An Effective Global Optimization Algorithm for Quadratic Programs with Quadratic Constraints
Abstract
:1. Introduction
2. New Linearization Method for Deriving Linear Programming Relaxation Problem
3. New Global Optimization Algorithm
3.1. Steps for Global Optimization Algorithm
3.2. Global Convergence of the Proposed Algorithm
4. Numerical Experiments
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhu, D.; Huang, H.; Yang, S.X. Dynamic task assignment and path planning of multi-auv system based on an improved self-organizing map and velocity synthesis method in three-dimensional underwater workspace. IEEE Trans. Cybern. 2012, 43, 504–514. [Google Scholar]
- Jiao, H.; Liu, S. Range division and compression algorithm for quadratically constrained sum of quadratic ratios. Comput. Appl. Math. 2017, 36, 225–247. [Google Scholar] [CrossRef]
- Cao, X.; Yu, A.L. Multi-auv cooperative target search algorithm in 3-D underwater workspace. J. Navig. 2017, 53, 1–19. [Google Scholar] [CrossRef]
- Cao, X.; Zhu, D.Q. Multi-AUV task assignment and path planning with ocean current based on biological inspired self-organizing map and velocity synthesis algorithm. Intell. Autom. Soft Comput. 2017, 23, 31–39. [Google Scholar] [CrossRef]
- Wieczorek, Ł.; Ignaciuk, P. Continuous Genetic Algorithms as Intelligent Assistance for Resource Distribution in Logistic Systems. Data 2018, 3, 68. [Google Scholar] [CrossRef]
- Salami, M.; Movahedi Sobhani, F.; Ghazizadeh, M. Short-Term Forecasting of Electricity Supply and Demand by Using the Wavelet-PSO-NNs-SO Technique for Searching in Big Data of Iran’s Electricity Market. Data 2018, 3, 43. [Google Scholar] [CrossRef]
- Faris, H. A Hybrid Swarm Intelligent Neural Network Model for Customer Churn Prediction and Identifying the Influencing Factors. Information 2018, 9, 288. [Google Scholar] [CrossRef]
- Stojčić, M.; Pamučar, D.; Mahmutagić, E.; Stević, Ž. Development of an ANFIS Model for the Optimization of a Queuing System in Warehouses. Information 2018, 9, 240. [Google Scholar] [CrossRef]
- Lee, P.; Kang, S. An Interactive Multiobjective Optimization Approach to Supplier Selection and Order Allocation Problems Using the Concept of Desirability. Information 2018, 9, 130. [Google Scholar] [CrossRef]
- Jain, S.; Bisht, D.C.S.; Mathpal, P.C. Particle swarm optimised fuzzy method for prediction of water table elevation fluctuation. Int. J. Data Anal. Tech. Strateg. 2018, 10, 99–110. [Google Scholar] [CrossRef]
- Sun, H.; Tian, Y. Using improved genetic algorithm under uncertain circumstance of site selection of O2O customer returns. Int. J. Data Anal. Tech. Strateg. 2018, 10, 241–256. [Google Scholar] [CrossRef]
- Shen, P.; Zhang, T.; Wang, C. Solving a class of generalized fractional programming problems using the feasibility of linear programs. J. Inequal. Appl. 2017, 147. [Google Scholar] [CrossRef]
- Jiao, H.; Liu, S. An efficient algorithm for quadratic sum-of-ratios fractional programs problem. Numer. Funct. Anal. Optim. 2017, 38, 1426–1445. [Google Scholar] [CrossRef]
- Fu, M.; Luo, Z.Q.; Ye, Y. Approximation algorithms for quadratic programming. J. Comb. Optim. 1998, 2, 29–50. [Google Scholar] [CrossRef]
- Shen, P.; Wang, C. Linear decomposition approach for a class of nonconvex programming problems. J. Inequal. Appl. 2017, 74. [Google Scholar] [CrossRef]
- Hou, Z.; Jiao, H.; Cai, L.; Bai, C. Branch-delete-bound algorithm for globally solving quadratically constrained quadratic programs. Open Math. 2017, 15, 1212–1224. [Google Scholar] [CrossRef]
- Jiao, H.; Chen, Y.Q.; Cheng, W.X. A Novel Optimization Method for Nonconvex Quadratically Constrained Quadratic Programs. Abstr. Appl. Anal. 2014, 2014, 698489. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, S. Global optimization algorithm for mixed integer quadratically constrained quadratic program. J. Comput. Appl. Math. 2017, 319, 159–169. [Google Scholar] [CrossRef]
- Jiao, H.; Chen, R. A parametric linearizing approach for quadratically inequality constrained quadratic programs. Open Math. 2018. [Google Scholar] [CrossRef]
- Shen, P.; Huang, B.; Wang, L. Range division and linearization algorithm for a class of linear ratios optimization problems. J. Comput. Appl. Math. 2019, 350, 324–342. [Google Scholar] [CrossRef]
- Shen, P.P.; Li, X.A.; Jiao, H.W. Accelerating method of global optimization for signomial geometric programming. J. Comput. Appl. Math. 2008, 214, 66–77. [Google Scholar] [CrossRef]
- Shen, P.; Huang, B. Global algorithm for solving linear multiplicative programming problems. Optim. Lett. 2019. [Google Scholar] [CrossRef]
- Jiao, H.; Wang, Z.; Chen, Y. Global optimization algorithm for sum of generalized polynomial ratios problem. Appl. Math. Model. 2013, 37, 187–197. [Google Scholar] [CrossRef]
- Chen, Y.; Jiao, H. A nonisolated optimal solution of general linear multiplicative programming problems. Comput. Oper. Res. 2009, 36, 2573–2579. [Google Scholar] [CrossRef]
- Shen, P.-P.; Lu, T. Regional division and reduction algorithm for minimizing the sum of linear fractional functions. J. Inequal. Appl. 2018, 63. [Google Scholar] [CrossRef]
- Shen, P.; Li, X. Branch reduction bound algorithm for generalized geometric programming. J. Glob. Optim. 2013, 56, 1123–1142. [Google Scholar] [CrossRef]
- Jiao, H.; Chen, Y.; Yin, J. Optimality condition and iterative thresholding algorithm for l(p)-regularization problems. SpringerPlus 2016, 5, 1873. [Google Scholar] [CrossRef]
- Shen, P.; Yang, L.; Liang, Y. Range division and contraction algorithm for a class of global optimization problems. J. Glob. Optim. 2014, 242, 116–126. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, S. An efficient method for generalized linear multiplicative programming problem with multiplicative constraints. SpringerPlus 2016, 5, 1302. [Google Scholar] [CrossRef]
- Jiao, H.W.; Liu, S.Y.; Zhao, Y.F. Effective algorithm for solving the generalized linear multiplicative problem with generalized polynomial constraints. Appl. Math. Model. 2015, 39, 7568–7582. [Google Scholar] [CrossRef]
- Shen, P.P.; Bai, X.D. Global optimization for generalized geometric programming problems with discrete variables. Optimization 2013, 62, 895–917. [Google Scholar] [CrossRef]
- Jiao, H. A branch and bound algorithm for globally solving a class of nonconvex programming problems. Nonlinear Anal. Theory Methods Appl. 2009, 70, 1113–1123. [Google Scholar] [CrossRef]
- Jiao, H.; Liu, S. A new linearization technique for minimax linear fractional programming. Int. J. Comput. Math. 2014, 91, 1730–1743. [Google Scholar] [CrossRef]
- Jiao, H.; Guo, Y.; Shen, P. Global optimization of generalized linear fractional programming with nonlinear constraints. Appl. Math. Comput. 2006, 183, 717–728. [Google Scholar] [CrossRef]
- Jiao, H.; Liu, S.; Yin, J.; Zhao, Y. Outcome space range reduction method for global optimization of sum of affine ratios problem. Open Math. 2016, 14, 736–746. [Google Scholar] [CrossRef]
- Jiao, H.W.; Liu, S.Y. A practicable branch and bound algorithm for sum of linear ratios problem. Eur. J. Oper. Res. 2015, 243, 723–730. [Google Scholar] [CrossRef]
- Jiao, H.; Liu, S.; Lu, N. A parametric linear relaxation algorithm for globally solving nonconvex quadratic programming. Appl. Math. Comput. 2015, 250, 973–985. [Google Scholar] [CrossRef]
- Shen, P.; Jiao, H. Linearization method for a class of multiplicative programming with exponent. Appl. Math. Comput. 2006, 183, 328–336. [Google Scholar] [CrossRef]
- Horst, R.; Tuy, H. Global Optimization: Deterministic Approaches, 2nd ed.; Springer: Berlin, Germany, 1993. [Google Scholar]
- Shen, P.; Jiao, H. A new rectangle branch-and-pruning appproach for generalized geometric programming. Appl. Math. Comput. 2006, 183, 1027–1038. [Google Scholar]
- Shen, P.; Liu, L. A global optimization approach for quadratic programs with nonconvex quadratic constraints. Chin. J. Eng. Math. 2008, 25, 923–926. [Google Scholar]
- Wang, Y.; Liang, Z. A deterministic global optimization algorithm for generalized geometric programming. Appl. Math. Comput. 2005, 168, 722–737. [Google Scholar] [CrossRef]
- Jiao, H.; Chen, Y. A global optimization algorithm for generalized quadratic programming. J. Appl. Math. 2013, 2013, 215312. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhang, K.C.; Gao, Y.L. Global optimization of generalized geometric programming. Comput. Math. Appl. 2004, 48, 1505–1516. [Google Scholar] [CrossRef]
- Gao, Y.; Shang, Y.; Zhang, L. A branch and reduce approach for solving nonconvex quadratic programming problems with quadratic constraints. OR Trans. 2005, 9, 9–20. [Google Scholar]
- Shen, P. Linearization method of global optimization for generalized geometric programming. Appl. Math. Comput. 2005, 162, 353–370. [Google Scholar] [CrossRef]
- Qu, S.-J.; Ji, Y.; Zhang, K.-C. A deterministic global optimization algorithm based on a linearizing method for nonconvex quadratically constrained programs. Math. Comput. Model. 2008, 48, 1737–1743. [Google Scholar] [CrossRef]
Example | Refs. | Optimal Value | Optimal Solution | Iteration | Time (s) |
---|---|---|---|---|---|
1 | ours | 1.177124990 | (1.177124344, 2.177124344) | 22 | 0.0091 |
[40] | 1.177124327 | (1.177124327, 2.177124353) | 434 | 1.0000 | |
2 | ours | −0.999999202 | (2.000000, 1.000000) | 22 | 0.0085 |
[40] | −1.0 | (2.000000, 1.000000) | 24 | 0.0129 | |
3 | ours | 6.777809491 | (2.000000000, 1.666676181) | 13 | 0.0038 |
[37] | 6.777778340 | (2.000000000, 1.666666667) | 30 | 0.0068 | |
[41] | 6.777782016 | (2.000000000, 1.666666667) | 40 | 0.0320 | |
[42] | 6.7780 | (2.00003, 1.66665) | 44 | 0.1800 | |
4 | ours | 0.500000600 | (0.500000000, 0.500000000) | 26 | 0.0061 |
[41] | 0.500004627 | (0.5 0.5) | 34 | 0.0560 | |
[42] | 0.5 | (0.5, 0.5) | 91 | 0.8500 | |
[43] | 0.500000442 | (0.500000000, 0.500000000) | 37 | 0.0193 | |
[44] | 0.5 | (0.5, 0.5) | 96 | 1.0000 | |
5 | ours | 118.381493268 | (2.564162744, 3.119857633) | 70 | 0.0435 |
[45] | 118.383756475 | (2.5557793695, 3.1301646393) | 210 | 0.7800 | |
6 | ours | −1.162882315 | (1.499977112, 1.5) | 37 | 0.0412 |
[46] | −1.16288 | (1.5, 1.5) | 84 | 0.1257 | |
7 | ours | −11.363635682 | (1.0,0.181818133, 0.983332175) | 229 | 0.3919 |
[43] | −11.363636364 | (1.0,0.181818470, 0.983332113) | 420 | 0.2845 | |
[26] | −10.35 | (0.998712, 0.196213, 0.979216) | 1648 | 0.3438 |
(n,m) | Algorithm of [47] | This Paper |
---|---|---|
Computational Time (s) | Computational Time (s) | |
(4, 6) | 2.37678 | 1.9894 |
(5, 11) | 6.39897 | 4.9867 |
(14, 6) | 9.22732 | 6.4567 |
(18, 7) | 15.8410 | 11.6856 |
(20, 5) | 11.9538 | 8.9802 |
(35, 10) | 74.8853 | 56.7866 |
(37, 9) | 77.1476 | 45.6324 |
(45, 8) | 86.7174 | 65.6845 |
(46, 5) | 44.2502 | 32.2150 |
(60, 11) | 315.659 | 216.534 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, D.; Yin, J.; Bai, C. An Effective Global Optimization Algorithm for Quadratic Programs with Quadratic Constraints. Symmetry 2019, 11, 424. https://doi.org/10.3390/sym11030424
Shi D, Yin J, Bai C. An Effective Global Optimization Algorithm for Quadratic Programs with Quadratic Constraints. Symmetry. 2019; 11(3):424. https://doi.org/10.3390/sym11030424
Chicago/Turabian StyleShi, Dongwei, Jingben Yin, and Chunyang Bai. 2019. "An Effective Global Optimization Algorithm for Quadratic Programs with Quadratic Constraints" Symmetry 11, no. 3: 424. https://doi.org/10.3390/sym11030424