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Abstract: Stability analysis of a corrugated ring subjected to uniform external pressure is under
consideration. Two main approaches to solving this problem are analyzed. The equivalent
bending stiffness approach is often used in engineering practice. It is based on some plausible
assumptions about the behavior of a structure. Its advantage is the simplicity of the obtained
relations; the disadvantage is the difficulty in estimating the area of applicability. In this paper,
we developed an asymptotic homogenization method for calculating the critical pressure for a
corrugated ring, which made it possible to mathematically substantiate and refine the equivalent
bending stiffness approach. To evaluate the results obtained using the equivalent stiffness approach
and asymptotic homogenization method, the imperfection method is used. The influence of the
corrugation parameters on buckling pressure is analyzed.

Keywords: stability; corrugated ring; external pressure; equivalent bending stiffness approach;
asymptotic homogenization method; imperfection method

1. Introduction

Corrugation of smooth shells is widely used to change their stiffness. In particular, for cylindrical
shells under external pressure, the corrugation of the generatrix is used [1–7]; corrugation of the
directrix significantly increases the stability of such shells under axial compression [8]. Therefore,
the study of the stability of corrugated shells under external pressure is of practical importance.

The methods currently used to calculate corrugated plates and shells can be subdivided into three
groups: computational models based on finite element analysis (FEA), the equivalent bending stiffness
approach, based on some physical assumptions, and the asymptotic homogenization method.

FEA in principle makes it possible to calculate any corrugated shell [6–15], but, for the early stages
of design, simple analytic solutions are very useful to engineers. Analytical solutions can be also used
as benchmark examples for numerical algorithms.

Before the computational revolution, the main method for calculating corrugated shells was
equivalent stiffnesses modeling [16,17]. A common approach is to replace a corrugated shell with an
anisotropic one that has equivalent stiffness properties. This method has been used in the analysis
of corrugated shells since the 1930s [17]. The main disadvantage of this approach is the difficulty in
estimating accuracy and the area of applicability [18–26].

In other papers [27–31], the asymptotic homogenization method was used. The original equations
of the corrugated shell are projected on the basic surface, equally spaced from the corrugation crests.
This allows the establishment of a relation between the homogenized and real components of the
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stress–strain state. In the zeroth approximation, the slowly changing components of the solution are
determined. The subsequent approximations are rapidly oscillating periodic functions (correctors)
and they are found in the solution to the cell problem. This approach allows the solution of a
number of optimization problems and the consideration of structures with functionally graded
corrugations [29–31].

The buckling problem for longitudinally corrugated cylindrical shells under external pressure
was investigated by Semenyuk and Babich [9]. They analyzed simply supported cylindrical shells, of
which cross sections are described in polar coordinates by Fourier series R(ϕ) = R0 + Σ

k=1
Rk cos(kϕ).

The solution was represented as the product of the sine in the longitudinal direction on the Fourier
series in the circumferential direction. Numerical results show the decrease in critical pressure for a
corrugated shell in comparison with a cylindrical shell of the same length and radius R0.

The nonlinear elastic deformation of a thin flexible ring under the external hydrostatic pressure is
described in [15].

In our work, we study the stability of the corrugated ring subjected to external pressure. Obtained
results can be used for long cylindrical shells, when the number of waves in the circumferential
direction is two.

The paper is organized as follows. First, we employ the basic relations in Section 2. In Section 3,
the equivalent bending stiffness approach is carried out. Section 4 deals with homogenization of the basic
relations. Section 5 presents an imperfection method. Finally, Section 6 presents concluding remarks.

2. A Statement of the Problem

The radius of the corrugated ring in the polar coordinate system is shown in Figure 1.

r = R(1 + hg(nϕ)) (1)

where R is the radius of the basic circular ring, equally spaced from the crests of the corrugation,
h = H

R , H is the corrugation depth (Figure 2), g(nϕ) is the periodic function with period 2π/n (pitch of
corrugation), n is the number of corrugations, and 0 ≤ ϕ ≤ 2π,
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Figure 1. Corrugated ring with profile (4), ℎ = 0.05;  𝑛 = 16. 

We assume that, for the ring, the hypothesis of flat cross-section is satisfied and the magnitude 
of the bending moment is proportional to the change in the curvature of the middle surface of the 
ring, in the section under consideration. 

We deal with the general instability of the corrugated ring, i.e., the transition to the form with 
non-circular basic ring. Local buckling modes are absent. The following assumptions are also valid: 
spatial forms of equilibrium are not considered; during deformation the load remains directed 
normal to the deformed ring, and its intensity does not change. 

The problem is solved in a linear formulation, using the static criterion of bifurcational stability 
loss. As shown in a number of studies [32–35], if the initial problem is conservative and the load is 
applied quasistatically, a similar approach to studying the stability of elastic systems is justified. 

3. Equivalent Bending Stiffness Approach 

Let us replace the corrugated ring with a circular one, radius R, with the equivalent bending 
stiffness. To determine this stiffness, following [16], we single out one corrugation wave, and due to 
the large number of such waves, the curvature of the basic circle can be neglected (Figure 2). Effective 
bending stiffness, D, is stiffness that ensures equality of deformations of the original curvilinear and 
approximating rectilinear beams. As a result, one obtains 𝐷 = 𝐸𝐼𝑘 (5) 

where 𝑘 = ଵೞ = 〈𝐴〉ିଵ, 〈… 〉 = ଵଶగோ  (… )𝑑𝜑;ଶగ  𝐸 is the Young’s modulus of the ring material; 𝐼 is the 

moment of inertia of the ring cross-section; 𝑙௦ =  𝐴𝑑𝜑ଶగ/  and 𝑙 = 2𝜋𝑅/𝑛 are the lengths of the wave 
of the corrugation and its projection. 
  

Figure 1. Corrugated ring with profile (4), h = 0.05; n = 16.
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To evaluate the intensity of external pressure 𝑝 acting on an equivalent basic ring, we select 
arcs 𝑑𝑠 and 𝑑𝑙 (Figure 3). Projecting the load shows that the normal pressure on the basic ring is the 
same as the original one. 
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Note that the projection also gives a tangential load in the basic circular ring, self-balancing along 

one pitch of corrugation. Additional tangential load is not considered in the equivalent bending 
stiffness approach. Above, we deal with pressure which is permanently normal to the arc of the ring. 
If the external pressure is caused by radial forces directed permanently to the center (see [32], problem 
134), then intensity 𝑝 must be replaced to . 

Buckling pressure for the circular ring with bending stiffness (5) is [34] 𝑝 = 𝑘 (6) 

where 𝑝 = భ್బ್ , 𝑝ଵ = ଷாூோయ  is the buckling pressure of the circular ring with bending stiffness (5);  𝑝 = ଷாூோయ  is the buckling pressure of the circular ring with radius, R, and bending stiffness 𝐸𝐼. 
Corrugation profile (4) has two important characteristics, namely, 𝑛 and ℎ . The buckling 

pressure (6) depends on the parameter 𝑛ℎ (Table 1), which can be called the corrugation parameter. 
For ℎ =  0, one has 𝑘 =  1; by increasing 𝑛ℎ, the critical pressure decreases (Figure 4). 

  

Figure 2. One pitch of corrugation.

In this case, arc (ϕ1,ϕ2) length s and radius of curvature ρ of the ring are:

s =
∫ ϕ2

ϕ1

Adϕ; ρ =
A3

r2 + 2r2
ϕ − rrϕϕ

(2)

where A =
√

r2 + r2
ϕ, (·)ϕ =

d(·)
dϕ .

We suppose

h� 1;
2π
n
� 1 (3)

Further, we choose the corrugation profile most convenient for analysis (Figure 1):

r = R(1 + hcos(nϕ)) (4)

We assume that, for the ring, the hypothesis of flat cross-section is satisfied and the magnitude of
the bending moment is proportional to the change in the curvature of the middle surface of the ring,
in the section under consideration.

We deal with the general instability of the corrugated ring, i.e., the transition to the form with
non-circular basic ring. Local buckling modes are absent. The following assumptions are also valid:
spatial forms of equilibrium are not considered; during deformation the load remains directed normal
to the deformed ring, and its intensity does not change.

The problem is solved in a linear formulation, using the static criterion of bifurcational stability
loss. As shown in a number of studies [32–35], if the initial problem is conservative and the load is
applied quasistatically, a similar approach to studying the stability of elastic systems is justified.

3. Equivalent Bending Stiffness Approach

Let us replace the corrugated ring with a circular one, radius R, with the equivalent bending
stiffness. To determine this stiffness, following [16], we single out one corrugation wave, and due to
the large number of such waves, the curvature of the basic circle can be neglected (Figure 2). Effective
bending stiffness, D, is stiffness that ensures equality of deformations of the original curvilinear and
approximating rectilinear beams. As a result, one obtains

D = EIk (5)

where k = 1
ls
= 〈A〉−1, 〈. . .〉 = 1

2πR

∫ 2π
0 (. . .)dϕ; E is the Young’s modulus of the ring material; I is the

moment of inertia of the ring cross-section; ls =
∫ 2π/n

0 Adϕ and l = 2πR/n are the lengths of the wave
of the corrugation and its projection.

To evaluate the intensity of external pressure p0 acting on an equivalent basic ring, we select arcs
ds and dl (Figure 3). Projecting the load shows that the normal pressure on the basic ring is the same as
the original one.
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Figure 3. Projection of external pressure to the basic ring: p, p0 are the intensities of external
pressure acting on the corrugated and basic circular ring; θ is the angle between the tangents to the
corrugated and the basic circlular ring; ds and dl are the arcs of the corrugated and basic circular ring,
dl = ds cosθ; P = pds = pdl

cosθ ; Pn = Pcosθ = pdl; p0 = p.

Note that the projection also gives a tangential load in the basic circular ring, self-balancing along
one pitch of corrugation. Additional tangential load is not considered in the equivalent bending
stiffness approach. Above, we deal with pressure which is permanently normal to the arc of the ring.
If the external pressure is caused by radial forces directed permanently to the center (see [32], problem
134), then intensity p must be replaced to p

k .
Buckling pressure for the circular ring with bending stiffness (5) is [34]

pb = k (6)

where pb =
p1

b
p0

b
, p1

b = 3kEI
R3 is the buckling pressure of the circular ring with bending stiffness (5);

p0
b = 3EI

R3 is the buckling pressure of the circular ring with radius, R, and bending stiffness EI.
Corrugation profile (4) has two important characteristics, namely, n and h. The buckling pressure

(6) depends on the parameter nh (Table 1), which can be called the corrugation parameter. For h = 0,
one has k = 1; by increasing nh, the critical pressure decreases (Figure 4).

Table 1. Buckling loads (6) for the circular ring with the equivalent bending stiffness for constant value
of nh.

nh = 1.6 n = 160;
h = 0.01

n = 80;
h = 0.02

n = 40;
h = 0.04

n = 20;
h = 0.08

n = 16;
h = 0.1

pb 0.6767 0.6767 0.6767 0.6766 0.6764
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Figure 4. Ratio of buckling loads of corrugated (4) and basic circular rings p0
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nh (h = 0.05; n = 0 . . . 100).

Comparing of the corrugated and circular rings with the same perimeter shows that corrugation
increases the critical pressure

pbp = k−2 (7)

where pbp =
Pb
Pbp

, Pbp = 3EI
(k−1R)3 is the buckling pressure of the circular ring of the same perimeter.

Radius R1 of the circular ring, with the perimeter equal to the perimeter of the corrugated one,

can be calculated as follows R1 =
∫ 2π

0 Adϕ/2π.
Using Formulas (6) and (7), one easily determines, for corrugation profile (4), that the buckling

load of the corrugated ring is 31% higher than for the circular ring of the same perimeter. On the other
hand, the corrugated ring restricts 23.6% less area. Comparison using (6) with the basic circular ring
(Figure 1) shows a decrease in the critical pressure for the corrugated one by 12.6% and a decrease in
the restricted area by 0.125%. In this case, the perimeter of the corrugated ring is 14.5% larger than the
perimeter of the basic ring.

The questions remain unclear:

(a) the applicability of the equivalent bending stiffness approach to the stability problems;
(b) estimation of the error caused by neglecting the curvature of the basic circular ring in determining

equivalent bending stiffness;
(c) estimation of the accuracy of the buckling pressure obtained with the equivalent bending stiffness

approach and the possibility of its refinement.

4. Asymptotic Homogenization Method

Suppose that under the influence of an external pressure, the initial equilibrium state of the
corrugated ring transits to a new equilibrium state, which has two perpendicular axes of symmetry.
We write the equation describing this state and find the minimum value of pressure at which such a
state becomes stable.

The symmetry axes of the new equilibrium form are taken as the x, y coordinate axes and consider
the part of the ring lying above the horizontal axis of symmetry (Figure 5).
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Figure 5. The part of the ring lying above the horizontal axis of symmetry: numbers 1 and 2 correspond
to the middle lines of the basic circular ring before and after buckling; Ñ, M̃, w̃, r̃ are the internal force,
moment, deflection, and radius at the points A and C.

The bending moment M in the cross-section B is

M = M̃ + Ñ
∣∣∣AD

∣∣∣− p

∣∣∣AB
∣∣∣2

2
(8)

where Ñ = p(r− w̃).
Expression (8) can be written as

M = M̃− p


∣∣∣AB

∣∣∣2
2
−

∣∣∣AO
∣∣∣∣∣∣AD

∣∣∣ (9)

From triangle ABO (Figure 5), one obtains∣∣∣AB
∣∣∣2

2
−

∣∣∣AO
∣∣∣∣∣∣AD

∣∣∣ = 1
2

(∣∣∣OB
∣∣∣2 − ∣∣∣OA

∣∣∣2) = 1
2

(
(r−w)2

− (̃r− w̃)2
)

(10)

Substituting expression (10) into Equation (9), after linearization with respect to w and w̃, we obtain

M = M̃−
1
2

p
(
r2
− r̃2 + 2̃rw̃− 2rw

)
(11)

We express the bending moment (11) through the projections of displacements on the basic circular
ring (Figure 6)

M = EI
1
A

(
1
A

(
ru + rϕw

ρ
−

( rw− rϕu
A

)
ϕ

))
ϕ

(12)
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Figure 6. Projections of displacements on the basic circular ring. Here u′, w′ are the tangential and
normal displacements of the corrugated ring; u, w are the projections of these displacements on the
basic circular ring; u′ =

ru+rϕw
A ; w′ =

rw−rϕu
A .

Expression (12) is reduced to the form

M = EI
1
A

( 1
A2

(
rϕε− rϑ

))
ϕ

(13)

where
ε = uϕ + w; ϑ = wϕ − u, (14)

ε, ϑ are the circumferential deformation and the angle of rotation of the tangent to the basic circular
ring [34].

We suppose inextensibility conditions for basic ring

uϕ + w = 0 (15)

Taking into account condition (15), expression (13) can be rewritten as follows

M = EI
1
A

 r
(
wϕ − u

)
A2


ϕ

. (16)

Substituting the expression for moment (16) into Equation (11), one obtains r
(
wϕ − u

)
A2


ϕ

+ pArw =
A
2

(
p
(
r2
− r̃2 + 2̃rw̃

)
− 2M

)
(17)

where p =
p
EI ; M = M̃

EI .
For eigenvalue problem (15), (17) must be supplemented with symmetry conditions (Figure 5)

wϕ(0) = wϕ
(
π
2

)
= 0 (18)

So, we obtained an ODE with rapidly oscillating coefficients. This kind of problem can be efficiently
solved by the homogenization method [36–38] based on the two-scale asymptotic expansions.
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Let us introduce a new variable, ξ = nϕ, which is assumed to be the independent on ϕ, hence

d
dϕ

=
∂
∂ϕ

+ n
∂
∂ξ

(19)

The projections of the displacements u, w are represented as series

u =
∞∑

k=0

n−kuk(ϕ, ξ); w =
∞∑

k=0

n−kwk(ϕ, ξ), corr (20)

where uk, wk are the ξ-periodic functions with period 2π.
Substituting expansions (20) into Equations (15) and (17), after splitting in powers of n−k, we obtain

∂
∂ξ

(
a(ξ)

∂w0

∂ξ

)
= 0 (21)

∂u0

∂ξ
= 0 (22)

∂
∂ξ

(
a(ξ)

∂w1

∂ξ

)
+

∂
∂ξ

(
a(ξ)

(
∂w0

∂ϕ
− u0

))
= 0 (23)

∂
∂ξ

(
a(ξ) ∂w2

∂ξ

)
+ ∂

∂ξ

(
a(ξ)

(
∂w1
∂ϕ − u1

))
+ a(ξ) ∂

2w1
∂ϕ∂ξ + a(ξ) ∂

∂ϕ

(
∂w0
∂ϕ − u0

)
+ pArw0

= A
2

(
p
(
r2
− r̃2 + 2̃rw̃

)
− 2M

) (24)

∂u0

∂ϕ
= −w0 (25)

where a(ξ) = r
A2 .

Using Equations (21) and (22), one obtains

w0 = w0(ϕ); u0 = u0(ϕ) (26)

Then Equation (23) can be rewritten as follows

∂
∂ξ

(
a(ξ)

∂w1

∂ξ

)
= −

∂a(ξ)
∂ξ

(
∂w0

∂ϕ
− u0

)
(27)

Integrating Equation (27) over ξ, we obtain

∂w1

∂ξ
= −

∂w0

∂ϕ
+ u0 +

C(ϕ)
a(ξ)

. (28)

The integration “constant” C(ϕ) is determined from the periodicity condition for the function w1

with respect to ξ:

C(ϕ) = â
(
∂w0

∂ϕ
− u0

)
, â =

(
1

2π

∫ 2π

0
a−1dξ

)−1

(29)

Excluding derivative ∂w1
∂ξ from Equation (24), one obtains

∂
∂ξ

(
a(ξ) ∂w2

∂ξ

)
+ ∂

∂ξ

(
a(ξ)

(
∂w1
∂ϕ − u1

))
+ â ∂

∂ϕ

(
∂w0
∂ϕ − u0

)
+ pArw0

= A
2

(
p
(
r2
− r̃2 + 2̃rw̃

)
− 2M

) (30)
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We apply to Equation (30) the averaging operator,
∫ 2π

0 (· · · )dξ. The first two terms vanish due to
the periodicity in ξ, and finally we have

â
d

dϕ

(
dw0

dϕ
− u0

)
+ p

.
sw0 =

p
2

(..
s− s̃r(̃r− 2w̃)

)
− sM (31)

where
.
s = 1

2π

∫ 2π
0 Ardξ ;

..
s = 1

2π

∫ 2π
0 Ar2dξ ; s = 1

2π

∫ 2π
0 Adξ .

Using expression (25), Equation (31) is reduced to

d2w0

dϕ2 + β2w0 = α (32)

where β2 = 1 + p
k̂
; k̂ =

.
â.
s
; α =

p
2â

(..
s− s̃r (̃r− 2w̃)

)
−

sM
â .

The general solution of the ODE (32) is

w0 = C1 sin βϕ+ C2 cos βϕ+
α

β2 (33)

where C1, C2 are the integration constants.
For function w0, one has

dw0

dϕ
= 0 at ϕ = 0,

π
2

(34)

Substituting expression (33) into Equation (34), we find

C1 = 0; β = 2m, m = 1, 2, . . . (35)

Assuming m = 1, one finds from expression (35) the buckling pressure of the corrugated ring

p2
b = 3k̂ (36)

Thus, the rationale for the use of the equivalent bending stiffness approach to the problem of the
stability of a corrugated ring is obtained.

Figure 7 shows how the value of the critical pressure of the corrugated ring p2
b decreases compared

to a value for the circular ring of radius R with an increase in the depth of the corrugation h.
Thus, an increase in the depth of the corrugation decreases the critical pressure for the

corrugated ring.
Figure 8 shows a comparison of buckling pressures p2

b and p2e
b for corrugated and circular rings

having the same volume of material. It is obvious that it is more optimal to increase the buckling
pressure by increasing the cross section of a circular ring than by corrugating it.
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Asymptotic homogenization method gives less of a value of a buckling load than equivalent
bending stiffness approach. This difference increases with the increase of the depth of the corrugation
h (Figure 9).
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stiffness approach and asymptotic homogenization method remains open.

5. Using the Imperfection Method

“The imperfection method is characterized by the question: What is the value of the load for
which the static displacements of the imperfect system become excessive or even infinite?” [33].
This approach was widely used by Timoshenko [34]. Critical re-examination of the imperfection
method was described by Gubanova and Panovko [35].

Let us write the ODE of the deformed midline of the ring in the framework of the flat
cross-section hypothesis

1
ρ
−

1
ρ
=

M
EI

(37)

where 1
ρ =

(r−w)2+2(r−w)2
ϕ−(r−w)(r−w)ϕϕ

A
3 ; A =

√
(r−w)2 + (r−w)2

ϕ.

Substituting the expansion A in powers of w
R and expression (11) for the bending moment M to

the equilibrium Equation (37), after ignoring the second-order terms, one obtains

rwϕϕ + 3
A

(
rrϕ + 2

rϕ3

r −
4
3 rϕA− rϕrϕϕ

)
wϕ

+ 1
A

(
Arϕϕ − 2rA + 3r2 + 6rϕ2

− 3rrϕϕ + prA4
)
w

=
(
p
(
r2
− r̃2 + 2̃r w̃

)
− 2M

)
A3

2

(38)

The solutions of Equation (38) must satisfy the symmetry conditions (18).
Numerical solutions of the boundary value problem (38), (18) were obtained on the basis of

the following iterative scheme: at the first iteration, we suppose w̃ = 0; M = 0 and calculate
w̃ = w(0); M = 1

ρ(0) −
1

ρ(0) . Then, new values of w̃ and M are substituted into Equation (39) and used
in the second iteration. Subsequent iterations are carried out similarly. This algorithm was used for the
following corrugation profile

r = 1 + hcos(2πnϕ) (39)
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Symmetry conditions are

wϕ(0) = wϕ
(1

4

)
= 0 (40)

Comparison of the results of calculation of the deflection at the point ϕ = 0 for n = 16, h = 0.01,
showed a satisfactory convergence of the used iterative scheme (Table 2).

Table 2. Comparison of the results of calculation of the deflection at the pointϕ = 0 for n = 16, h = 0.01;
here ∆i =

wi−1−w1
wi−1

100, i = 1− 4.

Number of Iteration/Pressure p = −1 p = −1.5 p = −2

3 ∆3 = 0.8% ∆3 = 1.09% ∆3 = 12%
4 ∆4 = 0.01% ∆4 = 1.06% ∆4 = 3.18%

To estimate the critical pressure of the corrugated ring, the dependences of the deflection at the
point were ϕ = 0 on the external pressure for corrugation profile (39) with parameters n = 16, h = 0.01
(Figure 10a); n = 8, h = 0.02 (Figure 10b).Symmetry 2020, 12, x FOR PEER REVIEW 13 of 16 
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Figure 10. Diagrams of loading a corrugated ring with a corrugation (39): (a) n = 16, h = 0.01;
(b) n = 8, h = 0.02; p0

b = 3, p1
b = 2.98, p2

b = 2.94 are buckling pressures for the smooth ring
and for the corrugated ring obtained by the equivalent bending stiffness approach and asymptotic
homogenization method.

The pressure at which a sharp increase in the deflection occurs gives estimation of buckling load.
The same figures show that the buckling pressure values found using the equivalent bending stiffness
approach p1

b , asymptotic homogenization method p2
b , and buckling pressure for circular ring p0

b = 3.

6. Conclusions

One can increase the critical pressure of a circular ring of a given perimeter using corrugation.
However, a corrugated ring restricts less area, which is of practical importance in the design of
cylindrical tanks. Comparison with the basic circular ring shows a decrease in critical pressure.
Thus, long cylindrical circumferentially-corrugated shells have less rigidity at external pressure than
circular shells with basic radius.
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It is well known [39–41] that initial imperfections lead to the decrease of critical pressure for shells.
However, in this case, one deals with initial imperfections whose change in circumferential direction
coincides with a buckling form of the ideal shell. A circular ring buckles along two waves; therefore,
many-waves corrugation increases its stability.

We solved our problem under the assumption that the pre-buckling state is momentless. For circular
cylindrical shells under axisymmetric transverse pressure, this assumption is correct [42]. In our case,
the correctors to the homogenized solution are rapidly variable, therefore, their projection onto the
slow changing buckling form is insignificant.

The critical pressure of the corrugated ring depends on the product of two parameters of the
corrugation: number of corrugations n and their depth h. Rings with the same values of parameter nh,
have the same critical pressure.

The asymptotic homogenization method gave the possibility of mathematically justifying the
equivalent bending stiffness approach and corrected the values of reduced bending rigidity and
buckling pressure.

In our paper, corrugation profile has a cosine-shaped configuration. In engineering practice,
a lot of other configuration, such as trapezoidal, rectangular, and zigzag, profiles are used. The main
conclusions that we obtained based on the analysis of the simplest case remain unchanged. Namely:
the corrugation reduces the critical pressure, the decrease depends mainly on the corrugation parameter
nh, with increasing nh, and the critical pressure decreases.

Asymptotic homogenization method is applicable for the above profiles according to the scheme
developed in this paper. Only the solutions to the cell problem will change, and therefore the values of
equivalent stiffnesses will be different.

Replacing the original corrugated ring with a circular one of the same perimeter leads to a
symmetrization of the problem. It was shown in [43] that an increase in symmetry in eigenvalue
problems for ODEs with periodic coefficients leads to an increase in eigenvalues. Therefore, the
found-above values of buckling loads are overestimated.

A few words concerning possible generalizations: experimental studies [7] indicate the need to
take into account, in many cases, inelastic general instability and local buckling modes. When deriving
nonlinear equations by taking into account inelastic deformation, the results obtained in [44,45] can be
used. The models proposed in [25,26] could be used for improving the original model, accounting
more exactly for the coupling between tangential and bending loads.
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