A Practical Disturbance Rejection Control Scheme for Permanent Magnet Synchronous Motors
Abstract
:1. Introduction
2. Problem Formulation
2.1. Preliminary
2.2. Dynamic Model
3. Design of Disturbance Rejection Control Scheme for PMSMs
3.1. Disturbance Rejection Control
3.2. Disturbance Rejection Control for PMSMs
3.3. Gain Tuning Mechanism
3.3.1. Stability-Based Gain Selections
3.3.2. Gain Selections Based on the Meaning of Functions
4. Results and Discussions
4.1. Simulations and Experiments Comparison
4.2. Comparative Experimental Results of the DR-PI, Conventional PI, and DOBC
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, J.; Ryu, S.W.; Rafaq, M.S.; Choi, H.H.; Jung, J.E. Improved torque ripple minimization technique with enhanced efficiency for surface-mounted pmsm drives. IEEE Access 2020, 8, 115017–115027. [Google Scholar] [CrossRef]
- Shi, T.; Yan, Y.; Zhou, Z.; Xiao, M.; Xia, C. Linear quadratic regulator control for PMSM drive systems using nonlinear disturbance observer. IEEE Trans. Power Electron. 2019, 35, 5093–5101. [Google Scholar] [CrossRef]
- Aghili, F. Optimal feedback linearization control of interior PM synchronous motors subject to time-varying operation conditions minimizing power loss. IEEE Trans. Ind. Electron. 2017, 65, 5414–5421. [Google Scholar] [CrossRef]
- Song, Y.; Xia, Y.; Wang, J.; Li, J.; Wang, C.; Han, Y.; Xiao, K. Barrier Lyapunov function-based adaptive prescribed performance control of the PMSM used in robots with full-state and input constraints. J. Vib. Control 2022. [Google Scholar] [CrossRef]
- Chen, Z.H.; Xu, Z.D.; Lu, H.F.; Yang, J.Z.; Yu, D.Y.; Zhu, C.; Zhen, S.C.; Zheng, H.M. A new robust control strategy for axial flux permanent magnet motor applied on legged lunar robots. J. Vib. Control 2021. [Google Scholar] [CrossRef]
- Suleimenov, K.; Do, T.D. Design and Analysis of a Generalized High-Order Disturbance Observer for PMSMs With a Fuzy-PI Speed Controller. IEEE Access 2022, 10, 42252–42260. [Google Scholar] [CrossRef]
- Rassõlkin, A.; Kallaste, A.; Orlova, S.; Gevorkov, L.; Vaimann, T.; Belahcen, A. Re-use and recycling of different electrical machines. Latv. J. Phys. Tech. Sci. 2018, 55, 13–23. [Google Scholar] [CrossRef]
- Xia, C.; Liu, N.; Zhou, Z.; Yan, Y.; Shi, T. Steady-state performance improvement for LQR-based PMSM drives. IEEE Trans. Power Electron. 2018, 33, 10622–10632. [Google Scholar] [CrossRef]
- Choi, J.W.; Lee, S.C. Antiwindup strategy for PI-type speed controller. IEEE Trans. Ind. Electron. 2009, 56, 2039–2046. [Google Scholar] [CrossRef]
- Errouissi, R.; Al-Durra, A.; Muyeen, S.M. Experimental validation of a novel PI speed controller for AC motor drives with improved transient performances. IEEE Trans. Control Syst. Technol. 2017, 26, 1414–1421. [Google Scholar] [CrossRef]
- Sant, A.V.; Rajagopal, K.R.; Sheth, N.K. Permanent magnet synchronous motor drive using hybrid PI speed controller with inherent and noninherent switching functions. IEEE Trans. Magn. 2011, 47, 4088–4091. [Google Scholar] [CrossRef]
- Nie, Z.Y.; Zhu, C.; Wang, Q.C.; Gao, Z.; Shao, H.; Luo, J.L. Design, analysis and application of a new disturbance rejection PID for uncertain systems. ISA Trans. 2020, 101, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Nie, Z.Y.; Li, Z.; Wang, Q.G.; Gao, Z.; Luo, J. A unifying Ziegler–Nichols tuning method based on active disturbance rejection. Int. J. Robust Nonlinear Control 2021. [Google Scholar] [CrossRef]
- Lin, P.; Wu, Z.; Liu, K.Z.; Sun, X.M. A class of linear-nonlinear switching active disturbance rejection speed and current controllers for PMSM. IEEE Trans. Power Electron. 2021, 36, 14366–14382. [Google Scholar] [CrossRef]
- Dai, C.; Guo, T.; Yang, J.; Li, S. A disturbance observer-based current-constrained controller for speed regulation of PMSM systems subject to unmatched disturbances. IEEE Trans. Ind. Electron. 2020, 68, 767–775. [Google Scholar] [CrossRef]
- Rafaq, M.S.; Nguyen, A.T.; Choi, H.H.; Jung, J.W. A robust high-order disturbance observer design for SDRE-based suboptimal speed controller of interior PMSM drives. IEEE Access 2019, 7, 165671–165683. [Google Scholar] [CrossRef]
- Qu, L.; Qiao, W.; Qu, L. An enhanced linear active disturbance rejection rotor position sensorless control for permanent magnet synchronous motors. IEEE Trans. Power Electron. 2019, 35, 6175–6184. [Google Scholar] [CrossRef]
- Chen, Q.; Tan, Y.; Li, J.; Mareels, I. Decentralized PID control design for magnetic levitation systems using extremum seeking. IEEE Access 2017, 6, 3059–3067. [Google Scholar] [CrossRef]
- Meng, F.; Liu, S.; Liu, K. Design of an optimal fractional order PID for constant tension control system. IEEE Access 2020, 8, 58933–58939. [Google Scholar] [CrossRef]
- Apte, A.; Thakar, U.; Joshi, V. Disturbance observer based speed control of PMSM using fractional order PI controller. IEEE CAA J. Autom. Sin. 2019, 6, 316–326. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, J.; Zhong, Y.; Zhang, L. Extended state observer-based IMC-PID tracking control of pmlsm servo systems. IEEE Access 2021, 9, 49036–49046. [Google Scholar] [CrossRef]
- Hao, Z.; Yang, Y.; Gong, Y.; Hao, Z.; Zhang, C.; Song, H.; Zhang, J. Linear/nonlinear active disturbance rejection switching control for permanent magnet synchronous motors. IEEE Trans. Power Electron. 2021, 36, 9334–9347. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, J.; Sun, Z.; Zhang, C.; Li, S.; Yu, H. Robust speed regulation for PMSM servo system with multiple sources of disturbances via an augmented disturbance observer. IEEE ASME Trans. Mechatronics 2018, 23, 769–780. [Google Scholar] [CrossRef]
- Kuang, Z.; Du, B.; Cui, S.; Chan, C.C. Speed control of load torque feedforward compensation based on linear active disturbance rejection for five-phase PMSM. IEEE Access 2019, 7, 159787–159796. [Google Scholar] [CrossRef]
- Alfehaid, A.A.; Strangas, E.G.; Khalil, H.K. Speed control of permanent magnet synchronous motor with uncertain parameters and unknown disturbance. IEEE Trans. Control Syst. Technol. 2020, 29, 2639–2646. [Google Scholar] [CrossRef]
- Lv, H.; Zhang, L.; Yao, C.; Sun, Q.; Du, J.; Chen, X. An Improved Permanent Magnet Synchronous Motor Rotor Position Observer Design Based on Error Harmonic Elimination. Machines 2022, 10, 633. [Google Scholar] [CrossRef]
- Zhao, M.; An, Q.; Chen, C.; Cao, F.; Li, S. Observer Based Improved Position Estimation in Field-Oriented Controlled PMSM with Misplaced Hall-Effect Sensors. Energies 2022, 15, 5985. [Google Scholar] [CrossRef]
- Che, Z.; Yu, H.; Mobayen, S.; Ali, M.; Yang, C.; Bartoszewicz, A. An Improved Extended State Observer-Based Composite Nonlinear Control for Permanent Magnet Synchronous Motor Speed Regulation Systems. Energies 2022, 15, 5699. [Google Scholar] [CrossRef]
- Wang, J. Fuzzy Adaptive Repetitive Control for Periodic Disturbance with Its Application to High Performance Permanent Magnet Synchronous Motor Speed Servo Systems. Entropy 2016, 18, 261. [Google Scholar] [CrossRef]
- Hicham, F.; Yousfi, D.; Youness, A.D.; Larbi, E.M.; Rahim, N.A. Sliding-Mode Speed Control of PMSM with Fuzzy-Logic Chattering Minimization—Design and Implementation. Information 2015, 6, 432–442. [Google Scholar] [CrossRef] [Green Version]
- Cui, P.; Zheng, F.; Zhou, X.; Li, W. Current harmonic suppression for permanent magnet synchronous motor based on phase compensation resonant controller. J. Vib. Control 2020, 28, 735–744. [Google Scholar] [CrossRef]
- Rongyun, Z.; Changfu, G.; Peicheng, S.; Linfeng, Z.; Changsheng, Z. Research on chaos control of permanent magnet synchronous motor based on the synthetical sliding mode control of inverse system decoupling. J. Vib. Control 2020, 27, 1009–1019. [Google Scholar] [CrossRef]
- Nie, Z.Y.; Wang, Q.G.; She, J.; Liu, R.J.; Guo, D.S. New results on the robust stability of control systems with a generalized disturbance observer. Asian J. Control 2019, 22, 2463–2475. [Google Scholar] [CrossRef]
- Errouissi, R.; Ouhrouche, M.; Chen, W.H.; Trzynadlowski, A.M. Robust cascaded nonlinear predictive control of a permanent magnet synchronous motor with antiwindup compensator. IEEE Trans. Ind. Electron. 2011, 59, 3078–3088. [Google Scholar] [CrossRef]
- Liu, L.; Leonhardt, S.; Misgeld, B.J. Design and control of a mechanical rotary variable impedance actuator. Mechatronics 2016, 39, 226–236. [Google Scholar] [CrossRef]
- Oliveira, P.M.; Vrančić, D. Underdamped second-order systems overshoot control. IFAC Proc. Vol. 2012, 45, 518–523. [Google Scholar] [CrossRef]
- Singh, N.; Pratap, B.; Swarup, A. Design of robust control for wind turbine using quantitative feedback theory. IFAC Pap. Online 2016, 49, 718–723. [Google Scholar] [CrossRef]
- Vogt, P.; Lenz, E.; Klug, A.; Westerfeld, H.; Konigorski, U. Robust Two-Degree-of-Freedom Wheel Slip Controller Structure for Anti-lock Braking. IFAC Pap. Online 2019, 52, 431–437. [Google Scholar] [CrossRef]
- Aguilar-Orduña, M.A.; Zurita-Bustamante, E.W.; Sira-Ramírez, H.; Gao, Z. Disturbance observer based control design via active disturbance rejection control: A PMSM example. IFAC Pap. Online 2020, 53, 1343–1348. [Google Scholar] [CrossRef]
Parameters | Values | Units |
---|---|---|
Rated speed, | 2500 | rpm |
Nominal load torque | 0.97 | N·m |
Pole pairs, | 4 | - |
Nominal resistance of the stator, | 2.37 | |
Nominal inductance of the stator, | 4.3 | m·H |
Magnetic flux linkage, | 0.0623 | V·s/rad |
Nominal inertia of the rotor, | 0.0033 | kg·m2 |
Parameter | Convent. PI | DOBC | DR-PI |
---|---|---|---|
Proportional gain, | 0.0045 | 0.0020 | 0.0495 |
Integral time constant, | 0.3000 | 0.0500 | 0.1500 |
Compensator gain, | - | - | 0.022 |
Time constant, | - | - | 0.0667 |
Time constant, | - | - | 0.15 |
Speed overshoot, % | 0.5 | - | - | - |
Speed drop, % | 8.8 | 5.2 | 3 | 2.5 |
Speed overshoot, % | - | - | - | - |
Speed drop, % | 18 | 10 | 6.7 | 5.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suleimenov, K.; Do, T.D. A Practical Disturbance Rejection Control Scheme for Permanent Magnet Synchronous Motors. Symmetry 2022, 14, 1873. https://doi.org/10.3390/sym14091873
Suleimenov K, Do TD. A Practical Disturbance Rejection Control Scheme for Permanent Magnet Synchronous Motors. Symmetry. 2022; 14(9):1873. https://doi.org/10.3390/sym14091873
Chicago/Turabian StyleSuleimenov, Kanat, and Ton Duc Do. 2022. "A Practical Disturbance Rejection Control Scheme for Permanent Magnet Synchronous Motors" Symmetry 14, no. 9: 1873. https://doi.org/10.3390/sym14091873