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Abstract: The rank-3 antisymmetric tensors which are the magnetic monopoles of SU(N)
Yang–Mills gauge theory dynamics, unlike their counterparts in Maxwell’s U(1) electrodynamics,
are non-vanishing, and do permit a net flux of Yang–Mills analogs to the magnetic field through closed
spatial surfaces. When electric source currents of the same Yang–Mills dynamics are inverted and their
fermions inserted into these Yang–Mills monopoles to create a system, this system in its unperturbed
state contains exactly three fermions due to the monopole rank-3 and its three additive field strength
gradient terms in covariant form. So to ensure that every fermion in this system occupies an exclusive
quantum state, the Exclusion Principle is used to place each of the three fermions into the fundamental
representation of the simple gauge group with an SU(3) symmetry. After the symmetry of the
monopole is broken to make this system indivisible, the gauge bosons inside the monopole become
massless, the SU(3) color symmetry of the fermions becomes exact, and a propagator is established
for each fermion. The monopoles then have the same antisymmetric color singlet wavefunction as a
baryon, and the field quanta of the magnetic fields fluxing through the monopole surface have the
same symmetric color singlet wavefunction as a meson. Consequently, we are able to identify these
fermions with colored quarks, the gauge bosons with gluons, the magnetic monopoles with baryons,
and the fluxing entities with mesons, while establishing that the quarks and gluons remain confined
and identifying the symmetry breaking with hadronization. Analytic tools developed along the way
are then used to fill the Yang–Mills mass gap.

Keywords: hadrons; baryons; mesons; quarks; gluons; QCD; hadronization; quark-gluon plasma;
Yang–Mills mass gap

1. Introduction

After the discovery of the muon in 1936, Rabi is said to have exclaimed: “who ordered that?” But to
this day, the same question can still be asked of the proton and neutron which are at the nuclear heart
of the observed material universe, and of the other baryons. We do have a very good understanding
that the proton and neutron and other baryons are composed of three confined “colored” quarks in the
fundamental representation of SU(3), with highly non-linear gluonic interactions among these quarks,
wherein baryons interact with one another by exchanging a variety of mesons. But we still do not
have a good dynamic answer, rooted in fundamental physics principles, to Rabi’s very basic question:
who ordered the baryons? Nor is there a good understanding of the dynamic origin of quark and
gluon confinement.

One of the most notable features of Maxwell’s U(1) differential and integral equations ∇ ·B = 0
and

v
B · dS = 0 is that magnetic monopoles do not exist and that there is never a net flux of magnetic

fields across any closed two-dimensional spatial surface. But in the dynamic Maxwell equations for
an SU(N) Yang–Mills [1] theory of non-commuting gauge fields these monopoles do exist, and there
is a net flux of the analogs to magnetic fields through closed surfaces surrounding and within the
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monopole. Given the extraordinary success of Yang–Mills gauge theory in describing weak and strong
interactions, and its presumably significant role in any “grand unified theory” which might become
generally accepted in the future, the question how the magnetic monopoles of Yang–Mills might
manifest themselves in the natural world must be given due consideration.

What is shown here is that when the Yang–Mills (YM) analog of Maxwell’s electric charge
equation is inverted, then inserted into the analog of Maxwell’s magnetic equation for what are
now non-vanishing monopoles—effectively combining both of Maxwell’s covariant equations into a
single indivisible equation—the non-perturbative state of these monopoles contains exactly 3 fermions
arising from the monopole density being an antisymmetric tensor of rank 3. Treating the monopole
as a “system” to which the Exclusion Principle must be applied, and so using SU(3) to enforce an
exclusive quantum state for each of these three fermions, and following a form of spontaneous
symmetry breaking which moves a degree of freedom from gauge bosons to fermions, makes the
bosons massless and renders SU(3) an exact symmetry, these YM magnetic monopoles acquire the
same SU(3) antisymmetric color singlet wavefunction as baryons, and the magnetic field analogs
which flow through the monopole surfaces obtain the same symmetric color singlet wavefunction as
mesons. This enables the three fermion states inside the monopole to be identified as confined colored
quarks, the gauge bosons to be identified as confined colored gluons, the YM magnetic monopoles to
be identified as baryons, the mesons to be identified as quanta of the YM magnetic fields which net
flow in and out of these monopoles, and the symmetry breaking to be identified with ultra-high-energy
hadronization from a plasma of free quarks and gluons.

From this we also answer Rabi’s question: baryons were ordered by Maxwell, Yang and Mills,
with an assist from Weyl via gauge theory itself, from Fermi–Dirac–Pauli via Dirac’s quantum theory
of the electron and the Exclusion Principle, from Gauss’s law for fluxes of magnetic fields through
closed surfaces, from Einstein’s generally covariant formulation of magnetic monopoles as third-rank
antisymmetric tensors, and with credit to Hamilton for pioneering non-commuting quaternions which
later became the foundation of YM gauge theory in the form of Pauli matrices and their extension to
SU(N).

Finally, we employ the foregoing development to fill the Yang–Mills Mass Gap [2].

2. A Brief Review of Maxwell’s Equations Using Duality and Differential Forms

We start with Maxwell’s equations in covariant form, in flat spacetime. A gauge field/vector
potential Aν with dimensionality of energy/charge is used to first define a field strength tensor
Fµν = ∂µAν − ∂νAµ which in turn is used in the two differential Maxwell equations:

cµ0 jν = ∂σFσν = ∂σ∂
σAν − ∂σ∂νAσ = (gµν∂σ∂σ − ∂µ∂ν)Aµ (1a)

cµ0pσµν = ∂σFµν + ∂µFνσ + ∂νFσµ = 0 (1b)

Additionally, from (1a) we obtain the continuity equation:

cµ0∂ν jν = ∂ν∂σ∂
σAν − ∂ν∂σ∂νAσ = 0 (2)

Above, jν = (cρ, j) is a current density four-vector in which ρ has dimensions of charge per volume
(charge density), µ0 is the vacuum permeability of free space, and pσµν is a third-rank antisymmetric
tensor defining a magnetic charge (monopole) current density.

In flat spacetime where gµν = ηµν and the Riemann tensor Rµνασ = 0, the commutator
[
∂;µ, ∂;v

]
Aα =

RµνασAσ for covariant derivatives simplifies to
[
∂µ, ∂ν

]
= 0 with partial derivatives commuting. As a

result, in (1a) we obtain the configuration space operator gµν∂σ∂σ − ∂µ∂ν operating on Aµ; and in (1b)
we find the magnetic monopole density pσµν = 0, by identity, which is understood to mean there
are no isolated magnetic charges in nature (setting aside the monopoles theorized as a possibility by
Dirac in [3]). Likewise, (2) is also true by identity and governs the conservation of electric charge
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sources. If we impose the covariant gauge condition ∂σAσ = 0 then (1a) simplifies to cµ0 jν = ∂σ∂σAν.
If, instead, we introduce a Proca mass m , 0 so (1a) becomes cµ0 jν =

(
gµν

(
∂σ∂σ + m2

)
− ∂µ∂ν

)
Aµ,

then because of (2) we find that m2∂σAσ = 0, thus ∂σAσ = 0, which is no longer a gauge condition but
a continuity requirement.

Duality and differential forms express the differential Maxwell’s Equations (1) in a compact form
which simplifies obtaining the integral Maxwell’s equations. Using duality reviewed, e.g., at pp. 87–89
of [4], we may rewrite these as:

cµ0 ∗ jσµν = ∂σ ∗ Fµν + ∂µ ∗ Fνσ + ∂ν ∗ Fσµ (3a)

cµ0pσµν = ∂σFµν + ∂µFνσ + ∂νFσν = 0 (3b)

Then, via differential forms reviewed, e.g., in Chapter 4 of [4] and pp. 218–220 of [5], we compact:

cµ0 ∗ j = d ∗ F = d ∗ dA (4a)

cµ0p = dF = ddA = 0 (4b)

Likewise, the continuity Equation (2) becomes:

cµ0d ∗ j = dd ∗ F = dd ∗ dA = 0 (5)

Both (4b) and (5) apply the differential forms relation dd = 0 that the exterior derivative of the
exterior derivative is zero, see, e.g., Section 4.6 of [4]. (Above, we adopt the convention that the
indexes of a dual object match those on the left side of the Levi-Civita tensor, so ∗Xσµν = εσµναXα,
∗Yµν = 1

2!ε
µναβYαβ and ∗Zν = 1

3!ε
ναβγZαβγ for any vector Xα and antisymmetric tensors Yαβ and Zαβγ.

This is to ensure that (3a) and (4a) maintain the same relative sign between ∗ j and d ∗ F.)
The form relations (4) are ideal for casting Maxwell’s equations into integral form. Specifically,

for any p-form H on a p + 1 -dimensional manifold M with boundary ∂M and with dH = (−1)p∂µHdxµ:∫
M

dH =

∫
∂M

H (6)

see, e.g., pp. 218–220 of [5]. So, using (4) in (6), we arrive at the integral Maxwell’s equations:

cµ0

y
∗ j =

y
d ∗ F =

{
∗F =

{
∗dA (7a)

cµ0

y
p =

y
dF =

{
F =

{
dA =

y
0 = 0 (7b)

In Section 18.3 of [6], Close uses Gauss’s theorem for electric charge contained in (7a) to “consider
the chromodynamics case which is analogous to the above.” Similarly, (7b) contains Gauss’s law for
magnetism,

v
B · dS = 0. The reason these surface integrals are of interest is because one way to state

the confinement of net color charge inside a baryon is via the schematic expression
v

B net color = 0
over the baryon B surface. Likewise, with only color-neutral objects (e.g., mesons) net flowing across
baryon surfaces, we may write

v
B color-neutral , 0. Because confinement is fundamentally about

what can and cannot flow across baryon surfaces, Gauss’s theorem will be of keen interest in the
development to follow.

3. Maxwell’s Yang–Mills Canonic Equations

Maxwell’s electrodynamics is a U(1) abelian gauge theory, so named because its gauge fields are
commuting,

[
Aµ, Aν

]
= 0. Yang–Mills gauge theory, on the other hand, uses gauge fields we denote

generally as Gν to distinguish from AV, which are non-commuting,
[
Gµ, Gν

]
, 0. Specifically, for a
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simple group SU(N) with traceless N×N Hermitian generators τi = τi
† with i = 1 . . .N2

− 1 normalized
to tr

(
τi

2
)
= 1

2 for each τi, and a commutator
[
τi, τ j

]
= i fi jkτk, these gauge fields are constructed via

Gµ = τiG
µ
i = Gµ† and so are likewise N×N Hermitian matrices. We may use the commutator to

find that
[
Gµ, Gν

]
=

[
τi, τ j

]
GiµG jν = i fi jkτkGiµG jν. Likewise, while tr(Gµ) = tr

(
τiG

µ
i

)
= 0, it can be

generally shown that tr(AB) = tr
(
τiτ jAiB j

)
= 1

2 AiBi for any A = τiAi, B = τ jB j, which means that

tr
(
GµGν

)
= tr

(
τiτ jGiµG jν

)
= 1

2 GiµGiν for a product of two gauge fields. Although weak interactions
use SU(2) and strong interactions SU(3), at the outset we shall not examine any particular gauge groups.
Our immediate interest is to develop the counterparts to Maxwell’s equations generally, for any SU(N)
Yang–Mills (YM) gauge theory.

In general, a gauge-covariant derivative is defined by hcDµ = hc∂µ − igGµ, where g is a charge
strength. We then use these to define a field strength tensor in natural units h = c = 1 by:

Fµν = DµGν −DνGµ = (∂µ − igGµ)Gν − (∂ν − igGν)Gµ = ∂µGν − ∂νGµ − ig[Gµ, Gν] (8)

Were these gauge fields to commute, that is, were we to have [Gµ, Gν] = 0, this would reduce to
Fµν = ∂µGν − ∂νGµ which recovers the template Fµν = ∂µAν − ∂νAµ for U(1) abelian electrodynamics
noted prior to (1). Of course, however, these

[
Gµ, Gν

]
= i fi jkτkGiµG jν are non-commuting.

Using differential forms, the above compacts to:

F = dG− igG2 (9)

In Yang–Mills gauge theory we obtain dynamic equations starting with a canonic replacement
∂µ → Dµ of ordinary with gauge-covariant derivatives. Likewise promoting electric and magnetic
charge densities jν 7→ Jν and pσµν 7→ Pσµν to capitalization, Maxwell’s (1) become: (Note that cµ0

remains the constant factor in (10) below as it was in (2) et seq. In U(1) electrodynamics cµ0 = 4πhαe/e2

is the ratio between the running fine structure coupling αe(µ = 0) = 1/137.036 . . . and charge strength
e. For SU(N) it remains the ratio cµ0 = 4πhα/g2 between dimensionless running couplings α and
charge strengths g, generally.)

cµ0 Jν = DσFσν = ∂σFσν − igGσFσν = DσDσGν −DσDνGσ = (gµνDσDσ
−DµDν)Gµ (10a)

cµ0Pσµν = DσFµν + DµFνσ + DνFσµ = (∂σ − igGσ)Fµν + (∂µ − igGµ)Fνσ + (∂ν − igGν)Fσµ = 0 (10b)

Likewise, the continuity Equation (2) generalizes to:

cµ0Dν Jν = cµ0(∂ν − igGν)Jν = DνDσFσν = DνDσDσGν −DνDσDνGσ

= ∂ν∂σFσν −
(
ig(Gν∂σ + ∂νGσ) + g2GνGσ

)
Fσν = (∂ν∂σ −Vνσ)Fσν = 0

(11)

which in momentum space i∂µ 7→ pµ becomes (pν + gGν)Jν = 0. Unlike (1b) and (2), the zeros above
arise not from derivative commutation, but from the Jacobian identity [Dσ, [Dµ, Dν]] + [Dµ, [Dν, Dσ]] +

[Dν, [Dσ, Dµ]] = 0 and [Dν, [Dσ, [Dσ, Dν]]] = 0, in view of the further identities −igFµνφ =
[
Dµ, Dν

]
φ =

Dµ(Dνφ) −Dν

(
Dµφ

)
and

[
Dσ, Fµν

]
φ = DσFµνφ operating on any field φ(t, x), see, e.g., [7], with careful

attention given to the product rule. In the bottom line of (11), we define Vνσ ≡ ig(Gν∂σ + ∂νGσ)+ g2GνGσ
to be a “perturbation tensor,” so named because its trace V = Vσ

σ = ig(Gσ∂σ + ∂σGσ) + g2GσGσ is
the standard expression for the perturbation in the Klein–Gordon (relativistic Schrödinger) equation,
and houses the difference −V = DσDσ

− ∂σ∂σ between ordinary and gauge-covariant Laplacians.

4. Maxwell’s Yang–Mills Dynamic Equations

One of the major lessons of the General Theory of Relativity [8] which Hermann Weyl later
adapted to gauge theory [9–11] is the canonic prescription of invariantly maintaining the original
form of a field equation or Lagrangian density while merely replacing all ordinary derivatives
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with suitable covariant derivatives. Then, by separating the original equation or Lagrangian and
its ordinary derivatives from the new terms arising via covariant derivatives, we ascertain the
physical, dynamic impacts of this prescription. For example, in General Relativity the covariant
promotion of derivatives in the flat spacetime commutator

[
∂µ, ∂ν

]
= 0 produces

[
∂;µ, ∂;v

]
Aα = RµνασAσ

with the Riemann tensor; and Newton’s first law of motion written as duα/dτ = 0 with a four
velocity uα = dxα/dτ produces Duα/Dτ = duβ/dτ + Γβµνuµuν = 0, i.e., duα/dτ = −Γαµνuµuν,
which is the gravitational geodesic equation. And in gauge theory, the Klein–Gordon equation
(∂σ∂σ + mσ)φ = 0 promotes to (DσDσ + mσ)φ = 0, i.e., (∂σ∂σ + mσ)φ = Vφ with the perturbation
V = ig(∂σGσ + Gσ∂σ) + g2GσGσ noted after (11); while Dirac’s equation (iγσ∂σ −m)ψ = 0 promotes to
(iγσDσ −m)ψ = 0, i.e., (iγσ∂σ −m)ψ = −γ0VDψ with a Dirac (D) perturbation γ0VD ≡ gγσGσ. In all
instances, this canonic prescription is to (1) replace ordinary with covariant derivatives, then (2)
segregate the original equation with ordinary derivatives to see the dynamic impact, whereby what
was originally a “zero” becomes a “non- zero.” In Section 3 we took the first step of promoting
ordinary derivatives in Maxwell’s equations to covariant derivatives to obtain canonic equations.
Now, we segregate the original Maxwell equations to see the dynamic Yang–Mills content, and what
the zeros become as non-zeros.

To do so, we first define lowercase-denoted electric and magnetic charge densities by cµ0 jν ≡ ∂σFσν

and cµ0pσµν ≡ ∂σFµν+ ∂µFνσ+ ∂νFσµ exactly as in the Maxwell equations (1), using ordinary derivatives
of the field strength Fµν, which is now the Yang–Mills (8). Then, we use cµ0 Jν = DσFσν and
cµ0Pσµν = DσFµν + DµFνσ + DνFσµ = 0 in (10) which have exactly the same form but for ∂ 7→ D and
j, p 7→ J, P , together with Dµ = ∂µ − igGµ in natural units, to separate the ordinary derivatives of Fµν,
as such:

cµ0 jν ≡ ∂σFσν = ∂σ(DσGν −DνGσ) = (gµν∂σDσ
− ∂µDν)Gµ

= (gµν(∂σ∂σ − ig∂σGσ) − (∂µ∂ν − ig∂µGν))Gµ
(12a)

cµ0pσµν ≡ ∂σFµν + ∂µFνσ + ∂νFσµ = igGσFµν + igGµFνσ + igGνFσµ

= ∂σ(DµGν −DνGµ) + ∂µ(DνGσ −DσGν) + ∂ν(DσGµ −DµGσ)
= −ig(∂σ[Gµ, Gν] + ∂µ[Gν, Gσ] + ∂ν[Gσ, Gµ]) , 0

(12b)

Comparing (12) with (10) we see the foregoing implies definitions cµ0 jν ≡ cµ0 Jν + igGσFσν and
cµ0pσµν ≡ cµ0Pσµν + igGσFµν + igGµFνσ + igGνFσµ between lowercase and uppercase source densities,
also mindful from (10b) that Pσµν = 0. In (12b) the ordinary derivative commutator

[
∂µ, ∂ν

]
= 0 cancels

terms just as in Maxwell’s monopole Equation (1b). What is very important, however, is that the
Yang–Mills dynamic Equation (12b) contains a non-vanishing magnetic monopole density pσµν , 0,
versus pσµν = 0 in (1b) for Maxwell’s U(1) electrodynamics. The “zero,” which here has turned into a
“nonzero,” is the magnetic monopole density pσµν.

Cast into differential forms, (12) may be compacted to (compare (4)):

cµ0 ∗ j = d ∗ F = d ∗DG = d ∗
(
dG− igG2

)
= d ∗ dG− igd ∗G2 (13a)

cµ0p = dF = dDG = d
(
dG− igG2

)
= ddG− igdG2 = −igdG2 , 0 (13b)

These are Maxwell’s dynamic equations in differential forms, for any Yang–Mills gauge group
SU(N). Although we continue to apply the exterior calculus relation dd = 0 to remove ddG = 0, again,
these magnetic monopoles do not zero out entirely. There remains a residual term −igdG2 which
arises directly out of the two-form G2 = 1

2

[
Gµ, Gν

]
dxµdxµ , 0, that is, directly from the non-commuting

nature of Yang–Mills gauge theories.
Another reason it is important to segregate ordinary derivatives is because the d in dH in (6)

remains an ordinary, geometric, calculus derivative, and does not change for Yang–Mills theory.
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So, having placed (12) into the compact form (13) with segregated ordinary derivatives, we may use (6)
to recast these into integral form:

cµ0

y
∗ j =

y
d ∗ F =

{
∗F =

y
d ∗

(
dG− igG2

)
=

{
∗dG− ig

{
∗G2 (14a)

cµ0

y
p =

y
dF =

{
F = −ig

y
dG2 = −ig

{
G2 , 0 (14b)

These are the Yang–Mills counterparts to (7). The YM “electric” equation (14a) contains a new
term −ig

v
∗G2 which does not appear in (7a), again, because G2 , 0. The YM magnetic equation

written as
v

F = −ig
v

G2 indicates something quite unique in contrast to Maxwell’s electrodynamics:
Whereas (aside perhaps from Dirac’s [3]) there is no net flux of any U(1) magnetic fields through any
closed two-dimensional surface, we learn from (14b) that Yang–Mills SU(N) “magnetic” fields can
and do exhibit a net flux through such closed surfaces. This is because (13b) does provide Yang–Mills
theory with non-vanishing magnetic monopoles.

Yang–Mills gauge theories have proved to be very successful for understanding the natural
world. Weak interactions are correctly understood using SU(2), strong using SU(3), and electroweak
using SU(2)xU(1). It is plausible that grand unification will eventually start with some larger SU(N)
and spontaneously break symmetry in stages down to the phenomenological SU(3)xSU(2)xU(1).
In short, we take Yang–Mills gauge theories very seriously for their ability to render what we observe
in nature. Accordingly, if Yang–Mills theories also predict magnetic monopoles as in (12b) and (13b),
and non-zero magnetic field surface fluxes as in (14b), we must ask equally serious questions about
these monopoles. Most importantly: in the natural world, in what form do we observe these YM
monopoles? Furthermore, what are the G2 objects which in (14b) net flow across closed surfaces around
and within the monopole?

As we shall see, these monopoles are observed as baryons and these G2 objects which net flow
across surfaces of these monopoles are observed as mesons. Together, they are the hadrons.

5. Populating Yang–Mills Magnetic Monopoles with Source Currents, by Inverting the Yang–Mills
Electric Source Equation and Then Combining Both Maxwell Equations into One

It is common practice to start with an electric equation of the form (1a), or, presently, (12a) in which
the source density jν is a function of the gauge field Aµ or Gµ, then invert the configuration space
operator to obtain the gauge field as a function of the source current. It is well-known, however,
that the inverse of (1a) is infinite and cannot be obtained without removing some of the gauge freedom,
typically through the gauge condition ∂σAσ = 0. Alternatively, a finite inverse can be obtained with a
Proca mass m added by hand, whereby (1a) is written as cµ0 jν =

(
gµν

(
∂σ∂σ + m2

)
− ∂µ∂ν

)
Aµ. Of course,

a theory with a vector boson mass added by hand is no longer renormalizable, but it is also known how
to cure this by revealing a mass through spontaneous symmetry breaking of the sort which underlies
electroweak theory. With this in mind, we now add a mass by hand to (12a), and with h = c = 1 write:

cµ0 jν = ∂σFσν =
(
gµν

(
∂σDσ + m2

)
− ∂µDν

)
Gµ

=
(
gµν

((
∂σ∂σ + m2

)
+ g2GσGσ

)
− (∂µ∂ν − ig∂µGν)

)
Gµ

(15)

With this same m, (10a) becomes cµ0 Jν =
(
gµν

(
DσDσ + m2

)
−DµDν

)
Gµ. Then we find from

(11) that m2DσGσ = 0 is now a required covariant condition—not merely an optional gauge
condition—through which the scalar degree of freedom is removed from Gσ. So, for a massive
vector boson in Yang–Mills theory:

DσGσ = 0 i.e. ∂σGσ = igGσGσ (16)

which we already used in going from (12a) to the bottom line of (15). It is interesting—and a precursor
to solving the Yang–Mills Mass Gap problem [2] in Section 17—that this produces a correctly signed
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term +g2GσGσ in the configuration space operator of (15), because this is the form in which the
electroweak Lagrangian L = Dσ

∗φ ∗Dσφ = ∂σφ ∗ ∂σφ+ g2GσGσφ ∗φ reveals renormalizable gauge
boson masses following spontaneous symmetry breaking at the Fermi vacuum expectation value (vev).

From here the inverse calculation is straightforward: Via (15) we define a tensor Iαν by:

cµ0Iαν jν = Iαν
(
gµν

(
∂σDσ + m2

)
− ∂µDν

)
Gµ ≡ δµαGµ = Gα (17)

Because Iαν
(
gµν

(
∂σDσ + m2

)
− ∂µDν

)
≡ δµα, we see that Iαν is the left-side inverse of the

configuration space operator gµν
(
∂σDσ + m2

)
− ∂µDν. Further, because the inverse M−1 of any

N-dimensional square matrix M must commute with M, i.e., M−1M = MM−1 = Id where Id is
a like-dimensioned identity matrix, the full specification of this inverse for operation on either side is:

IανLEFT

(
gµν

(
∂σDσ + m2

)
− ∂µDν

)
=

(
gµν

(
∂σDσ + m2

)
− ∂µDν

)
IανRIGHT ≡ δ

µ
α (18)

with the further requirement that IανLEFT = IανRIGHT ≡ Iαν. Then, once we have an Iαν which satisfies
(18), we may insert (17) written as Gµ = cµ0Iµσ jσ into (12b) with suitable index renaming, and use
c2µ0ε0 = 1 where ε0 is the free space vacuum permittivity, to obtain:

icε0pαµν = g
(
∂α[Iµσ jσ, Iντ jτ] + ∂µ

[
Iντ jτ, Iαγ jγ

]
+ ∂ν

[
Iαγ jγ, Iµσ jσ

])
(19)

This is important for two reasons: First, the U(1) Maxwell Equations (1) are two distinct equations
because there are no magnetic monopoles. But in (19)—courtesy of the non-vanishing YM monopole
(12b) and the YM current sources (12a) with Proca mass in (15), the latter inverted using (17)—
the resulting YM monopole (19) combines both Yang–Mills Maxwell equations into a single equation.
Second, this YM monopole pαµν has now been populated with a triplet of YM source currents jσ, jτ,
jγ having three distinct indexes. So when expanded with jν = τi jiν, and with each source being related
to fermion wavefunctions courtesy of Dirac’s [12], the net result of (19), as we shall see, is that we have
populated the Yang–Mills monopole with a triplet of fermions. Via the exclusion principle following
symmetry breaking these will end up in the fundamental representation of an exact SU(3) group,
and thus have the same character as a quark color triplet. This is the route to discovering that these
YM monopoles possess all the Quantum Chromodynamics (QCD) properties of baryons.

6. Nonlinear Recursive Interactions Contained in the Inverse Yang–Mills Electric Equation

The next step is to explicitly calculate the inverse using (18), then insert this in (17) and (19).
This inverse calculation is carried out in detail in Appendix A. The result including the +iε prescription
is (A13). Before proceeding, however, let us establish notation conventions for representing the energy
momentum of a particle four-vector: Whenever the energy-momentum is that of a fermion we shall
use the notation pµ. For a massive vector boson we use kµ. And for a massless boson such as a photon
or gluon we use qµ. Accordingly, with c restored, because (A13) is for a massive vector boson, with a
parenthetical (Gα . . .) for highlighting reasons to be momentarily reviewed, and using the quoted
“denominator” from (A13), whereby we represent an inverse by M−1

≡ 1/′′M′′ with that inverse
placed at the spot denoted by a subscripted ∨, we shall write this result in (A13) as:

Iαν =
∨

(
−gαν +

kνkα+gkν(Gα...)/c
m2c2

)
′′kσkσ −m2c2 − g2(Gσ . . .)(Gσ . . .)/c2 + iε′′

(20)

Next, we use (20) in (17) to write:

Gα( jν, Gα) = cµ0Iαν jν = cµ0

∨

(
−gαν +

kνkα+gkν(Gα...)/c
m2c2

)
′′kσkσ −m2c2 − g2(Gσ . . .)(Gσ . . .)/c2 + iε′′

jν (21)



Symmetry 2020, 12, 1887 8 of 28

When we contract the above from the left with another jα to form the Lagrangian density term
jαGα, the result represents the propagator for a YM vector boson mediating between two source
currents, which interactions are routinely represented with Feynman diagrams.

Now, were it not for the Yang–Mills terms with (Gα . . .) parenthetically highlighted in the above,
we could say (21) inverts (16) to obtain Gα as a function Gα( jν) exclusively of jν. However, Gσ is in
(21), so that is not what (21) does. Rather, in (21) Gα( jν, Gα) is a recursive function of jν and of itself.
For example, at the first recursion we substitute Gα on the left into the (Gα . . .) to obtain:

Gα = cµ0
∨(−gαν +

kνkα+gkν

cµ0

∨

−gαβ+
kβkα+gkβ(Gα...)/c

m2c2


′′kσkσ−m2c2−g2(Gσ...)(Gσ...)/c2+iε′′

jβ

/c

m2c2 )

′′kσkσ −m2c2 − g2

cµ0
∨

(
−gστ+

kτkσ+gkτ(Gσ...)/c
m2c2

)
′′kσkσ−m2c2−g2(Gσ...)(Gσ...)/c2+iε′′ jτ


2

/c2 + iε′′

jν (22)

In the bottom denominator we use the shorthand GσGσ ≡ Gσ2. This type of substitution can
and must be done indefinitely, approaching an infinite number of substitutions, before we truly
have Gα( jν) and not Gα( jν, Gα). We may symbolically represent this infinite recursive series by
Gα( jν, Gα( jν, Gα( jν, Gα( jν, Gα(. . .))))), which we condense into the notation (Gα . . .) in (20) to (22).
Obviously, the Lagrangian term jαGα has a similarly recursive character.

Likewise, this recursion introduces an infinite number of occurrences of jν into (22), amplifying
the nonlinearity of interactions amongst the jν themselves. This should not be surprising, because it is
well-known Yang–Mills gauge theories are highly non-linear: Using (8), the Lagrangian density L =

−
1
4∂

[µGi
ν]∂[µGiν] −

1
2 g fi jk∂

[µGi
ν]G jµGkν −

1
4 g2 fi jk filmG j

µGk
νGlµGmν in which Gµ = τiG

µ
i and

[
τi, τ j

]
=

i fi jkτk, provides the basis for three- and four-gluon vertices. This is often used to illustrate the inherent
non-linearity of particle interactions in Yang–Mills gauge theory, versus linear behaviors in QED where
photons do not interact among themselves. So, the recursion in (22) is just another manifestation of
this Yang–Mills non-linearity.

7. Introducing the Inverse Yang–Mills Electric Source Equation into the Yang–Mills Magnetic
Monopoles, then Populating These Monopoles with Dirac Fermions

Next, we substitute the inverse (20) with renamed indexes as needed and recursion-highlighting
parentheses removed, into the monopoles (19), to obtain:

icε0pαµν = g



∂α

 ∨

(
−gµσ+ kσkµ+gkσGµ/c

m2c2

)
′′kσkσ−m2c2−g2GσGσ/c2+iε′′ jσ,

∨

(
−gντ+ kτkν+gkτGν/c

m2c2

)
′′kσkσ−m2c2−g2GσGσ/c2+iε′′ jτ


+∂µ

 ∨

(
−gντ+ kτkν+gkτGν/c

m2c2

)
′′kσkσ−m2c2−g2GσGσ/c2+iε′′ jτ,

∨

(
−gαγ+ kγkα+gkγGα/c

m2c2

)
′′kσkσ−m2c2−g2GσGσ/c2+iε′′ jγ


+∂ν

 ∨

(
−gαγ+ kγkα+gkγGα/c

m2c2

)
′′kσkσ−m2c2−g2GσGσ/c2+iε′′ jγ,

∨

(
−gµσ+ kσkµ+gkσGµ/c

m2c2

)
′′kσkσ−m2c2−g2GσGσ/c2+iε′′ jσ




(23)

This provides a complete, explicit description of the way in which the YM monopoles are populated
with the three source currents jσ, jτ, jγ, keeping in mind that every Gµ needs to be filled with an
unlimited-approaching-infinite number of recursions as in (22).
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When we further expand using jν = gψγνψ+κν obtained from the Yang–Mills continuity equation
as reviewed in (A17) of Appendix B, we can directly populate (23) with Dirac fermions, as such:

icε0pαµν =

g



∂α

 ∨

(
−gµσ+ kσkµ+gkσGµ/c

m2c2

)
′′kσkσ−m2c2−g2GσGσ/c2+iε′′

(
gψγσψ
+κσ

)
,

∨

(
−gντ+ kτkν+gkτGν/c

m2c2

)
′′kσkσ−m2c2−g2GσGσ/c2+iε′′

(
gψγτψ
+κτ

)
+∂µ

 ∨

(
−gντ+ kτkν+gkτGν/c

m2c2

)
′′kσkσ−m2c2−g2GσGσ/c2+iε′′

(
gψγτψ
+κτ

)
,

∨

(
−gαγ+ kγkα+gkγGα/c

m2c2

)
′′kσkσ−m2c2−g2GσGσ/c2+iε′′

(
gψγγψ
+κγ

)
+∂ν

 ∨

(
−gαγ+ kγkα+gkγGα/c

m2c2

)
′′kσkσ−m2c2−g2GσGσ/c2+iε′′

(
gψγγψ
+κγ

)
,

∨

(
−gµσ+ kσkµ+gkσGµ/c

m2c2

)
′′kσkσ−m2c2−g2GσGσ/c2+iε′′

(
gψγσψ
+κσ

)


(24)

Then, by an indefinite-number-approaching-infinity of recursions as reviewed at (21) and (22),
the fermion and boson interactions inside these monopoles are seen to be highly nonlinear to infinite
order. The final step is to show that (24) indeed represents the QCD properties of a baryon with three
quarks and highly nonlinear gluon interactions among these quarks.

8. The Yang–Mills “Signal” Magnetic Monopole, without Perturbative “Noise”

It is well established that protons and neutrons, which are the two most important baryons insofar
as they form the nuclei of the observed material universe, are teeming with non-linear interactions.
For example, 2019 Particle Data Group (PDG) data [13] informs us that the free proton and neutron
rest masses are Mp = 938.272081 ± 0.000006 MeV and Mn = 939.565413 ± 0.000006 MeV, but that
the up and down current quark masses in an MS renormalization scheme at a scale µ ≈ 2 GeV are
mu = 2.16+0.49

−0.26 MeV and md = 4.67+0.48
−0.17 MeV, all respectively. With quark content p(duu) and n(udd),

these “current quark” masses contribute about 1% to the overall rest energies of these baryons, with the
other 99% arising from nonlinear gluon-mediated interactions among these quarks and from internal
kinetic energies. These are distinguished from “constituent quark” masses which stem from attributing
about a third of the total rest energy of a nucleon (≈313 GeV) arising from their quark and gluon
energies, to each quark. So, for a baryon, we may similarly coin “current baryon” to refer to the bare
quark structure of the baryon with all nonlinearity stripped away, and “constituent baryon” to refer to
the baryon including all its nonlinear behaviors. Here, going forward, we shall borrow the electrical
engineering terms “signal” and “noise,” and use the term “signal baryon” to refer to a baryon with
all non-linear behaviors stripped away (the “current baryon”), and use “signal-plus-noise baryon”
to refer to the entire observed baryon with all of its nonlinearity (the “constituent baryon”). Using this
language, with each Gµ in (24) treated recursively in the manner of (22), what we have in (24) is clearly
a “signal-plus-noise” monopole density. To explore the underlying QCD behaviors of these monopoles,
we now shall study just the “signal” monopole density with all “noise” (which comprises about 99%
of the observed rest energy of the proton and neutron and a large share of the rest energy of other
baryons as well), removed.

It is fair to say that Yang–Mills gauge theory is a theory of perturbations added to Maxwell’s
linear electrodynamics in Section 2. For example, in the opening paragraph of Section 4 we find
this in V = ig(Gσ∂σ + ∂σGσ) + g2GσGσ = ∂σ∂σ −DσDσ arising from the second-order structure of the
Klein–Gordon equation, and in VD = gγ0γσGσ arising from the first-order Dirac equation. This is the
“noise” of Yang–Mills theory. This is what Jaffe and Witten in [2] refer to as “excitations of the vacuum.”
If we wish to study just the “signal” without “excitations,” the way to do so is to set the perturbations
to zero and see what is left. So we do just that: Working from (23), the sources jµ can be related to
Dirac fermions via jµ = gψγµψ+ κµ obtained in (A17). Then we set VD = 0 which likewise means
we have set Gσ(t, x) = 0, thus Vνσ = 0. This removes from (23), all recursive non-linearity reviewed
at (22), and it turns “denominators” into regular denominators without quotes. Still remaining are
objects of the form kσ jσ. However, as seen following (A17), when Vνσ = 0 the continuity equation
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is pν jν = 0 which in notation reviewed at the start of Section 6 means that kσ jσ = 0. So, all terms of
this form as well as kσkµ jσ/m2c2 = 0 can be removed from (23). At this point all that remains are six
numerator terms for which indexes can be raised via −gµσ jσ = − jµ, and signs cancelled. We finally
segregate commutators in the numerator, so the pure “signal monopole” density inside the “noisy”
(23) simply becomes:

icε0pσµν = g
∂σ[ jµ, jν] + ∂µ[ jν, jσ] + ∂ν[ jσ, jµ]

(kτkτ −m2c2 + iε)2 (25)

It is helpful to contrast (25) with (12b) from which it originated: All that has changed is that
the gauge boson commutators [Gµ, Gν] have been replaced by the electric source commutators [ jµ, jν],
with the newly appearing denominators reflecting the inversion of Maxwell’s Yang–Mills electric
Equation (15) with mass m into Gα( jν) for the non-recursive signal monopole. Because the monopole
is itself an N×N matrix for SU(N), with generators each normalized to tr

(
τi

2
)
= 1

2 we may additionally

use the relation tr(AB) = tr
(
τiτ jAiB j

)
= 1

2 AiBi for A = τiAi and B = τiBi, thus tr[ jµ, jν] = 1
2 [ ji

µ, jiν],
to take the trace of both sides of (25), with the result that:

icε0tr pσµν =
1
2

g
∂σ[ jiµ, jiν] + ∂µ[ jiν, jiσ] + ∂ν[ jiσ, jiµ]

(kτkτ −m2c2 + iε)2 (26)

9. Populating the Yang–Mills “Signal” Magnetic Monopole with Dirac Fermions: Two Alternatives,
Each of Which Shows That the Signal Monopole Contains Exactly Three Fermions

The next step is to populate the “signal” monopole trace (26) with Dirac fermions, similarly to
what we did going from (23) to (24). The general relation jν = gψγνψ+ κν between each jν and its
fermion wavefunctions ψ is (A17). However, since (25) is a signal monopole in which we have set
Vνσ = 0 thus κν = 0, (A17) becomes jν = gψγνψ. Because jν is an N×N matrix, the expansion of this
is jν = τi jiν = gτiψτiγ

νψ with jiν = gψτiγ
νψ. For SU(N) these ψ are Nx4 column vectors, with N

arising from the Yang–Mills and 4 from the Dirac structure of each fermion. Because these sit in the
fundamental representation of SU(N) we need to have N distinct SU(N) state labels for each ψ and
adjoint ψ. There are two logical possibilities:

First, because jiµ = gψτiγ
µψ, for example, has a µ index, we may assign the label µ to this fermion

and its adjoint and write jiµ = gψ(µ)τiγ
µψ(µ). Likewise for jiν and jiσ. We may also label m(µ) and ε(µ)

and kµkµ (the last with indexes doubling as labels) in the denominator, ditto for ν and σ. Doing this,
and expanding commutators in (26), we obtain:

icε0tr pσµν =
1
2

g3


∂σ

ψ(µ)τiγ
µψ(µ)ψ(ν)τiγ

νψ(ν)−ψ(ν)τiγ
νψ(ν)ψ(µ)τiγ

µψ(µ)

(kµkµ−m(µ)
2c2+iε(µ))(kνkν−m(ν)

2c2+iε(ν))

+∂µ
ψ(ν)τiγ

νψ(ν)ψ(σ)τiγ
σψ(σ)−ψ(σ)τiγ

σψ(σ)ψ(ν)τiγ
νψ(ν)

(kνkν−m(ν)
2c2+iε(ν))(kσkσ−m(σ)

2c2+iε(σ))

+∂ν
ψ(σ)τiγ

σψ(σ)ψ(µ)τiγ
µψ(µ)−ψ(µ)τiγ

µψ(µ)ψ(σ)τiγ
σψ(σ)

(kσkσ−m(σ)
2c2+iε(σ))(kµkµ−m(µ)

2c2+iε(µ))


(27)

These fermions as well as objects in the denominators are now labelled with the index of the
jiµ, jiν or jiσ which contained them when we inserted fermions via source currents at (24), prior to
removing the “noise.”

Second, alternatively, although the fermions were introduced into the signal-plus-noise monopole
at (24), once introduced, they have become part and parcel of a monopole system merging both
Yang–Mills–Maxwell dynamic Equations (12), with (12a) given mass at (15) then inverted at (21).
So, once this monopole system is established, we can change the labeling in (27) so each fermion and
related denominator objects are labelled, not by the index of the source which brought them into the
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monopole, but the index of the partial derivative acting on the fermion once it is in the monopole
system, thus rendering the system indivisible. In this alternative (26) becomes:

icε0tr pσµν =
1
2

g3



∂σ
ψ(σ)τiγ

µψ(σ)ψ(σ)τiγ
νψ(σ)−ψ(σ)τiγ

νψ(σ)ψ(σ)τiγ
µψ(σ)

(kσkσ−m(σ)
2c2+iε(σ))

2

+∂µ
ψ(µ)τiγ

νψ(µ)ψ(µ)τiγ
σψ(µ)−ψ(µ)τiγ

σψ(µ)ψ(µ)τiγ
νψ(µ)

(kµkµ−m(µ)
2c2+iε(µ))

2

+∂ν
ψ(ν)τiγ

σψ(ν)ψ(ν)τiγ
µψ(ν)−ψ(ν)τiγ

µψ(ν)ψ(ν)τiγ
σψ(ν)

(kνkν−m(ν)
2c2+iε(ν))

2


(28)

As we shall see, (27) and (28) are related through a form of symmetry breaking analogous in some
ways to what is used in electroweak theory, which will become identified with hadronization.

Most important—in both (27) and (28)—is that this signal baryon is now seen to contain exactly
three fermions ψ(σ), ψ(µ), ψ(ν) which arise from the rank 3 antisymmetric tensor which is the monopole
cµ0pσµν = ∂σFµν + ∂µFνσ + ∂νFσµ of (12b) and its three additive terms. This “three-ness” is structurally
fundamental to the covariant representation of Maxwell’s magnetic equations whether in U(1) Maxwell
or in SU(N) Yang–Mills gauge theory. Consequently, the non-perturbative signal monopoles (27),
(28) each describe a system—and (28) an indivisible system—built upon three distinct fermions.
Just like a baryon.

10. Using the Gauge Group SU(3) to Establish Three Distinct Quantum States for the Three Fermions
Populating a Yang–Mills Magnetic Monopole

The Fermi–Dirac–Pauli Exclusion Principle mandates that the fermions contained in any system
of more than one fermion, e.g., an atom, nucleus, nucleon or baryon, must be distinguishable from all
other fermions in that system by assignment of an exclusive quantum state. Accordingly, each of the
fermions in (27) and (28)—being part of the monopole system—must have an exclusive quantum state.
Because both (27) and (28) contain three fermions, the YM SU(N) gauge group used to provide this
exclusion must have N ≥ 3, so it cannot be SU(2). On the other hand, because there are exactly three
fermions in both (27) and (28), there is no need for N > 3. Accordingly, we now use the group SU(3)
to enforce Exclusion on the three fermions ψ(σ), ψ(µ), ψ(ν) in these alternative signal monopole systems
(27) and (28). (We note without further detail here, that for these monopoles to be topologically stable,
we must eventually employ SU(3) ×U(1) following spontaneous symmetry breaking from a larger
group, see Cheng and Li [14] at 472–473 and Weinberg [15] at 442. This U(1) generator provides the
foundation for introducing hadron flavor, which is the next developmental step following the results
in this article regarding hadron color.)

So, for what has heretofore been τi, we now use the 3 × 3 SU(3) Gell-Mann generators via τi =
1
2λi

with i = 1...8, normalized to tr(τi)
2 = 1

2 . We use diag(τ8) =
1

2
√

3
(2,−1,−1), so that the i = 1, 2, 3 SU(2)

subset is embedded in the lower-right portion of τi. We may of course choose any labels we wish for
these three exclusive states, so we may as well call these Red, Green and Blue, then see whether and
how these can be made synonymous with the colored quark states of Quantum Chromodynamics
(QCD). With T denoting the transpose, we place these in the fundamental SU(3) representation with
the explicit column vectors and consequent adjoints:

ψ(σ) ≡

∣∣∣∣τ8 = + 1
2

2
√

3
; τ3 = 0

〉
=

(
ψR 0 0

)T
; ψ(σ) =

(
ψR 0 0

)
ψ(µ) ≡

∣∣∣∣τ8 = − 1
2
√

3
; τ3 = + 1

2

〉
=

(
0 ψG 0

)T
; ψ(µ) =

(
0 ψG 0

)
ψ(ν) ≡

∣∣∣∣τ8 = − 1
2
√

3
; τ3 = − 1

2

〉
=

(
0 0 ψB

)T
; ψ(ν) =

(
0 0 ψB

) (29)
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Each of these ψ is now a 3 × 4 column vector (ket) and each ψ a 3 × 4 row vector (bra), with the 3 owing
to the YM SU(3) internal symmetry and the 4 owing to the four-components of Dirac wavefunctions
and spinors. From here we will use (29) in (27), then in (28).

It is profoundly important that the Exclusion Principle taken together with the aforementioned
“three-ness” of magnetic monopoles, combine to put exactly three fermions into the signal monopole
for SU(N), and so lead directly to SU(N = 3) as the symmetry group required to establish three
exclusive fermion states. Normally, SU(3) with R, G, B states is the starting point upon which QCD is
founded. Here, in contrast, we can be entirely agnostic a priori about the N in SU(N), until we find
that the inherent structure of a Yang–Mills signal magnetic monopole requires that fermions inside the
monopole be placed into the fundamental representation of SU(3). This raises the prospect that QCD
has its dynamic physical origins in the non-vanishing magnetic monopoles of Yang–Mills gauge theory.
But again, for now, R, G and B are just labels: SU(3)QCD is an exact symmetry because gluons in its
adjoint representation are massless. However, for example, early theories of baryon flavor similarly
placed (u, d, s) into the fundamental representation of SU(3) with an approximate flavor symmetry
which is distinct from the exact color symmetry of SU(3)QCD. So, we must establish that this SU(3)
group arising from the monopoles is truly synonymous with the exact SU(3) group of QCD, and not
some independent SU(3).

11. The Yang–Mills Signal Magnetic Monopole Prior to Symmetry Breaking

Proceeding, we observe that at the center of each numerator in (27) are terms in which a
wavefunction is immediately to the left of a differently labelled adjoint e.g., ψ(µ)ψ(ν), while in (28)

we see the same-labelled e.g., ψ(σ)ψ(σ). In U(1) gauge theory these are 4 × 4 Dirac matrices, and in
view of (29) these are 3 × 3 Yang–Mills matrices of 4 × 4 Dirac matrices. Specifically, focusing on
the ψ(µ)ψ(ν), etc. “backbone” centering each numerator in (27), and carrying through antisymmetric
signage between any pair of σ,µ, ν indexes, we first observe using (29) that:

ψ(µ)ψ(ν) −ψ(ν)ψ(µ)+ψ(ν)ψ(σ) −ψ(σ)ψ(ν)+ψ(σ)ψ(µ) −ψ(µ)ψ(σ) =


0 ψRψG −ψRψB

−ψGψR 0 ψGψB
ψBψR −ψBψG 0

 (30)

Then, we use (27) to flesh out the above, obtaining:

2icε0tr pσµν/g3 =

0
∂ν

(
ψ(σ)τiγ

σψRψGτiγ
µψ(µ)

)
(kσ,µkσ,µ−m(σ,µ)

2c2+iε(σ,µ))
2

−∂µ
(
ψ(σ)τiγ

σψRψBτiγ
νψ(ν)

)
(k{ν,σ}k{ν,σ}−m(ν,σ)

2c2+iε(ν,σ))
2

−∂ν
(
ψ(µ)τiγ

µψGψRτiγ
σψ(σ)

)
(kσ,µkσ,µ−m(σ,µ)

2c2+iε(σ,µ))
2 0

∂σ
(
ψ(µ)τiγ

µψGψBτiγ
νψ(ν)

)
(k{µ,ν}kµ−m(µ,ν)

2c2+iε(µ,ν))
2

∂µ
(
ψ(ν)τiγ

νψBψRτiγ
σψ(σ)

)
(k{ν,σ}k{ν,σ}−m(ν,σ)

2c2+iε(ν,σ))
2

−∂σ
(
ψ(ν)τiγ

νψBψGτiγ
µψ(µ)

)
(k{µ,ν}kµ−m{µ,ν}

2c2+iε{µ,ν})
2 0


(31)

where
(
kµkµ −m(µ)

2c2 + iε(µ)
)(

kνkν −m(ν)
2c2 + iε(ν)

)
≡

(
k{µ,ν}kµ −m(µ,ν)

2c2 + iε(µ,ν)

)2
, etc. is defined as

a shorthand for the denominators simply to save space. Taking a second trace of the 3 × 3 matrix in
(31), we see clearly that tr tr pσµν = 0.

If we look at any of the six off-diagonal entries in (31), for example, the term
with a ∂σ

(
ψ(µ)τiγ

µψGψBτiγ
νψ(ν)

)
numerator and a

(
kµkµ −m(µ)

2c2 + iε(µ)
)(

kνkν −m(ν)
2c2 + iε(ν)

)
denominator (second row, third column) while referring to (29), we see something of a mismatch,
with two colors of fermion in the numerator and two massive vector boson propagators in the
denominator. Fermions, of course, contain four degrees of freedom (spin up and down, particle
and antiparticle), while massive vector bosons contain three degrees of freedom (two transverse,
one longitudinal). So with both ψ(µ) and ψ(ν), in this numerator there are two colors of fermion
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totaling eight degrees of freedom, while with both kµkµ −m(µ)
2c2 + iε(µ) and kνkν −m(ν)

2c2 + iε(ν) in
the denominator there are two massive vector boson propagator denominators representing a total of
six degrees of freedom.

Moreover, SU(3)QCD requires massless gluons, whereas the denominators in (31) are all for
massive vector bosons. So this looks like an approximate SU(3) flavor-type rather than an exact
SU(3) color symmetry. Moreover, (31) has vanishing trace. Furthermore, knowing that all particle
propagators have the general form iΣspins/

(
p2
−m2 + iε

)
with spin sum Σspins being the completeness

relation, we see that ψGψB at the center of this numerator looks like a spin sum Σsuu = p + m, but is
not. This is because ψG and ψB in ψGψB are not the same fermion but are two differently-colored
fermions. This final point indicates the way forward, because if we can turn ψG and ψB in ψGψB into
the same fermion, we can use this as a fermion spin sum. Then, having a spin sum in the numerator
and two massive boson propagators in the denominator, we can shuttle a degree of freedom from a
boson to a fermion to simultaneously produce a fermion propagator and a massless boson propagator.
This entails a form of spontaneous symmetry breaking which starts with (27) then breaks symmetry
using (28), because the backbone of (28) does have the requisite same-fermion terms ψ(σ)ψ(σ), ψ(µ)ψ(µ)

and ψ(ν)ψ(ν) needed to use the completeness relation.

12. Spontaneously Breaking Symmetry inside the Yang–Mills Signal Magnetic Monopole

Keeping the fermion state definitions (29) exactly as is, we now examine the “backbone” of
(28) formed by the three terms ψ(σ)ψ(σ), ψ(µ)ψ(µ) and ψ(ν)ψ(ν). Each wavefunction ψ(xµ, pµ) =

u(pµ) exp(−ipσxσ) has adjoint ψ = u exp(ipσxσ), and because these are back-to-back with no γα

between them, their pσ are the same. Here, however, unlike with (30), because these are same-labelled
with the same pσ, we may not only write ψψ = uu, but given that Σsuu = p + m for the spin sum
over fermion particle states, we may use uu as the basis for a spin sum which can lead to a fermion
propagator. So, if we additionally take the sum Σs over particle spins, what we find in contrast to (30)
is the now-diagonalized backbone:

Σs
(
ψ(σ)ψ(σ) +ψ(µ)ψ(µ) +ψ(ν)ψ(ν)

)
= Σs


ψRψR 0 0

0 ψGψG 0
0 0 ψBψB

 = Σs


uRuR 0 0

0 uGuG 0
0 0 uBuB

 =


pR + mR 0 0
0 pG + mG 0
0 0 pB + mB

 (32)

Next, we use (32) to flesh out (28), as we did with (30) for (27) to obtain (31). In doing so, we take
the spin sums over all of the fermions inside of (28), which implies taking Σspσµν over the entire signal
monopole system as well. Consequently, with this spin sum included and c = 1:

2icε0tr Σspσµν/g3 =

∂σ
ψ(σ)τiγ

[µ(pR+mR)τiγ
ν]ψ(σ)

(kσkσ−m(σ)
2+iε(σ))

2 0 0

0 ∂µ
ψ(µ)τiγ

[ν(pG+mG)τiγ
σ]ψ(µ)

(kµkµ−m(µ)
2+iε(µ))

2 0

0 0 ∂ν
ψ(ν)τiγ

[σ(pB+mB)τiγ
µ]ψ(ν)

(kνkν−m(ν)
2+iε(ν))

2


(33)

This is the diagonalized counterpart of (31). Because of this, we may take another trace which,
in contrast to tr tr(pσµν) = 0 in (31), is non-vanishing, namely:

2icε0tr tr Σspσµν/g3 =(
∂σ

ψ(σ)τiγ
[µ(pR+mR)τiγ

ν]ψ(σ)

(kσkσ−m(σ)
2+iε(σ))

2 + ∂µ
ψ(µ)τiγ

[ν(pG+mG)τiγ
σ]ψ(µ)

(kµkµ−m(µ)
2+iε(µ))

2 + ∂ν
ψ(ν)τiγ

[σ(pB+mB)τiγ
µ]ψ(ν)

(kνkν−m(ν)
2+iε(ν))

2

)
(34)
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Next, we focus on the Yang–Mills aspect of the numerators irrespective of Dirac matrices, which we
can do because γµ and τi with [γµ, τi] = 0 are independent operators acting on independent parts
of each Nx4 bra or ket in (29). We find the three structural combinations ψ(σ)τiτiψ(σ), ψ(µ)τiτiψ(µ)

and ψ(ν)τiτiψ(ν). So we use τi =
1
2λi to calculate eight column vectors τiψ(σ), eight τiψ(µ), and eight

τiψ(ν). The adjoint ψ(σ)τi, ψ(µ)τi and ψ(ν)τi are the Hermitian conjugates of these. The net result, easily

confirmed, is: (For SU(N) in general, the factor f = 4/3 shown for SU(3) in (35) below, is equal to 1
2

times the number of states in the adjoint representation over the number of states in the fundamental
representation, that is f = 1

2

(
N2
− 1

)
/N. This is also equal to the magnitude of the principal Casimir

operator for any SU(N), that is, f Id = τ2 = Σiτi
2.)

ψ(σ)τiτiψ(σ) =
4
3
ψRψR; ψ(µ)τiτiψ(µ) =

4
3
ψGψG; ψ(ν)τiτiψ(ν) =

4
3
ψBψB (35)

We then use (35) in (34) and multiply through by i to obtain:

−cε0tr tr Σspσµν =

i 2
3 g3

(
∂σ

ψRγ
[µ(pR+mR)γ

ν]ψR

(kσkσ−m(σ)
2+iε(σ))

2 + ∂µ
ψGγ

[ν(pG+mG)γ
σ]ψG

(kµkµ−m(µ)
2+iε(µ))

2 + ∂ν
ψBγ

[σ(pB+mB)γ
µ]ψB

(kνkν−m(ν)
2+iε(ν))

2

)
(36)

Above, the mismatch between numerators containing fermions and denominators with
massive vector boson propagators becomes crystalized. However, so too does the solution: In the
numerators we have spin sums p + m for fermions, mismatched in the denominators with a pair(
k2
−m2 + iε

)(
k2
−m2 + iε

)
of massive vector boson propagators. Indeed, the reason we carefully

respectively established the energy-momentum notation conventions pµ, kµ and qµ for fermions,
massive vector bosons and massless vector bosons at the start of Section 6, was so when we arrived at
(36) this mismatch would be clear.

Now, with the i, let us work with the (36) term operated upon. e.g., by ∂σ, ditto for the
others. In the denominator we revert to indexes/labels showing the currents jµ and jν which
were initially associated with these fermions in (26), which appear in the denominator of (27).
This

(
kµkµ −m(µ)

2 + iε(µ)
)(

kνkν −m(ν)
2 + iε(ν)

)
represents a total of six degrees of freedom, three for

each of two massive vector bosons. Although the massive bosons were introduced by hand at
(15), it is well-known how to give a renormalizable mass to these via L = ∂σφ ∗ ∂σφ+ g2GσGσφ ∗ φ
using the Higgs mechanism. We then break symmetry by releasing one degree of freedom from the
kµkµ −m(µ)

2 + iε(µ) denominator and shuttling this over to be swallowed by the kνkν −m(ν)
2 + iε(ν)

denominator, or vice versa—it does not matter. Doing so, we demote kµ 7→ qµ into a massless vector
boson such as a QCD gluon while consequently setting m(µ) = 0. Simultaneously, we promote kν 7→ pν

to the energy momentum of the fermion and m(ν) 7→ mR and ε(ν) 7→ εR to the mass and ε of the R
fermion. Finally, we rename denominator indexes back to those for ∂σ in (36). We summarize this
symmetry breaking as follows:

i
ψRγ

[µ(pR + mR)γν]ψR(
kµkµ −m(µ)

2 + iε(µ)
)(

kνkν −m(ν)
2 + iε(ν)

) →
break symmetry

1
qσqσ + iε(σ)

ψRγ
[µi(pR + mR)γν]ψR

pRσpRσ −mR2 + iεR
(37)

Above, the original 3 + 3 = 6 degrees of freedom in the denominator are maintained,
but redistributed to 2 + 4 = 6 degrees of freedom, two for the now-massless vector boson labelled
with σ, and four for the red fermion. Doing the same and accounting for all three additive terms
in (36) which now contain the three R, G, B fermion states, we multiply by 3 so that 9 + 9 = 18
degrees of freedom at the outset in six massive vector boson propagators have become redistributed
as 6 + 12 = 18 into three massless vector boson and three massive fermion propagators. If we suppose
that the massive vector bosons on the left of (37) originally come from a scalar field via the Higgs
mechanism, then (37) is a later step in a “cascade” wherein a degree of freedom is first passed from a
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scalar to a massless vector boson to make the latter massive, then is passed from the vector boson to a
fermion whereby the vector boson reverts to being massless. Mindful that (p + m)(p−m) = pσpσ −m2,
the upshot is that we now have a fermion propagator with the +iε prescription sitting in the middle of
(37).

Finally, replicating (37) with necessary reindexing and relabeling twice over then inserting into
(36) we obtain:

− cε0tr tr Σspσµν =
2
3

g3


1

qσqσ+iε(σ)
∂σ

ψRγ
[µi(pR+mR)γ

ν]ψR
pRσpRσ−mR2+iεR

+ 1
qµqµ+iε(µ)

∂µ
ψGγ

[νi(pG+mG)γ
σ]ψG

pGµpG
µ−mG

2+iεG

+ 1
qνqν+iε(ν)

∂ν
ψBγ

[σi(pB+mB)γ
µ]ψB

pBνpBν−mB2+iεB

 (38)

This is now the Yang–Mills magnetic monopole with symmetry broken in two stages:
First, by taking (27) where each fermion is inserted into the monopole via a current jσ, jµ or jν and
turning it into (28) whereby the fermions now form part of an indivisible monopole system, no longer
distinguishing fermions based on the index of their initial current. In this stage, (31) is diagonalized
and turned into (33). Second, by using (37) to transfer longitudinal vector boson degrees of freedom
over to fermions thus rendering the remaining vector bosons massless and revealing complete fermion
propagators. Now, with the vector bosons being massless, the SU(3) symmetry introduced at (29)
becomes an exact symmetry like that of SU(3)QCD, rather than the approximate symmetry of SU(3)
flavor, bringing us closer to these R, G, B being true QCD states.

13. Incorporating the Massless Vector Boson Propagators into the Fermion Normalizations

We can further simplify (38) by suitable normalization of the three fermion spinors.
Often, a covariant normalization with an energy-dimensioned N2 = E + mc2 is employed for this.
If we write this with c = 1 as 1 = NR,G,B

2/(E + m)R,G,B and place this with the corresponding label

in front of each of the three terms in (38), we end up with NR
2/(E + m)R

(
qαqα + iε(α)

)
in the top

line, ditto for the others. Then, because the YM monopole is an indivisible system, we may now
choose N′R2/(E + m)R

(
qαqα + iε(α)

)
≡ 1 as a modified normalization in which N′R2 scales with the

qαqα + iε(α) of a massless vector boson within the overall system. Doing this, (38) simplifies to:

−cε0tr tr Σspσµν =
2
3 g3

(
∂σ

ψRγ
[µi(pR+mR)γ

ν]ψR
pRσpRσ−mR2+iεR

+ ∂µ
ψGγ

[νi(pG+mG)γ
σ]ψG

pGµpG
µ−mG

2+iεG
+ ∂ν

ψBγ
[σi(pB+mB)γ

µ]ψB
pBνpBν−mB2+iεB

) (39)

This becomes our final expression for the signal (non-perturbative) Yang–Mills magnetic monopole,
which clearly embeds a propagator for each of its three fermions. Now we are ready to show why these
monopoles have the same color and confinement properties as baryons, with interactions mediated by
entities which have the same color properties as mesons.

14. Yang–Mills Magnetic Monopoles Have the Color-Neutral Singlet Wavefunction of Baryons,
and Interact via Objects with the Color-Neutral Singlet Wavefunction of Mesons

We know that the RGB SU(3) symmetry in the monopole (39) is exact, because the vector bosons
were made massless at (37). We know that in its unperturbed signal state, this monopole contains
exactly three fermions. We know too, that this monopole pσµν is a third rank antisymmetric tensor.
However, a key step in going from (27) to (28) in the first symmetry breaking stage, was to assign each
fermion, not to the current which caried it into the monopole, but to the index of the partial derivative
commonly operating on those fermions once they were already inside the monopole. This led to the
associations σ ∼ R, µ ∼ G and ν ∼ B, as very clearly seen in (39).
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So, writing out the antisymmetry of the monopole indexes and relating these to their color
associations once the fermions are all inside the monopole, the wavefunction symmetry of the
now-indivisible monopole system may be schematically represented by:

pσµν ∼ σµν− σνµ+ µνσ− µσν+ νσµ− νµσ ∼ RGB−RBG + GBR−GRB + BRG− BGR (40)

This is precisely the antisymmetric color-neutral singlet wavefunction of a baryon, see eq. [2.70]
of [16]. Indeed, one can argue that the antisymmetric indexes in pσµν should have been a tip-off that
YM magnetic monopoles would make good baryons. Though individual fermions and vector bosons
inside the monopole carry color charges, the entire monopole system is a color singlet.

Next, we return to the differential forms relation cµ0
t

p = −igG2 , 0 of (14b) and again ask as
we did at the end of Section 4: what are these G2 = 1

2

[
Gµ, Gν

]
dxµdxµ entities which do net flow across a

YM magnetic monopole surface? Lowering all free indexes in (39), then using p = 1
3! pσµνdxσdxµdxν

to obtain the monopole 3-form, and using the antisymmetry among each infinitesimal element in
dxσdxµdxν along with index renaming as needed, and also using c2ε0µ0 = 1 while reconnecting this to
(13b), we obtain:

−cε0tr tr Σsp = icε0
1
3! tr tr Σspσµνdxσdxµdxν = c2ε0

2d tr tr ΣsgG2

∂σ

{
2
9

1
2 g3

(
ψRγ[µi(pR+mR)γν]ψR

pRσpRσ−mR2+iεR
+

ψGγ[µi(pG+mG)γν]ψG

pGµpG
µ−mG

2+iεG
+

ψBγ[µi(pB+mB)γν]ψB

pBνpBν−mB2+iεB

)
dxµdxν

}
dxσ

(41)

We then take the triple integral of all sides and apply (6) via
∫

M dp =
∫
∂M p, to find:

−cε0
t

tr tr Σs p = ic2ε0
2t d

{
tr tr ΣsgG2

}
= ic2ε0

2tr tr Σs gG2

= 2
9 g3 1

2

(
ψRγ[µi(pR+mR)γν]ψR

pRσpRσ−mR2+iεR
+

ψGγ[µi(pG+mG)γν]ψG

pGµpG
µ−mG

2+iεG
+

ψBγ[µi(pB+mB)γν]ψB

pBνpBν−mB2+iεB

)
dxµdxν

(42)

Above, the Gaussian integration has removed the ∂σ operator from (41). Extracting the integrands
from the surface integrals in (42) and using (9) written as −(F− dG) = igG2, then using G2 =
1
2

[
Gµ, Gν

]
dxµdxµ, restoring all spacetime indexes and removing dxµdxν, we find:

−c2ε0
2tr tr Σs

(
Fµν − ∂µGν + ∂νGµ

)
= ic2ε0

2 tr tr Σs g
[
Gµ, Gν

]
= 2

9 g3
(
ψRγ[µi(pR+mR)γν]ψR

pRσpRσ−mR2+iεR
+

ψGγ[µi(pG+mG)γν]ψG

pGµpG
µ−mG

2+iεG
+

ψBγ[µi(pB+mB)γν]ψB

pBνpBν−mB2+iεB

)
(43)

By inspection, (42) and (43) have the respective schematic color wavefunctions:

y
p ∼

{
G2
∼

({
RR + GG + BB

)
, 0; G2 =

1
2

[
Gµ, Gν

]
dxµdxµ ∼ RR + GG + BB (44)

This is precisely the required symmetric color-neutral singlet wavefunction for a meson. So in
contrast to the U(1) magnetic monopoles of Maxwell for which there is no net magnetic field flux across
any closed surface, there is a net flux of “chromo-magnetic” fields across the surface surrounding
a Yang–Mills magnetic monopole, namely the G2 first identified at (14b). However, as seen in (44),
these G2 objects are color-neutral, so there is still no flow of net color charge across any closed surface
surrounding or within the monopole. We now see these have the required color-neutral wavefunction
of mesons known to mediate baryon interactions.

Accordingly, we conclude that Yang–Mills magnetic monopoles have the antisymmetric
color-neutral singlet wavefunction of baryons, and objects which net flow across their closed surfaces
have the symmetric color-neutral singlet wavefunction of mesons. Together, these are the hadrons.
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15. Act of Confinement: Dynamical Hadronization from Maxwell’s Yang–Mills Equations

In his review of the MIT bag model in Section 18 of [6], Close reviews Gauss’s theorem for electric
charge—contained in cµ0

t
∗ j =

v
∗F from (7a)—then “consider[s] the chromodynamics case which is

analogous to” Gauss’s theorem. He states: “if the demand that no quark current crosses the boundary
is supplemented by the demand that colour gluons are also confined then Gauss’s theorem implies
that the system have zero colour charge.” He continues that in the bag model, “the introduction of a
pressure B that counterbalances the flow of colour flux automatically requires the system to be colour
neutral. If colour symmetry is exact then the system must be a colour singlet.” This is precisely true
of (39): its color symmetry is exact because the symmetry breaking in (37) made its gauge bosons
massless, and it is a color singlet.

Close then makes the critical points, emphasis added, that “quark confinement arises as a result of
colour confinement,” and that the bag model “imposition ad hoc of a boundary condition that confines
the coloured gluons has, by Gauss, confined the coloured quarks.” Importantly, he concludes that
“a dynamical origin for this boundary condition has not been presented” by the bag model. Or it appears,
by any other theory to date.

Here, (43) and (44) demonstrate “by Gauss” that the objects which net flow across the monopole
surface are color-neutral. This means, conversely, that objects which are not color neutral, i.e., which do
have a color charge, do not net flow across the surface but are confined. (Because the confined objects are
those with non-neutral net color, there is nothing in this result which prevents the electroweak photon,
W± and Z from flowing across the monopole surface, because these are color-neutral.) Inside these
signal monopoles, each of the three fermions has a net color charge in the fundamental representation
of an SU(3) gauge group which is exact because its vector bosons are massless, and each of these
massless vector bosons has a net bi-colored charge in the adjoint representation of SU(3). We therefore
conclude that these fermions and massless gauge bosons are confined. Consequently, we further
conclude that: the fermions in (39) are quarks; the now-massless gauge bosons are gluons; the signal
monopole (39) is a baryon in a non-perturbative state with all “noise” filtered out; and the G2 object
(43) which net flows across the monopole-now-baryon surface is a meson.

Crucially, this is not an ad hoc result. It has a “dynamical origin” in the very fundamental physics
of Maxwell’s equations extended to the non-commuting gauge fields of Yang and Mills, coupled with
Dirac’s quantum theory of fermions [12] and the requirement that each fermion in a system such as
an atom or a nucleus or a nucleon or a baryon must occupy an exclusive quantum state. There is
nothing new or unsettled in any of the individual elements which are combined to reach this dynamical
result. What is new is simply understanding how these all combine together to produce the hadronic
phenomenology of QCD, and how the rank-3 antisymmetric structure of a magnetic monopole is
dynamically responsible for SU(3)—not SU(2) or SU(4) or anything else—being the gauge group
underlying hadronic physics. So, we do not need to postulate SU(3)QCD as has been done ever since
Gell-Mann [17] and Zweig [18] first discovered the quark model. The Yang–Mills magnetic monopoles
dynamically make that postulate for us, all by themselves.

In cosmology, it is widely believed that hadronization occurred shortly after the Big Bang when
the quark-gluon plasma cooled to the temperature below which free quarks and gluons cannot exist.
In view of all the above, we can now identify the symmetry breaking of Section 12 with hadronization of a
free quark and gluon plasma believed to exist only at ultra-high GUT energies above ~1015 GeV, not far
below the Planck scale EP =

√
hc5/G ≈ 1.220× 1019 GeV. Specifically, the signal monopole obtained

in (31) prior to symmetry breaking has tr tr pσµν = 0 and is associated with energies above 1015 GeV
where quarks are free and can mingle with leptons, and where baryons with confined quarks and gluons
are not yet formed. The signal monopole obtained in (39) after symmetry breaking has tr tr Σspσµν , 0
and is associated with lower energies where free quarks and gluons no longer exist but are confined in
color-neutral hadrons. So, the symmetry breaking to go from (27) to (28) in concert with (37) is now seen
to take place at some energy EX a few orders of magnitude below the Planck energy. The pre-symmetry
breaking (27) in which quarks are labelled with the spacetime indexes of the current densities which carry
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them into the monopole shows the pre-hadronization baryon above EX, which at (31) has tr tr pσµν = 0.
We shall refer to these as the “plasma” labels. The post-break (28) in which the monopole is made
indivisible with quarks now labelled independently from their current of origin shows the baryon below
EX once hadronization is complete, which at (39) now has tr tr Σspσµν , 0 with confined color. We shall
refer to these as the “confinement” labels. The symmetry breaking from (27) to (28), which via (37) takes us
from (31) to (39), then becomes synonymous with EX -scale hadronization which is dynamical, not ad hoc.
This is what Close refers to as the “act of confinement.”

16. What Is a Baryon, and Who Ordered That?

If we overlook Rabi’s question, and take baryons and mesons as an empirical given without
inquiring about their theoretical genesis, then we are pressed into asking questions about how quarks
remain confined inside of baryons without knowing what baryons really are, and perhaps, to engineer
ad hoc models of attractive and repulsive forces which yield quark and color confinement from a data
fitting exercise, rather than obtaining the dynamic understanding referenced by Close [6]. We are also
pressed with only incomplete knowledge to ask how the transition takes place from a quark/gluon
plasma at ultra-high energies and temperatures, to baryons with confined, asymptotically free quarks
observed at ordinary energies and temperatures. Nor do we have a basis for truly understanding the
quark–antiquark pairs which form the mesons that mediate baryon interactions, and which permeate
the space inside a baryon. Further, although we do know that QCD stems from an exact SU(3)
color symmetry, we do not know why SU(3), as opposed to some other gauge group, provides this
basis for strong interaction physics. All the while, lattice QCD provides only convincing numeric
computation, not fully analytic proof, that our theories about strong interactions are correct, because
of the perceived intractability of analytically studying the foregoing phenomena. This has produced
a substantial body of literature exemplified by [19–25], all seeking to answer these questions about
confinement and hadronization and quark–antiquark objects and even the core nature of strong
interactions, without the benefit of knowing what baryons really are. However, if we do know the true
theoretical origin of baryons, then hadronization leading to confinement and to baryon interactions via
mesons and even to SU(3) QCD itself ought to flow effortlessly from the natural inherent properties of
these baryons.

By attending to Rabi’s question as has been done here, and discovering that baryons are in fact
the magnetic monopoles of Yang–Mills gauge theory populated by the fermions in the electric charge
sources of Yang–Mills gauge theory, Maxwell’s equations—extended from U(1) abelian to SU(N)
Yang–Mills gauge theories—are naturally placed at the center of how we describe the behaviors of
these baryons. Then, the integral form of Maxwell’s equations, particularly Gauss’s law for magnetism,
simply becomes a statement of what does and does not flow across any closed surface around or within
a baryon, in the basic spirit of the MIT bag model.

Consequently, one can examine quark and color confinement by simply deciphering what these
Maxwell/Yang–Mills equations tell us about net fluxes across monopole boundaries, without having to
construct elaborate models of attractive and repulsive forces engineered to bring about confinement.
Specifically, in U(1) electrodynamics, Gauss’s law implies the inverse-square force of Coulomb’s law.
So by approaching the confinement of quarks via what does and does not flow across closed surfaces,
and finding that there is no flow of net color but there is a flow of colorless antisymmetric mesons in
accordance with (44), we are implicitly ensuring that the forces inside the baryon linked to these Gauss’s
law surfaces will operate to confine the quarks. That is, if we start with a theoretical monopole baryon
in which no net color can ever cross a closed Gaussian surface around, partially through, or entirely
within this baryon due to the surface flux properties inherent to monopoles which have been known
since the time of Maxwell, then we are assured that the attractive and repulsive forces associated with
this Yang–Mills extension of Gauss’s law for magnetism will balance precisely as needed to confine net
color without ad hoc engineering. So, because each quark does have a net color charge and each gluon
a net bi-colored charge, this means that the quarks and gluons are naturally confined.



Symmetry 2020, 12, 1887 19 of 28

In sum, once we engage Rabi’s question and understand that baryons are the Maxwell magnetic
monopoles of Yang–Mills gauge theory, the question why quarks remain confined obtains a very
simple and natural answer: they are confined because this is how Yang–Mills magnetic monopoles
naturally behave. No more and no less. YM monopoles naturally bar net fluxes of color not only across
what one might define as an infrared confinement boundary near about 1 fermi (the rough size of
a baryon), but also across any smaller closed sub-surfaces wholly or partially inside of the baryon.
Because quarks and gluons have net color and bi-color charges, with net color confined in this way,
quarks and gluons will also be confined in the very same way.

Moreover, with such an understanding, rather than hypothesize a supersymmetry between bosons
and fermions which has long been conjectured but never obtained any empirical support, we discover
that hadronization employs a type of spontaneous symmetry breaking where longitudinal degrees of
freedom in massive vector bosons are transferred over to fermions during a type of symmetry breaking
not dissimilar to the Higgs mechanism which moves degrees of freedom from scalar bosons to vector
bosons. This mechanism, particularly via the electroweak W and Z bosons [26–28] and later through
the direct observation of the Higgs boson [29], has found clear experimental support and so gained
wide acceptance. Such hadronization symmetry breaking makes those vector bosons massless and
simultaneously renders the underlying symmetry of fermions in the fundamental representation of
SU(3) exact, which is the foundation [17], [18] of settled QCD. This all proceeds in the ordinary four
dimensions of spacetime without the need for additional space dimensions and compactification down
to four spacetime dimensions, which originated with the work of Kaluza and Klein [30–32].

With this understanding, SU(3) QCD itself becomes no longer just a highly successful postulate
both theoretically and experimentally; rather it comes to rest, fully intact, on a deeper dynamic
foundation: Because the ground state “signal” monopole is a system containing precisely three
fermions, the Exclusion Principle naturally places these fermions into the fundamental representation
of SU(3), which becomes exact once symmetry is broken and hadronization of the plasma is complete.
What ties this all together very simply, is the fact that magnetic monopoles are third-rank antisymmetric
tensors as first elaborated by Einstein in his seminal paper [8]. So, when these monopoles are promoted
from abelian to non-abelian status via Yang–Mills gauge theory [1], then populated with source currents
from the inverted Maxwell’s YM charge equation, they not only contain exactly three fermions in their
ground state, but they become color-neutral, having the three-quark antisymmetric wavefunction
(40) which carries a fingerprint identical to that of the generally covariant index structure of the
magnetic monopole.

Indeed, the third-rank antisymmetric tensor structure of magnetic monopoles having no net
magnetic charge and permitting no net magnetic field flux through closed spatial surfaces is
perhaps the strongest clue that these monopoles are naturally suited to replicate the three-quark
antisymmetric net-colorless wavefunction of a baryon with no net color flux through any closed
surface. Thus, when understood through the integral formulation of Gauss’s law for magnetism which
again motivates the MIT bag model, confinement boils down to the Yang-Mills magnetic monopoles
barring a net flow of color through closed surfaces in the same way that U(1) abelian monopoles
bar a net flow of magnetic fields through such surfaces. Meanwhile, hadronic interactions occur
via colorless mesons which are enabled to and indeed do net flow through closed surfaces around
these monopoles, while inside of monopoles all fluxes through closed sub-surfaces must likewise
be color-neutral. The general result is that net color may not flow through closed Gaussian surfaces
anywhere, analogously to magnetic fields in U(1) electrodynamics, and any net fluxes which do occur
must be by color-neutral objects such as mesons and jets.

It is also important to be mindful that the complete magnetic monopole which corresponds to
the physically observed baryons with all non-linear perturbative behaviors included is that of the
infinitely recursive (24) which contains both the monopole “signal plus noise,” that (39) shows the
“signal” rendition of this monopole with all “noise” removed, and that this “signal” monopole (39)
is what directly reveals the color-neutral antisymmetric wavefunction (40) of a baryon, and following
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Gaussian integration, the color-neutral symmetric wavefunction (44) of a meson for fluxes through
closed surfaces. The is the analytical way to understand what is ordinary studied using the numerical
approach of lattice QCD. Indeed, the perceived intractability of analytical QCD is the result of the
highly nonlinear nature of strong interactions and a large running coupling at low probe energies on
the order of 1 GeV, because this seems to foreclose the small-coupling perturbative treatments which
are effective, for example, in QED with its small running “fine structure” coupling ~1/137.036 and
inverse-square force. In the results here, however, the non-linearities of QCD including the jets required
to maintain color neutrality and color confinement are fully embedded in the infinitely recursive nature
of (24), which provides an exact analytic expression for the monopole baryon in closed recursive form.
So to carry through the analytics, one would resubstitute the gauge fields (21) into (24) in the manner
of (22) over and over. Even more preferably, one would try to discern in closed from, the infinite series
that emerges from these recursive resubstitutions, because this would finally produce the analytic
QCD solution that lattice QCD only achieves numerically.

So, returning to Rabi, who ordered the baryons? Fundamentally, because a baryon is
described by Maxwell’s equation for a magnetic monopole in covariant form, populated by fermions
housed in Maxwell’s inverted equation for an electric charge, all generalized to non-abelian SU(N)
Yang–Mills gauge theory, the answer is that they were primarily ordered by Maxwell and Yang and
Mills, whose theories have gained universal confidence as to their underlying validity. Moreover,
the similarly-established surface flux laws first developed by Gauss play a crucial role, because they
specify both what is confined within closed YM monopole surfaces (net color thus colored quarks and
bi-colored gluons) and what is allowed to net flow across these surfaces (colorless quark-antiquark
pairs including colorless mesons and jets). A role is also assumed by Dirac whose quantum theory
of the electron first exposited the existence and nature of fermions, and by Weyl for elaborating
gauge theory itself. That these monopoles contain exactly three fermions in their ground state which
fit the fundamental representation of SU(3) also uses the Exclusion Principle of Fermi, Dirac and
Pauli. This “three-ness” itself, as well as the color-neutral nature of a baryon, is rooted in the
third-rank antisymmetric tensor first taught by Einstein for the generally covariant description of
magnetic monopoles. Finally, one should not overlook Hamilton who first developed non-commuting
quaternions in order to compactly describe simple rotations in three space dimensions. This is because
non-commuting mathematical objects subsequently came to play a central role in many areas of physics,
including the extension of quaternions and their Pauli spin matrix descendants into the non-commuting
vector potentials of Yang–Mills gauge theory. Importantly, all of these theories and theoretical tools are
well-settled, uncontradicted and universally accepted. All that is novel in this present work, is the
illumination of how these all combine to produce the observed QCD physics of hadrons.

17. Filling the Yang–Mills Mass Gap

It is well-known that Maxwell’s electric charge Equation (1a) has no inverse, or, to be precise,
that the inverse (gµν∂σ∂σ − ∂µ∂ν)

−1 of its operator on Aµ is infinite (singular). To deal with this, one of
several approaches is typically required. A first option is to impose a gauge condition, often the
covariant ∂µAµ = 0. Then it is easy to obtain (gµν∂σ∂σ)

−1 alone. Another is to introduce a Proca
mass by hand, which is what we did at (15). However, doing so means the theory is no longer
renormalizable, so we must eventually find a way to remove this mass and introduce it some other
way. Using D 7→ ∂ to obtain a “signal” inverse, the inverse of the operator in (15) becomes the familiar
finite (A8). We also see from (A8) that when m = 0 this inverse becomes infinite, which directly
demonstrates why (1a) has no inverse. Using notations reviewed at the start of Section 6, this is
not just because of kνkα/m2 in the numerator which can be removed when contracted with a source
current because of the signal continuity equation kν jν = 0 reviewed near the end of Appendix B.
More importantly, it is because kσkσ −m2 in the denominator becomes zero when the vector boson
is “on-shell,” meaning that kσkσ −m2 = 0. When we remove the Proca mass so the boson is again
massless, the denominator becomes qσqσ which on-shell is also qσqσ = 0. These singularities are why
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we also need the +iε prescription to take a particle “off-shell,” i.e., to render it “virtual” about the
singular “pole.”

In view of this, we sum the inverse (20) from the left with electric source density Jα and from
the right with Jν, both from (10a). Recall, using c2µ0ε0 = 1, that Jσ = jσ − icε0gGτFτσ as reviewed
following (12). As obtained in (A15) the continuity equation (pν + gGν)Jν = 0 whereby the term
(kνkα + gkν(Gα)/c)/m2c2 = 0 and so drops out. So, with c = 1 we obtain:

JαIαν Jν = Jα
∨

(
−gαν +

kνkα+gkνGα
m2

)
′′kσkσ −m2 − g2GσGσ + iε′′

Jν = −Jσ
(
kσkσ −m2

− g2GσGσ + iε
)−1

Jσ (45)

Now, we see how to remove the Proca mass thus restoring renormalizability while maintaining
a finite inverse: Because the term g2GσGσ arises naturally from the Yang–Mills gauge theory and
is itself square-mass-dimensioned, and because this term has the same form as what is in L =

∂σφ ∗ ∂σφ+ g2GσGσφ ∗φ whereby vector boson masses arise in a well-known way from spontaneous
symmetry breaking, we simply use g2GσGσ to replace m2 by removing the latter entirely. In other
words, Yang–Mills gauge theory puts a mass-producing term right where it needs to be in the form it
needs to have, so we can set the mass added by hand at (15) back to m = 0 in the above without adverse
consequence. Likewise, neither do we need +iε. So, removing these, and expanding Gσ = τiGiσ, (45)
now becomes:

JαIαν Jν = −Jσ
(
kσkσ − g2GσGσ

)−1
Jσ = −Jσ

(
kσkσ − g2τiτ jgµνGi

µG j
ν
)−1

Jσ (46)

What is important now is that GσGσ = τiτ jgµνGi
µG j

ν is not an ordinary spacetime scalar, but rather,
is an N×N matrix for any Yang–Mills gauge group SU(N), with adjoint structure established by the(
N2
− 1

)2
products τiτ j. Furthermore, some of the matrices τiτ j and thus gµνGµGν contain imaginary

components, which can be seen even in the simplest case of SU(2) where τi =
1
2σi and the Pauli identity

(σ · x)(σ · y) = Id x · y + iσ · (x× y). The Jσ = jσ − icε0gGτFτσ which are also N×N YM matrices will
contain additional imaginary components. Moreover, nothing restricts (46) to SU(3). As reviewed in
Section 10, this restriction is imposed by the magnetic monopoles. Here, we are dealing with Maxwell’s
Yang–Mills Equation (12a) for electric source densities independent of magnetic monopoles, with the
Proca mass of (15) now removed.

Because (46) is an N×N Yang–Mills matrix and a spacetime scalar, and additionally houses a

finite-matrix (f ) inverse which by definition is invertible, i.e.,
(

f−1
)−1

= f , it has finite eigenvalues λ
which are calculated in the usual way for a square matrix M via the determinant relation 0 = |M− λ Id|,
where Id is an N×N unit matrix for any SU(N). These λ are obtained by:

0 =
∣∣∣JαIαν Jν − λ Id

∣∣∣ = ∣∣∣∣∣−Jσ
(
kτkτ − g2GτGτ

)−1
Jσ − λ Id

∣∣∣∣∣ (47)

However, (A8) provides the basis for seeing what these eigenvalues look like in the
non-perturbative limit with all recursion reviewed at (21) and (22) removed via Dσ 7→ ∂σ so that
cµ0 Jν = DσFσν becomes cµ0 jν = ∂σFσν and Jσ becomes jσ. In Section 6 notation with what is now a
continuity equation kν jν = 0 from Appendix B, these eigenvalues become:

λ = jαiαν jν = jα
−gαν +

kνkα
m2

kσkσ −m2 + iε
jν =

− jσ jσ

kσkσ −m2 + iε
(48)

Finally, combining (47) and (48) and reintroducing the infinite recursive series notation of (22)
with . . . wherever a substitution Gα( jν, Gα) or Fµν(Gα( jν, Gα)) is required, and noting the similarity of
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JαIαν Jν − jαiαν jνId to −V = DσDσ
− ∂σ∂σ discussed at the start of Section 4 whereby the perturbation is

the difference “noise = (signal + noise) − signal,” we obtain:

0 =
∣∣∣JαIαν Jν − jαiαν jνId

∣∣∣ = ∣∣∣∣∣−Jσ
(
k kτ − g2(Gτ . . .)(Gτ . . .)

)−1
Jσ − − jσ jσ

kσkσ−m2+iε Id
∣∣∣∣∣

=

∣∣∣∣∣−( jσ − icε0g(GαFασ . . .))
(
kτkτ − g2(Gτ . . .)(Gτ . . .)

)−1(
jσ − icε0g

(
GβFβσ . . .

))
−

− jσ jσ

kσkσ−m2+iε Id
∣∣∣∣∣ (49)

This is the mass gap solution. Specifically, referring to page 6 of [2], for “any compact simple gauge
group G,” that is, for any SU(N), “a non-trivial quantum Yang–Mills theory exists on R4 and has a
mass gap > 0 namely there must be some constant ∆ > 0 such that every excitation of the vacuum
has energy at least ∆”. “Excitations of the vacuum” is another phrase for non-zero perturbations
Vνσ = ig(Gν∂σ + ∂νGσ) + g2GνGσ , 0 defined following (11), and these arise from the canonic
promotion of ∂σ 7→ Dσ reviewed in Section 3. It is also another phrase for what we have referred to here
as the “noise” of Yang–Mills dynamics over Maxwell’s U(1) electrodynamics. Indeed, JαIαν Jν − jαiαν jνId
in the determinant (49), like V, is also a direct measure of “noise = (signal + noise) − signal.” When
these excitations of the vacuum Vνσ , 0, the inverse Gα( jν, Gα( jν, Gα( jν, Gα( jν, Gα(. . .))))) has the

infinitely recursive, highly nonlinear form of (22). However, Jσ
(
kτkτ − g2GτGτ

)−1
Jσ is clearly invertible

(again,
(

f−1
)−1

= f ), so it will have a non-zero determinant and non-zero eigenvalues.
Further, GσGσ is a correctly signed term for positive vector boson rest energy mc2 > 0, has the same

form as what appears in the symmetry-breaking L = ∂σφ ∗ ∂σφ+ g2GσGσφ ∗φ, and at (46) was used
to remove the Proca mass to restore renormalizability while maintaining finite invertibility. Because

−Jσ
(
kτkτ − g2(Gτ . . .)(Gτ . . .)

)−1
Jσ contains both real and imaginary numbers, these eigenvalues can be

real, imaginary, or complex. So, when the eigenvalues (48) and then the −m2 + iε in the eigenvalue
denominator are computed using (49) for “any compact simple gauge group G,” we will find that “every
excitation of the vacuum has energy at least ∆ ”= mc2 > 0. Moreover, the imaginary parts of JαIαν Jν

in (49) can produce +iε > i0 which corresponds physically to finite particle lifetimes. This is how
Yang–Mills gauge theory reveals masses m > 0 and finite lifetimes via ε > 0 in the (48) denominator
while maintaining renormalizability by removing Proca masses and +iε, thereby filling the Yang–Mills
mass gap.

The manifest recursion highlighted in (49) is also important for understanding how to carry out
exact closed analytic calculations in Yang–Mills theory, as opposed to using numerical methods such
as those of Lattice QCD. In this regard, Jaffe and Witten state on page 7 of [2] that “since the inception
of quantum field theory, two central methods have emerged to show the existence of quantum fields
on non-compact configuration space (such as Minkowski space). These known methods are (i) Find an
exact solution in closed form; (ii) Solve a sequence of approximate problems, and establish convergence
of these solutions to the desired limit.” The foregoing (49) suggests a third method which is really
a hybrid of (i) and (ii): find an exact recursive kernel in closed form, and then expand that kernel
in successive iterations approaching the limit of infinite recursive nesting to identify the underlying
infinite series in a closed form. As noted toward the end of Section 16, in the specific context of QCD
rather than the general context of any compact simple Yang–Mills gauge group, this is the basis for
developing an exact, closed analytical form of QCD, versus having to resort only to the numerical
methods of lattice QCD.

18. Conclusions

For an entire century we have known experimentally about the existence of protons. For almost
90 years we have known about neutrons. However, beyond knowing baryons contain three quarks with
exact SU(3) chromodynamic symmetry, contain massless gluons in the adjoint representation of SU(3),
have an antisymmetric color-neutral singlet wavefunction, and interact via symmetric color-neutral
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singlet mesons, we still cannot answer Rabi’s simple query “who ordered that?,” and we do not
understand the dynamic basis of quark and gluon confinement and hadronization.

Here, we have shown that the magnetic monopoles of Yang–Mills gauge theory in their “signal”
state contain three fermions in the fundamental representation of SU(3). Following symmetry breaking
which moves a degree of freedom from the gauge bosons to the fermions, the gauge bosons become
massless, SU(3) becomes an exact symmetry, and a propagator is established for each fermion.
The monopoles then have the same antisymmetric color singlet wavefunction as a baryon, and the
field quanta of the magnetic fields fluxing through their surface have the same symmetric color
singlet wavefunction as a meson. Consequently, we can identify these fermions with colored quarks,
the massless gauge bosons with gluons, the magnetic monopoles with baryons, the fluxing entities with
mesons, and the symmetry breaking with hadronization, while establishing that the quarks and gluons
remain confined following hadronization. The result is a quantum chromodynamic (QCD) theory of
the hadrons. Using analytic tools developed along the way, we also fill the Yang–Mills mass gap.

Finally, as previewed in the introduction and further detailed in Section 16, Rabi’s question is
answered: Protons, neutrons and other baryons were ordered primarily by Maxwell, Gauss, Yang and
Mills. Additional foundations were provided by Weyl who was the father of gauge theory, as well as
Fermi, Dirac and Pauli via Dirac’s quantum theory of the electron and the fermion Exclusion Principle,
and Einstein’s generally covariant formulation of Maxwell’s magnetic monopoles as a third rank
antisymmetric tensor which directly accounts for ground state baryons containing three colored quarks
while remaining color-neutral. Finally, seminal credit must be attributed to Hamilton for pioneering
non-commuting quaternions which more than a century later became the foundation of Yang–Mills
gauge theory.
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Appendix A. Calculation of the Inverse for the Yang–Mills Electric Source Equation

Because ∂µDν = ∂µ∂ν − ig∂µGν is a non-symmetric tensor even in flat spacetime because in general
∂µGν , ∂νGµ, it is important when calculating the inverse Iαν to make certain that the left- and right-side
inverse calculations lead to the same δµα identity matrix, with IανLEFT = IανRIGHT, as shown at (18).
Therefore, we shall carry out both a left- and a right-side calculation, then make certain that both of
these inverses are one and the same. Based on (18), we expect the general form of the inverse to be:

IανLEFT = IανRIGHT = Agαν + B∂αDν + C∂νDα (A1)

where A, B and C are unknowns to be determined, and where we include both ∂αDν and ∂νDα given
the non-symmetry of these terms. The left-placement of A, B and C in (A1) is arbitrary ab initio,
but once we do so, we must maintain consistent ordering thereafter. So, it would be incorrect to write
IανRIGHT = gανA + ∂αDνB + ∂νDαC. It should also be noted from the term ∂µDνGµ in (15) that the
free index is in Dν, while ∂µ to the left of Dν sums with Gµ. We will calculate in configuration space,
then convert to momentum space in the usual way.

Using (A1) in (18) as a left-side inverse and operating with the metric tensor produces:

δµα = (Agαν + B∂αDν + C∂νDα)
(
gµν

(
∂σDσ + m2

)
− ∂µDν

)
= Aδµα

(
∂σDσ + m2

)
−A∂µDα + B∂αDµ

(
∂σDσ + m2

)
− B∂αDσ∂µDσ

+C∂µDα

(
∂σDσ + m2

)
−C∂σDα∂µDσ

(A2)

Matching up δµα with the term Aδµα∂σDσ first reveals that δµα = Aδµα
(
∂σDσ + m2

)
, i.e., that:

A =
(
∂σDσ + m2

)−1
(A3)
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Because Dσ = ∂σ − igAσ contains Aσ = τiAi
σ which is an N×N square matrix for SU(N), we cannot

simply write the above as A = 1/
(
∂σDσ + m2

)
which treats ∂σDσ + m2 as an ordinary denominator.

Rather, this must itself be inverted independently of the spacetime inversion (18).
Substituting (A3) into (A2) then reducing now produces:(

∂σDσ + m2
)−1
∂µDα

= B
(
∂αDµ

(
∂σDσ + m2

)
− ∂αDσ∂µDσ

)
+ C

(
∂µDα

(
∂σDσ + m2

)
− ∂σDα∂µDσ

) (A4)

The left side above contains ∂µDα which matches to the same term inside C∂µDα

(
∂σDσ + m2

)
.

From this we conclude that the terms with B are not needed to calculate the inverse, i.e., that we can
calculate the inverse with B = 0. This is a downstream consequence of the fact noted following (A1)
that in (15), the free index is in Dν. Consequently, we further reduce (A4) to:

C =
(
∂σDσ + m2

)−1
[
∂µDα

(
∂µDαm2 + ∂µDα∂σDσ

− ∂σDα∂
µDσ

)−1
]

(A5)

Inserting (A3) and B = 0 and (A5) into (A1) and reducing now produces the left-side inverse:

IανLEFT =
(
∂σDσ + m2

)−1
{

gαν + ∂µDα

(
∂µDαm2 + ∂µDα∂σDσ

− ∂σDα∂µDσ
)−1
∂νDα

}
≡

∨

gαν+
∂µDα∨∂νDα
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Next, we perform an identical calculation using (18), again using the general form (A1), but now 

for RIGHTIαν . The result for A is the same as in (A3), and by matching up the Dμ
α∂  terms as in (A4) 

we again conclude that 0B = . So, we finally calculate C as in (A5) and insert all the results into (A1) 
to find that: 
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If we set D ∂  throughout to turn the gauge-covariant derivatives into ordinary ones, then 

use , 0α β ∂ ∂ =   in flat spacetime, and then convert from configuration into momentum space 

using the substitution i pμ μ∂   with 1=  while including iε+ , the quotes can come off the 

denominators, and we find that the non-perturbative I iαν αν  inverse is: 
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This will be recognized as the well-known inverse for a massive vector boson. Using the language of 
Jaffe and Witten in [2], this has no “excitations of the vacuum,” and is used in the eigenvalues (48) 
for the mass gap solution (49). 

Now, the requirement 1 1 IdM M MM− −= =  for any square matrix M tells us that the inverse 
1M−

 must be the same no matter the side from which it multiplies M, that is, LEFT RIGHTI Iαν αν= . 
So, if we now set the two results in (A6) and (A7) to be equal, we find this will be so if and only if: 

( )0D D D D D D D Dσ μ σ μ
σ σ

μ σ μ σ
α σ α α σ α∂ ∂ ∂∂ ∂ − ∂∂− ∂ = =  (A9) 

As it turns out, not only are both sides of (A9) equal as required, but each is equal to zero which is 
why we included ( )0= . This can be proved using the covariant commutator relation 

,p G i Gμ ν μ ν  = − ∂    for a field ( ),G tν x  which is a function of space and time. The 
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This will be recognized as the well-known inverse for a massive vector boson. Using the language of 
Jaffe and Witten in [2], this has no “excitations of the vacuum,” and is used in the eigenvalues (48) 
for the mass gap solution (49). 

Now, the requirement 1 1 IdM M MM− −= =  for any square matrix M tells us that the inverse 
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As it turns out, not only are both sides of (A9) equal as required, but each is equal to zero which is 
why we included ( )0= . This can be proved using the covariant commutator relation 
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This will be recognized as the well-known inverse for a massive vector boson. Using the language of 
Jaffe and Witten in [2], this has no “excitations of the vacuum,” and is used in the eigenvalues (48) 
for the mass gap solution (49). 

Now, the requirement 1 1 IdM M MM− −= =  for any square matrix M tells us that the inverse 
1M−

 must be the same no matter the side from which it multiplies M, that is, LEFT RIGHTI Iαν αν= . 
So, if we now set the two results in (A6) and (A7) to be equal, we find this will be so if and only if: 

( )0D D D D D D D Dσ μ σ μ
σ σ

μ σ μ σ
α σ α α σ α∂ ∂ ∂∂ ∂ − ∂∂− ∂ = =  (A9) 

As it turns out, not only are both sides of (A9) equal as required, but each is equal to zero which is 
why we included ( )0= . This can be proved using the covariant commutator relation 

,p G i Gμ ν μ ν  = − ∂    for a field ( ),G tν x  which is a function of space and time. The 
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This will be recognized as the well-known inverse for a massive vector boson. Using the language of 
Jaffe and Witten in [2], this has no “excitations of the vacuum,” and is used in the eigenvalues (48) 
for the mass gap solution (49). 

Now, the requirement 1 1 IdM M MM− −= =  for any square matrix M tells us that the inverse 
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 must be the same no matter the side from which it multiplies M, that is, LEFT RIGHTI Iαν αν= . 
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As it turns out, not only are both sides of (A9) equal as required, but each is equal to zero which is 
why we included ( )0= . This can be proved using the covariant commutator relation 

,p G i Gμ ν μ ν  = − ∂    for a field ( ),G tν x  which is a function of space and time. The 

(A6)

In the bottom line above, simply to provide a compact visual comparison to the usual inverses for
a massive vector boson, we have defined “quoted” denominators in which the inverses are represented
as “denominators”, but with the understanding that this is a shorthand for what is actually a matrix
inverse. In general, for a square matrix M, we shall use this shorthand to write 1/′′M′′ ≡M−1. We also
use a subscripted ∨ to indicate where the “denominators” are placed when represented as inverses.
Looking closely, note that ∂µDα appears in both the upper numerator and the upper “denominator,”
but cannot (yet) be cancelled using (∂µDα)(∂µDα)

−1 = Id because of the ∂σDα∂µDσ term in the upper
denominator in which Dα is commuted to the left of ∂µ.

Next, we perform an identical calculation using (18), again using the general form (A1), but now
for IανRIGHT. The result for A is the same as in (A3), and by matching up the ∂µDα terms as in (A4)
we again conclude that B = 0. So, we finally calculate C as in (A5) and insert all the results into (A1)
to find that:

IανRIGHT =
(
∂σDσ + m2

)−1
{

gαν + ∂µDα

(
∂µDαm2 + ∂σDσ∂µDα − ∂µDσ∂σDα

)−1
∂νDα

}
≡

∨

gαν+
∂µDα∨∂νDα

Symmetry 2020, 12, x FOR PEER REVIEW 28 of 32 

 

( ) ( ){ }1 12 2
LEFT

2

2

" "
""

I D m g D D m D D D D D

D Dg
m D D D D D

D m

σ μ

α

μ μ σ
αν αν α α

σ

α σ α ν α

α ν α
α

σ μ
σ σ

ν

μ

σ μ
σ

σ

μ μ σ
α α σ

− −

∨
∨

= + + ∂ +∂ −∂ ∂

 ∂+ ∂
≡

∂ ∂ ∂

∂
+∂ −∂

∂

∂
∂

+
∂ 

 (A6) 

In the bottom line above, simply to provide a compact visual comparison to the usual inverses 
for a massive vector boson, we have defined “quoted” denominators in which the inverses are 
represented as “denominators,” but with the understanding that this is a shorthand for what is 
actually a matrix inverse. In general, for a square matrix M, we shall use this shorthand to write 

11/" "M M −≡ . We also use a subscripted ∨  to indicate where the “denominators” are placed 
when represented as inverses. Looking closely, note that Dα

μ∂  appears in both the upper 
numerator and the upper “denominator,” but cannot (yet) be cancelled using 

( )( ) 1
IdD Dμ μ

α α
−

∂ =∂  because of the D Dσ
σ α

μ∂ ∂  term in the upper denominator in which Dα  

is commuted to the left of μ∂ . 
Next, we perform an identical calculation using (18), again using the general form (A1), but now 

for RIGHTIαν . The result for A is the same as in (A3), and by matching up the Dμ
α∂  terms as in (A4) 

we again conclude that 0B = . So, we finally calculate C as in (A5) and insert all the results into (A1) 
to find that: 

( ) ( ){ }1 12 2
RIGHT

2

2

" "
""

I D m g D D m D D D D D

D Dg
D m D D D D

D m

σ μ

σ

μ μ σ
αν αν α α α

σ

α

σ μ
σ σ

μ

σ μ

σ α ν α

α ν α
ν

σ
σ

μ μ
α α σ α

− −

∨
∨

= + + ∂ + ∂ − ∂ ∂

 ∂+ ∂ + ∂ − ∂ ≡

∂ ∂ ∂ ∂

∂
+

∂
∂

∂

 (A7) 
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This will be recognized as the well-known inverse for a massive vector boson. Using the language of 
Jaffe and Witten in [2], this has no “excitations of the vacuum,” and is used in the eigenvalues (48) 
for the mass gap solution (49). 

Now, the requirement 1 1 IdM M MM− −= =  for any square matrix M tells us that the inverse 
1M−

 must be the same no matter the side from which it multiplies M, that is, LEFT RIGHTI Iαν αν= . 
So, if we now set the two results in (A6) and (A7) to be equal, we find this will be so if and only if: 

( )0D D D D D D D Dσ μ σ μ
σ σ

μ σ μ σ
α σ α α σ α∂ ∂ ∂∂ ∂ − ∂∂− ∂ = =  (A9) 

As it turns out, not only are both sides of (A9) equal as required, but each is equal to zero which is 
why we included ( )0= . This can be proved using the covariant commutator relation 

,p G i Gμ ν μ ν  = − ∂    for a field ( ),G tν x  which is a function of space and time. The 
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This will be recognized as the well-known inverse for a massive vector boson. Using the language of 
Jaffe and Witten in [2], this has no “excitations of the vacuum,” and is used in the eigenvalues (48) 
for the mass gap solution (49). 

Now, the requirement 1 1 IdM M MM− −= =  for any square matrix M tells us that the inverse 
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 must be the same no matter the side from which it multiplies M, that is, LEFT RIGHTI Iαν αν= . 
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As it turns out, not only are both sides of (A9) equal as required, but each is equal to zero which is 
why we included ( )0= . This can be proved using the covariant commutator relation 
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This will be recognized as the well-known inverse for a massive vector boson. Using the language of 
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If we set D 7→ ∂ throughout to turn the gauge-covariant derivatives into ordinary ones, then use[
∂α, ∂β

]
= 0 in flat spacetime, and then convert from configuration into momentum space using the

substitution ih∂µ 7→ pµ with h = 1 while including +iε, the quotes can come off the denominators,
and we find that the non-perturbative Iαν 7→ iαν inverse is:

iαν ≡
gαν +

∂ν∂α
m2

∂σ∂σ + m2 − iε
=
−gαν +

pνpα
m2

pσpσ −m2 + iε
(A8)

This will be recognized as the well-known inverse for a massive vector boson. Using the language
of Jaffe and Witten in [2], this has no “excitations of the vacuum,” and is used in the eigenvalues (48)
for the mass gap solution (49).
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Now, the requirement M−1M = MM−1 = Id for any square matrix M tells us that the inverse M−1

must be the same no matter the side from which it multiplies M, that is, IανLEFT = IανRIGHT. So, if we
now set the two results in (A6) and (A7) to be equal, we find this will be so if and only if:

∂µDα∂σDσ
− ∂σDα∂

µDσ = ∂σDσ∂µDα − ∂
µDσ∂σDα(= 0) (A9)

As it turns out, not only are both sides of (A9) equal as required, but each is equal to zero which is
why we included (= 0). This can be proved using the covariant commutator relation

[
pµ, Gν

]
= −ih∂µGν

for a field Gν(t, x) which is a function of space and time. The
[
pi, G j

]
= −ih∂iG j space components

originate in the Heisenberg commutator [p̂x, x̂] = −ih, while the time component is rooted in the
Heisenberg-picture commutator

[
Ĥ, Gν

]
= −ih∂0Gν in view of the relation

〈
ψ
∣∣∣Ĥ∣∣∣ψ〉

=
〈
ψ
∣∣∣cp0

∣∣∣ψ〉
,

where Ĥ is a particle Hamiltonian and cp0 = E is the particle energy.
We can see this in the following way: Substitute Dσ = ∂σ − igGσ throughout (A9). Then factor out

one g, and use
[
∂α, ∂β

]
= 0 in flat spacetime to remove some terms, yielding:

i∂σGα∂µ∂σ − i∂µGα∂σ∂σ + g∂σGα∂µGσ − g∂µGα∂σGσ

= i∂µGσ∂σ∂α − i∂σGσ∂µ∂α + g∂µGσ∂σGα − g∂σGσ∂µGα
(A10)

Next, convert the partial derivative which is just to the right of a gauge field in each of the eight
terms, into momentum space using ih∂µ 7→ pµ with h = 1. Then use

[
pµ, Gν

]
= −i∂µGν to commute

these new pµ to the left of the gauge fields. More terms cancel using
[
∂α, ∂β

]
= 0, so:

∂σpµGα∂σ − ∂µpσGα∂σ + ig∂µpσGαGσ − ig∂σpµGαGσ

= ∂µpσGσ∂α − ∂σpµGσ∂α + ig∂σpµGσGα − ig∂µpσGσGα
(A11)

Finally, revert to configuration space via pµ 7→ i∂µ , make one final use of
[
∂α, ∂β

]
= 0, then multiply

through by –i and consolidate terms using Dµ = ∂µ − igGµ to obtain:

(∂σ∂µ − ∂µ∂σ)Gα(∂σ − igGσ) = [∂σ, ∂µ]GαDσ = 0
= (∂µ∂σ − ∂σ∂µ)Gσ(∂α − igGα) = [∂µ, ∂σ]GσDα = 0

(A12)

The result is simply 0 = 0 with both the left and right sides seen to equal zero.
This has two important consequences: First, it proves that (A9) is not some independent condition

on the gauge fields, but is simply a manifestation of the commutator relation
[
pµ, Gν

]
= −ih∂µGν

which covariantly combines both the canonical commutation relations in space and the Heisenberg
equation of motion commutator in time. Second, because both sides of (A12) are not only equal, but are
each independently equal to zero, we prove that each side of (A9) is independently equal to zero
in view of the covariant commutator

[
pµ, Gν

]
= −ih∂µGν. A third logical consequence is that unless

there is some other way to go from (A9) from (A12) without using
[
pµ, Gν

]
= −ih∂µGν (which may be

possible but is not apparent), then
[
pµ, Gν

]
= −ih∂µGν is retro-proved by the linear algebra requirement

that M−1M = MM−1 = Id for a square matrix inverse, in the current context which includes the
Heisenberg picture.

Because each side of (A9) is equal to zero, we may set these same terms to zero in each of (A6)
and (A7), which are then clearly equal to one another, IανLEFT = IανRIGHT. Then we can reduce each
of (A6) and (A7) via (∂µDα)(∂µDα)

−1 = Id, then apply Dσ = ∂σ − igGσ, then apply ∂σGσ = igGσGσ
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from (16) which, again, is a required condition for a massive vector boson in Yang–Mills gauge theory,
then apply a final i∂µ 7→ pµ conversion to momentum space and add the +iε prescription, to obtain:

Iαν =
(
∂σ∂σ + m2 + g2GσGσ + iε

)−1
(
gαν +

∂ν∂α−ig∂νGα
m2

)
=

(
−pσpσ + m2 + g2GσGσ + iε

)−1(
gαν −

pνpα+gpνGα
m2

)
=

∨

(
−gαν+

pνpα+gpνGα
m2

)
′′pσpσ−m2−g2GσGσ+iε′′

(A13)

It is easily seen that when pνGα = 0 and GσGσ = 0, this reduces to the standard inverse (A8) for a
massive vector boson. Conversely, this means the two terms gpνGα in the numerator and g2GσGσ in
the inverse “denominator” are what get added to the massive vector boson inverse by Yang–Mills
gauge theory perturbations. Furthermore, as noted at (16) and used at (46), g2GσGσ is precisely the
term in which boson masses are revealed via L = ∂σφ ∗ ∂σφ+ g2GσGσφ ∗φ during the spontaneous
symmetry breaking of renormalizable gauge theory.

Appendix B. The Yang–Mills Continuity Equation in Terms of Dirac Wavefunctions

To obtain a Yang–Mills continuity equation in terms of Dirac wavefunctions, we start with Dirac’s
Yang–Mills canonic equation iγσDσψ−mψ = 0. With the adjoint wavefunction ψ ≡ ψ†γ0 defined as
usual, it is straightforward to obtain the adjoint equation iDσ

†ψγσ + mψ = 0. If we then sandwich
each of these and add, because the igGσ terms from Dσ and Dσ

† cancel out, we obtain:

0 = ψγσDσψ+ Dσ
†ψγσψ = ψγσ(∂σ − igGσ)ψ+ (∂σ + igGσ)ψγσψ

= ψγσ∂σψ+ ∂σψγσψ = ∂σ
(
ψγσψ

)
= 0

(A14)

So, even for Yang–Mills theory, the continuity relation for Dirac wavefunctions only contains the
ordinary derivative.

Combining (A14) with (11) this also means, matching up continuity zeros, that:

0 = cµ0Dν Jν = DνDσFσν = ∂ν∂σFσν −VνσFσν = cµ0∂σ
(
gψγσψ

)
= cµ0(∂ν − igGν)Jν = −icµ0(pν + gGν)Jν

(A15)

which via i∂µ 7→ pµ contains the continuity relation (pν + gGν)Jν = 0 mentioned after (11) and used in
(45). Combining this with cµ0 jν = ∂σFσν from (12a) and using (11), we then obtain:

cµ0∂ν jν = ∂ν∂σFσν = cµ0Dν Jν + VνσFσν = cµ0∂ν
(
gψγνψ

)
+ VνσFσν = VνσFσν (A16)

including the perturbation tensor Vνσ = ig(Gν∂σ + ∂νGσ) + g2GνGσ defined at (11). When Vνσ = 0
this reduces following integration without integration constant to the familiar jν = gψγνψ.

Finally, because of the perturbations, i.e., excitations of the vacuum of Yang–Mills theory, it is
beneficial to define a four-vector κν with dimensions of charge density, which is also an N×N matrix
for SU(N), such that jν ≡ gψγνψ+ κν. Then, because (A14) reveals ∂ν

(
gψγνψ

)
= 0 even in Yang–Mills

theory, we can insert this definition into (A16) to deduce cµ0∂νκν = VνσFσν. Using c2µ0ε0 = 1,
and mindful that cµ0 Jν = cµ0 jν − igGσFσν = DσFσν, the net result is that:

jν = gψγνψ+ κν (A17)

∂νκ
ν = cε0VνσFσν (A18)

with the latter being a scalar first-order differential equation for κν When the perturbation tensor
Vνσ = 0 (A16) reduces to ∂ν jν = ∂ν

(
gψγνψ

)
= 0, so that with integration constants set to zero we

recover the familiar jν = ψγνψ with κν = 0. Likewise when Vνσ = 0 the continuity equation (A16)
becomes ∂ν jν = 0, which in momentum space via i∂µ 7→ pµ further means that pν jν = 0.
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