; Zhou, J.; Sun, Z.; Yao, W.; Tu, Y. Exploring the spatial heterogeneity of ecosystem services and influencing factors on the Qinghai Tibet Plateau. Ecol. Indic. 2023, 154, 110521. [Google Scholar] [CrossRef]
- He, J.; Shi, Y.; Xu, L.; Lu, Z.; Feng, M. An investigation on the impact of blue and green spatial pattern alterations on the urban thermal environment: A case study of Shanghai. Ecol. Indic. 2024, 158, 111244. [Google Scholar] [CrossRef]
- Xia, H.; Yuan, S.; Prishchepov, A.V. Spatial-temporal heterogeneity of ecosystem service interactions and their social-ecological drivers: Implications for spatial planning and management. Resour. Conserv. Recycl. 2023, 189, 106767. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Z.; Li, C. Assessing spatiotemporal heterogeneity and drivers of ecosystem services to support zonal management in mountainous cities. Sci. Total Environ. 2024, 954, 176328. [Google Scholar] [CrossRef]
Data | Origin and Description |
---|---|
Land use data of Gansu Province | From RESDC (https://www.resdc.cn/) accessed on 5 June 2024. |
China GDP spatial distribution kilometer grid dataset | |
China’s population spatial distribution kilometer grid dataset | |
Administrative region | |
Vegetation net primary productivity dataset | From NASA (http://ladsweb.modaps.eosdis.nasa.gov/) accessed on 5 June 2024. |
Spatial distribution dataset of rapeseed planting in China | From the Yangtze River Survey Technology Research Institute of the Ministry of Water Resources (https://data.mendeley.com/datasets/hxhkphgmtt/1) accessed on 5 June 2024. |
China soil conservation capacity dataset | From ScienceDB (http://www.scidb.cn) |
Township street point data | The source is the administrative divisions of various levels on the official website of the National Bureau of Statistics, and then the coordinates are obtained using the POI reverse query tool |
DEM data | From GSCloud (http://www.gscloud.cn) accessed on 5 June 2024. |
Standardized Layer | Indicator Layer | Causality | Computation Method | Weights in 2000 | Weights in 2010 | Weights in 2020 |
---|---|---|---|---|---|---|
Production function | Cultivation rate of arable land | + | Cultivated area/total land area | 0.0392 | 0.0336 | 0.0253 |
Index of replanting | + | Cultivated area/sown area of crops | 0.0489 | 0.0400 | 0.0295 | |
Average land value of arable land | + | Agricultural output value/arable land area | 0.0598 | 0.0478 | 0.0322 | |
Food self-sufficiency rate | + | Grain production/population × 420 kg | 0.0609 | 0.0669 | 0.1944 | |
Social security function | Agricultural output as a percentage of GDP | + | Agricultural output value/GDP | 0.0521 | 0.0476 | 0.0335 |
level of agricultural mechanization | + | Total power of agricultural machinery/cultivated area | 0.0518 | 0.0420 | 0.0308 | |
Number of agricultural employees | + | Statistical yearbook data | 0.0529 | 0.0441 | 0.0341 | |
Cultivated land area per capita | + | Cultivated area/number of people | 0.0689 | 0.0616 | 0.1628 | |
Ecological function | Carbon sequestration and oxygen release | + | Calculated based on the IUEMS model | 0.2315 | 0.1925 | 0.1539 |
Habitat quality | + | Calculated based on the InVEST model | 0.0791 | 0.0696 | 0.0612 | |
Soil conservation capacity | + | Calculated based on the InVEST model | 0.1075 | 0.0952 | 0.0722 | |
Cropland fragmentation | - | Fragstats 4.2 calculations | 0.0017 | 0.0012 | 0.0010 | |
Landscape recreation function | Cropland shape index | - | Fragstats 4.2 calculations | 0.0039 | 0.0027 | 0.0022 |
Tillage aroma uniformity | + | Fragstats 4.2 calculations | 0.0199 | 0.0170 | 0.0129 | |
Oilseed rape acreage | + | ArcGIS partition statistics | 0.1214 | 0.2553 | 0.1537 | |
Distance from township governmental quarters | - | ArcGIS proximity analysis | 0.0006 | 0.0005 | 0.0004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, K.; Sun, Z.; Ma, T.; Li, Y.; Xie, B. Spatiotemporal Heterogeneity and Zoning Strategies of Multifunctional Trade-Offs and Synergies in Cultivated Land in the Hexi Corridor. Land 2025, 14, 335. https://doi.org/10.3390/land14020335
Zhou K, Sun Z, Ma T, Li Y, Xie B. Spatiotemporal Heterogeneity and Zoning Strategies of Multifunctional Trade-Offs and Synergies in Cultivated Land in the Hexi Corridor. Land. 2025; 14(2):335. https://doi.org/10.3390/land14020335
Chicago/Turabian StyleZhou, Kaichun, Zixiang Sun, Tingting Ma, Yulin Li, and Binggeng Xie. 2025. "Spatiotemporal Heterogeneity and Zoning Strategies of Multifunctional Trade-Offs and Synergies in Cultivated Land in the Hexi Corridor" Land 14, no. 2: 335. https://doi.org/10.3390/land14020335
APA StyleZhou, K., Sun, Z., Ma, T., Li, Y., & Xie, B. (2025). Spatiotemporal Heterogeneity and Zoning Strategies of Multifunctional Trade-Offs and Synergies in Cultivated Land in the Hexi Corridor. Land, 14(2), 335. https://doi.org/10.3390/land14020335