The Echo Method for Axion Dark Matter Detection
Abstract
:1. Introduction
2. Power in the Echo Wave
3. Echo Intensity
3.1. Echo of a Dish Antenna Beam
3.2. Paraxial Gaussian Beam
4. Echo Collected Power and Sensitivity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Boyarsky, A.; Drewes, M.; Lasserre, T.; Mertens, S.; Ruchayskiy, O. Sterile neutrino Dark Matter. Prog. Part. Nucl. Phys. 2019, 104, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Nelson, A.E.; Scholtz, J. Dark Light, Dark Matter and the Misalignment Mechanism. Phys. Rev. D 2011, 84, 103501. [Google Scholar] [CrossRef] [Green Version]
- Peccei, R.; Quinn, H.R. CP Conservation in the Presence of Instantons. Phys. Rev. Lett. 1977, 38, 1440–1443. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, S. A New Light Boson? Phys. Rev. Lett. 1978, 40, 223–226. [Google Scholar] [CrossRef]
- Wilczek, F. Problem of Strong P and T Invariance in the Presence of Instantons. Phys. Rev. Lett. 1978, 40, 279–282. [Google Scholar] [CrossRef]
- Svrcek, P.; Witten, E. Axions In String Theory. J. High Energy Phys. 2006, 06, 051. [Google Scholar] [CrossRef] [Green Version]
- Preskill, J.; Wise, M.B.; Wilczek, F. Cosmology of the Invisible Axion. Phys. Lett. B 1983, 120, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Abbott, L.; Sikivie, P. A Cosmological Bound on the Invisible Axion. Phys. Lett. B 1983, 120, 133–136. [Google Scholar] [CrossRef]
- Dine, M.; Fischler, W. The Not So Harmless Axion. Phys. Lett. B 1983, 120, 137–141. [Google Scholar] [CrossRef]
- Arias, P.; Cadamuro, D.; Goodsell, M.; Jaeckel, J.; Redondo, J.; Ringwald, A. WISPy Cold Dark Matter. J. Cosmol. Astropart. Phys. 2012, 06, 013. [Google Scholar] [CrossRef]
- Sikivie, P. Invisible Axion Search Methods. Rev. Mod. Phys. 2021, 93, 015004. [Google Scholar] [CrossRef]
- Irastorza, I.G.; Redondo, J. New experimental approaches in the search for axion-like particles. Prog. Part. Nucl. Phys. 2018, 102, 89–159. [Google Scholar] [CrossRef] [Green Version]
- Sikivie, P. Experimental Tests of the Invisible Axion. Phys. Rev. Lett. 1983, 51, 1415–1417, Erratum in Phys. Rev. Lett. 1984, 52, 695. [Google Scholar] [CrossRef]
- Hertzberg, M.P.; Schiappacasse, E.D. Dark Matter Axion Clump Resonance of Photons. J. Cosmol. Astropart. Phys. 2018, 11, 004. [Google Scholar] [CrossRef] [Green Version]
- Caputo, A.; Garay, C.P.; Witte, S.J. Looking for Axion Dark Matter in Dwarf Spheroidals. Phys. Rev. D 2018, 98, 083024, Erratum in Phys. Rev. D 2019, 99, 089901. [Google Scholar] [CrossRef] [Green Version]
- Arza, A. Photon enhancement in a homogeneous axion dark matter background. Eur. Phys. J. C 2019, 79, 250. [Google Scholar] [CrossRef]
- Caputo, A.; Regis, M.; Taoso, M.; Witte, S.J. Detecting the Stimulated Decay of Axions at RadioFrequencies. J. Cosmol. Astropart. Phys. 2019, 03, 027. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Shao, L.; Li, L.X. Resonant instability of axionic dark matter clumps. J. Cosmol. Astropart. Phys. 2020, 07, 038. [Google Scholar] [CrossRef]
- Arza, A.; Schwetz, T.; Todarello, E. How to suppress exponential growth—On the parametric resonance of photons in an axion background. J. Cosmol. Astropart. Phys. 2020, 10, 013. [Google Scholar] [CrossRef]
- Levkov, D.; Panin, A.; Tkachev, I. Radio-emission of axion stars. Phys. Rev. D 2020, 102, 023501. [Google Scholar] [CrossRef]
- Arza, A.; Sikivie, P. Production and detection of an axion dark matter echo. Phys. Rev. Lett. 2019, 123, 131804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arza, A.; Todarello, E. The axion dark matter echo: A detailed analysis. arXiv 2021, arXiv:2108.00195. [Google Scholar]
- Turner, M.S. Cosmic and Local Mass Density of Invisible Axions. Phys. Rev. D 1986, 33, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Duffy, L.; Sikivie, P. The Caustic Ring Model of the Milky Way Halo. Phys. Rev. D 2008, 78, 063508. [Google Scholar] [CrossRef] [Green Version]
- Foster, J.W.; Rodd, N.L.; Safdi, B.R. Revealing the Dark Matter Halo with Axion Direct Detection. Phys. Rev. D 2018, 97, 123006. [Google Scholar] [CrossRef] [Green Version]
- Hui, L.; Joyce, A.; Landry, M.J.; Li, X. Vortices and waves in light dark matter. J. Cosmol. Astropart. Phys. 2021, 01, 011. [Google Scholar] [CrossRef]
- Centers, G.P.; Blanchard, J.W.; Conrad, J.; Figueroa, N.L.; Garcon, A.; Gramolin, A.V.; Kimball, D.F.; Lawson, M.; Pelssers, B.; Smiga, J.A.; et al. Stochastic fluctuations of bosonic dark matter. arXiv 2019, arXiv:1905.13650. [Google Scholar]
- Sikivie, P. Evidence for ring caustics in the Milky Way. Phys. Lett. B 2003, 567, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Banik, N.; Christopherson, A.J.; Sikivie, P.; Todarello, E.M. New astrophysical bounds on ultralight axionlike particles. Phys. Rev. D 2017, 95, 043542. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarty, S.S.; Han, Y.; Gonzalez, A.; Sikivie, P. Implications of triangular features in the Gaia skymap for the Caustic Ring Model of the Milky Way halo. arXiv 2020, arXiv:2007.10509. [Google Scholar]
- De Panfilis, S.; Melissinos, A.C.; Moskowitz, B.E.; Rogers, J.T.; Semertzidis, Y.K.; Wuensch, W.; Halama, H.J.; Prodell, A.G.; Fowler, W.B.; Nezrick, F.A. Limits on the Abundance and Coupling of Cosmic Axions at 4.5-Microev < m(a) < 5.0-Microev. Phys. Rev. Lett. 1987, 59, 839. [Google Scholar] [CrossRef] [Green Version]
- Hagmann, C.; Sikivie, P.; Sullivan, N.S.; Tanner, D.B. Results from a search for cosmic axions. Phys. Rev. D 1990, 42, 1297–1300. [Google Scholar] [CrossRef] [PubMed]
- Du, N.; Force, N.; Khatiwada, R.; Lentz, E.; Ottens, R.; Rosenberg, L.J.; Rybka, G.; Carosi, G.; Woollett, N.; Bowring, D.; et al. A Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment. Phys. Rev. Lett. 2018, 120, 151301. [Google Scholar] [CrossRef] [Green Version]
- Braine, T.; Cervantes, R.; Crisosto, N.; Du, N.; Kimes, S.; Rosenberg, L.J.; Rybka, G.; Yang, J.; Bowring, D.; Chou, A.S.; et al. Extended Search for the Invisible Axion with the Axion Dark Matter Experiment. Phys. Rev. Lett. 2020, 124, 101303. [Google Scholar] [CrossRef] [Green Version]
- Boutan, C.; Jones, M.; LaRoque, B.H.; Oblath, N.S.; Cervantes, R.; Du, N.; Force, N.; Kimes, S.; Ottens, R.; Rosenberg, L.J.; et al. Piezoelectrically Tuned Multimode Cavity Search for Axion Dark Matter. Phys. Rev. Lett. 2018, 121, 261302. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Ahn, S.; Choi, J.; Ko, B.R.; Semertzidis, Y.K. Axion Dark Matter Search around 6.7 μeV. Phys. Rev. Lett. 2020, 124, 101802. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.; Youn, S.; Bae, S.; Kim, J.; Seong, T.; Kim, J.E.; Semertzidis, Y.K. Search for Invisible Axion Dark Matter with a Multiple-Cell Haloscope. Phys. Rev. Lett. 2020, 125, 221302. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O.; Lee, D.; Chung, W.; Ahn, D.; Byun, H.; Caspers, F.; Choi, H.; Choi, J.; Chung, Y.; Jeong, H.; et al. First Results from an Axion Haloscope at CAPP around 10.7 μeV. Phys. Rev. Lett. 2021, 126, 191802. [Google Scholar] [CrossRef]
- Zhong, L.; Al Kenany, S.; Backes, K.M.; Brubaker, B.M.; Cahn, S.B.; Carosi, G.; Gurevich, Y.V.; Kindel, W.F.; Lamoreaux, S.K.; Lehnert, K.W.; et al. Results from phase 1 of the HAYSTAC microwave cavity axion experiment. Phys. Rev. D 2018, 97, 092001. [Google Scholar] [CrossRef] [Green Version]
- Backes, K.M.; Palken, D.A.; Al Kenany, S.; Brubaker, B.M.; Cahn, S.B.; Droster, A.; Hilton, G.C.; Ghosh, S.; Jackson, H.; Lamoreaux, S.K.; et al. A quantum-enhanced search for dark matter axions. Nature 2021, 590, 238–242. [Google Scholar] [CrossRef]
- Alesini, D.; Braggio, C.; Carugno, G.; Crescini, N.; D’Agostino, D.; Di Gioacchino, D.; Di Vora, R.; Falferi, P.; Gallo, S.; Gambardella, U.; et al. Galactic axions search with a superconducting resonant cavity. Phys. Rev. D 2019, 99, 101101. [Google Scholar] [CrossRef] [Green Version]
- Alesini, D.; Braggio, C.; Carugno, G.; Crescini, N.; D’Agostino, D.; Di Gioacchino, D.; Di Vora, R.; Falferi, P.; Gambardella, U.; Gatti, C.; et al. Search for invisible axion dark matter of mass ma = 43 μeV with the QUAX–aγ experiment. Phys. Rev. D 2021, 103, 102004. [Google Scholar] [CrossRef]
- McAllister, B.T.; Flower, G.; Ivanov, E.N.; Goryachev, M.; Bourhill, J.; Tobar, M.E. The ORGAN Experiment: An axion haloscope above 15 GHz. Phys. Dark Univ. 2017, 18, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Melcón, A.Á.; Cuendis, S.A.; Baier, J.; Barth, K.; Bräuniger, H.; Calatroni, S.; Cantatore, G.; Caspers, F.; Castel, J.F.; Cetin, S.A.; et al. First results of the CAST-RADES haloscope search for axions at 34.67 μeV. arXiv 2021, arXiv:2104.13798. [Google Scholar]
- Anastassopoulos, V.; Aune, S.; Barth, K.; Belov, A.; Cantatore, G.; Carmona, J.M.; Castel, J.F.; Cetin, S.A.; Christensen, F.; Collar, J.I.; et al. New CAST Limit on the Axion-Photon Interaction. Nat. Phys. 2017, 13, 584–590. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arza, A.; Todarello, E. The Echo Method for Axion Dark Matter Detection. Symmetry 2021, 13, 2150. https://doi.org/10.3390/sym13112150
Arza A, Todarello E. The Echo Method for Axion Dark Matter Detection. Symmetry. 2021; 13(11):2150. https://doi.org/10.3390/sym13112150
Chicago/Turabian StyleArza, Ariel, and Elisa Todarello. 2021. "The Echo Method for Axion Dark Matter Detection" Symmetry 13, no. 11: 2150. https://doi.org/10.3390/sym13112150