Least Squares Support Vector Machine-Based Multivariate Generalized Predictive Control for Parabolic Distributed Parameter Systems with Control Constraints
Abstract
:1. Introduction
2. System Description
3. Model Reduction by POD and LS-SVM
Algorithm 1 Proper Orthogonal Decomposition (POD) basis of rank ℓ |
Require: Snapshots , where ℓ is the rank of the POD basis.
|
4. POD and LS-SVM-Based Multivariate GPC
4.1. Multivariate GPC Strategy
Algorithm 2 The POD and least-squares support vector machine (LS-SVM)-based multivariate generalized predictive control (GPC). |
Require: A set of output is derived by appropriate excitation signals.
|
4.2. The Stability Analysis
5. Case Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARX | Autoregressive exogenous |
DPS | Distributed parameter systems |
GPC | Generalized predictive control |
K-L | Karhunen-Loève |
LPS | Lumped parameter systems |
LS | Least squares |
PCA | Principal component analysis |
PDE | Partial differential equation |
POD | Proper orthogonal decomposition |
SVM | Support vector machine |
References
- Li, H.X.; Qi, C.K. Spatio-Temporal Modeling of Nonlinear Distributed Parameter Systems—A Time/Space Separation Based Approach; Springer: New York, NY, USA, 2007. [Google Scholar]
- Volkwein, S. Lecture: Proper Orthogonal Decomposition: Theory and Reduced-Order Modelling; Universtity of Konstanz: Konstanz, Germany, 2013. [Google Scholar]
- Mallat, S. A Wavelet Tour of Signal Processing-The Sparse Way, 3rd ed.; Elsevier: Singapore, 2009. [Google Scholar]
- Jolliffe, I. Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Smyshlyaev, A.; Krstic, M. Adaptive Control of Parabolic PDEs; Princeton University Press: London, UK, 2010. [Google Scholar]
- Zheng, D.; Hoo, K.A. System identification and model-based control for distributed parameter systems. Comput. Chem. Eng. 2004, 28, 1361–1375. [Google Scholar] [CrossRef]
- Jing, X.T.; Li, H.X.; Lei, J.; Yang, N. KL-SVD based One-dimensional Modal Control combining with Diameter Control Subsystem as State Estimator in Czochralski Process. In Proceedings of the 9th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 26–27 August 2017; pp. 189–192. [Google Scholar]
- Aggelogiannaki, E.; Sarimveis, H. Nonlinear model predictive control for distributed parameter systems using data driven artificial neural network models. Comput. Chem. Eng. 2008, 32, 1225–1237. [Google Scholar] [CrossRef]
- Li, H.X.; Deng, H.; Zhong, J. Model-based integration of control and supervision for one kind of curing process. IEEE Trans. Electron. Pack. Manuf. 2004, 27, 177–186. [Google Scholar] [CrossRef]
- Deng, H.; Li, H.X.; Chen, J.R. Delay-robust stabilization of a hyperbolic PDE-ODE system. IEEE Trans. Contr. Syst. Technol. 2005, 13, 686–700. [Google Scholar]
- Romijn, R.; Özkan, L.; Weiland, S.; Ludlage, J.; Marquardt, W. A grey-box modeling approach for the reduction of nonlinear systems. J. Process. Contr. 2008, 18, 906–914. [Google Scholar] [CrossRef]
- Bartecki, K. PCA-based approximation of a class of distributed parameter systems classical vs neural network approach. Bull. Pol. Acad. Sci. 2012, 60, 651–660. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.L.; Shi, H.B. Spatiotemporal prediction for nonlinear parabolic distributed parameter system using an artificial neural network trained by group search optimization. Neurocomputing 2013, 113, 234–240. [Google Scholar] [CrossRef]
- Wang, M.L.; Shi, H.B. An adaptive neural network prediction for nonlinear parabolic distributed parameter system based on block-wise moving window technique. Neurocomputing 2014, 133, 67–73. [Google Scholar] [CrossRef]
- Suykens, J.A.K.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 6, 293–300. [Google Scholar] [CrossRef]
- Qi, C.K.; Li, H.X. A LSSVM Modeling Approach for Nolinear Distributed Parameter Processes. In Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing, China, 25–27 June 2008; pp. 569–574. [Google Scholar]
- Qi, C.K.; Li, H.X.; Zhang, X.X.; Zhao, X.C.; Li, S.Y.; Gao, F. Time/Space-Separation-Based SVM Modeling for Nonlinear Distributed Parameter Processes. Ind. Eng. Chem. Res. 2011, 50, 332–341. [Google Scholar] [CrossRef]
- Xu, C.; Schuster, E. Model Order Reduction for High Dimensional Linear Systems based on Rank-1 Incremental Proper Orthogonal Decomposition. In Proceedings of the 2011 American Control Conference, San Francisco, CA, USA, 29 June–1 July 2011; pp. 2975–2981. [Google Scholar]
- Pourkargar, D.B.; Armaou, A. APOD Based Control of Linear Distributed Parameter Systems Under Sensor Controller Communication Bandwidth Limitations. AIChE J. 2013, 61, 434–447. [Google Scholar] [CrossRef]
- Lu, X.J.; Zou, W.; Huang, M.H. An adaptive modeling method for time-varying distributed parameter processes with curing process applications. Nonlinear Dynam. 2015, 82, 865–876. [Google Scholar] [CrossRef]
- Wang, M.L.; Qi, C.K.; Yan, H.C.; Shi, H.B. Hybrid neural network predictor for distributed parameter system based on nonlinear dimension reduction. Neurocomputing 2016, 171, 1591–1597. [Google Scholar] [CrossRef]
- Narasingam, A.; Siddhamshetty, P.; Kwon, J.S. Temporal clustering for order reduction of nonlinear parabolic PDE systems with time-dependent spatial domains: Application to a hydraulic fracturing process. AIChE J. 2017, 63, 3818–3831. [Google Scholar] [CrossRef]
- Sidhu, H.S.; Narasingam, A.; Siddhamshetty, P.; Kwon, J.S. Mohtadi and P. S. Tuffs, Model order reduction of nonlinear parabolic PDE systems with moving boundaries using sparse proper orthogonal decomposition: Application to hydraulic fracturing. Comput. Chem. Eng. 2018, 112, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Clarke, D.W.; Mohtadi, C.; Tuffs, P.S. Generalized predictive control–Part I:the basic algorithm. Automatica 1987, 23, 137–148. [Google Scholar] [CrossRef]
- Clarke, D.W.; Mohtadi, C.; Tuffs, P.S. Generalized predictive control–Part II:extensions and interpetations. Automatica 1987, 23, 149–160. [Google Scholar] [CrossRef]
- Camacho, E.F.; Bordons, C. Model Predictive Control, 2nd ed.; Springer: New York, NY, USA, 2007. [Google Scholar]
- Ai, L.; Zhang, D.S.; Teo, K.L.; Deng, L.W. Generalized Predictive Temperature Control in Tubular Chemical Reactors by means of POD and LSSVM. In Proceedings of the 39th Chinese Control Conference, Shenyang, China, 27–29 July 2020; pp. 2407–2412. [Google Scholar]
- Iplikci, S. Support vector machines-based generalized predictive control. Int. J. Robust. Nonlin. 2006, 16, 843–862. [Google Scholar] [CrossRef]
- Iplikci, S. Online trained support vector machines-based generalized predictive control of non-linear systems. Int. J. Adapt. Control. 2006, 20, 599–621. [Google Scholar] [CrossRef]
- Guo, Z.K.; Guan, X.P. Nonlinear generalized predictive control based on online least squares support vector machines. Nonlinear Dynam. 2015, 79, 1163–1168. [Google Scholar] [CrossRef]
- Li, N.; Hua, C.; Wang, H.F.; Li, S.Y.; Ge, S.S. Time-Space Decomposition Based Generalized Predictive Control of a Transport-Reaction Process. Ind. Eng. Chem. Res. 2011, 50, 11628–11635. [Google Scholar] [CrossRef]
- Hua, C.; Li, N.; Li, S.Y. Time-space ARX modeling and predictive control for distributed parameter system. Control Theory Appl. 2011, 28, 1711–1716. [Google Scholar]
- Liu, P.F.; Tao, J.L.; Wang, X.G. Decoupling ARX Time-space model based GPC for distributed parameter system. In Proceedings of the 34th Chinese Control Conference, Hangzhou, China, 28–30 July 2015; pp. 612–617. [Google Scholar]
- Christofides, P.D. Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ai, L.; Xu, Y.; Deng, L.; Teo, K.L. Least Squares Support Vector Machine-Based Multivariate Generalized Predictive Control for Parabolic Distributed Parameter Systems with Control Constraints. Symmetry 2021, 13, 453. https://doi.org/10.3390/sym13030453
Ai L, Xu Y, Deng L, Teo KL. Least Squares Support Vector Machine-Based Multivariate Generalized Predictive Control for Parabolic Distributed Parameter Systems with Control Constraints. Symmetry. 2021; 13(3):453. https://doi.org/10.3390/sym13030453
Chicago/Turabian StyleAi, Ling, Yang Xu, Liwei Deng, and Kok Lay Teo. 2021. "Least Squares Support Vector Machine-Based Multivariate Generalized Predictive Control for Parabolic Distributed Parameter Systems with Control Constraints" Symmetry 13, no. 3: 453. https://doi.org/10.3390/sym13030453