Cosmic Ray Antihelium Probe for the Origin of the Baryonic Matter in the Universe
Abstract
:1. Introduction
2. Primordial Antimatter in the Galaxy
2.1. General Overview
- Primordial antimatter is formed with ordinary matter in the early Universe and persists to the present day in macroscopic quantities in scenarios of inhomogeneous baryosynthesis;
- Secondary antimatter is created in the collisions of the nucleus in CRs with supernova shell remnants or interstellar gas;
- Antimatter can be also created from exotic sources, such as the decay/annihilation of particles of dark matter or from an evaporation of hypothetical primary black holes.
- Violation of conservation law of baryon charge in the early stages of evolution of the Universe;
- Violation of charge C- and combined CP-symmetry;
- Violation of local thermodynamic equilibrium in the early stages of evolution of the Universe.
2.2. GCs in the Galactic Halo
3. Simulation of CR Propagation in Galaxy
3.1. Tracing Algorithm
3.2. Spectra Generator
- Initial coordinates;
- Unit vector of initial velocity;
- Kinetic energy or rigidity;
- Particle type.
3.3. Source Function
- Stationary fluxes of antimatter from the surface of hypothetical antistars (energy scale ∼ MeV).If the regions of propagation of antimatter from a GC’s antistars cross the galactic disk, then the stellar wind can penetrate into the disk and further into the solar system. In this case, we consider stationary fluxes of antimatter in a GC. All stars lose part of their mass, and the amount of particles from a GC could be high. However, this case assumes poor energies, and we need a process of further acceleration of antiparticles to effectively overcome the solar modulation.
- Flares on antistars (energy scale ∼ GeV).As a result of flares on antistars in a GC, particles can receive high energy, forming the anti-nuclear component of GCRs. Antiparticles from hypothetical flares on antistars could receive high energy and become a component of CRs.
- Explosions of hypothetical antisupernovae in a GC of antistars (energy scale eV).A supernova explosion is a process with the ejection of a major amount of particles with ∼10 erg energies. Antisupernovae could be the main source of the antimatter component in GCRs, because supernovae are the primary source of CRs in general.
3.4. Interstellar Medium
3.5. Galactic Magnetic Field
3.6. Inelastic Interactions
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CR | Cosmic Ray |
GCR | Galactic Cosmic Ray |
GC | Globular Cluster |
References
- Anderson, C. The Positive Electro. Phys. Rev. 1933, 43, 491. [Google Scholar] [CrossRef]
- Chamberlain, O.; Segrè, E.; Wiegand, C.; Ypsilantis, T. Observation of antiprotons. Phys. Rev. 1955, 43, 100. [Google Scholar]
- Cork, B.; Lambertson, G.R.; Piccioni, O.; Wenzel, W.A. Antineutrons Produced from Antiprotons in Charge-Exchange Collisions. Phys. Rev. 1956, 104, 1193–1197. [Google Scholar] [CrossRef]
- Dorfan, D.E.; Eades, J.; Lederman, L.M.; Lee, W.; Ting, C.C. Observation of antideuterons. Phys. Rev. Lett. 1965, 14, 1003–1006. [Google Scholar] [CrossRef]
- Antipov, Y.M.; Denisov, S.P.; Donskov, S.V.; Gorin, Y.P.; Kachanov, V.A.; Khromov, V.P.; Kutyin, V.M.; Landsberg, L.G.; Lapshin, V.G.; Lebedev, A.A.; et al. Observation of antihelium-3. Nucl. Phys. B 1971, 31, 235–252. [Google Scholar] [CrossRef]
- Agakishiev, H.; Aggarwal, M.M.; Ahammed, Z.; Alakhverdyants, A.V.; Alekseev, I.; Alford, J.; Anderson, B.D.; Anson, C.D.; Arkhipkin, D.; Averichevet, G.S.; et al. Observation of the antimatter helium-4 nucleus. Nature 2011, 473, 353–356. [Google Scholar]
- Poulin, V.; Salati, P.; Cholis, I.; Kamionkowski, M.; Silk, J. Where do the AMS-02 anti-helium events come from? Phys. Rev. D 2019, 99, 023016. [Google Scholar] [CrossRef]
- Khlopov, M.Y. An antimatter globular cluster in our Galaxy: A probe for the origin of matter. Gravit. Cosmol. 1998, 4, 69–72. [Google Scholar]
- Belotsky, K.M.; Golubkov, Y.A.; Khlopov, M.Y.; Konoplich, R.V.; Sakharov, A.S. Anti-helium flux as a signature for antimatter globular clusters in our galaxy. Phys. Atom. Nucl. 2000, 63, 233–239. [Google Scholar] [CrossRef]
- Golubkov, Y.; Khlopov, M. Anti-protons annihilation in the galaxy as a source of diffuse gamma background. Phys. Atom. Nucl. 2001, 64, 1821–1829. [Google Scholar] [CrossRef]
- Kuzmin, V.A. CP violation and baryon asymmetry of the universe. JETP Lett. 1970, 12, 228. [Google Scholar]
- Sakharov, A.D. Violation of CP-invariance, C-asymmetry and baryon asymmetry of the Universe. JETP Lett. 1967, 5, 32. [Google Scholar]
- Chechetkin, V.M.; Sapozhnikov, M.G.; Khlopov, M.Y.; Zeldovich, Y.B. Astrophysical aspects of antiproton interaction with He (Antimatter in the Universe). Phys. Lett. 1982, 118B, 359–362. [Google Scholar]
- Chechetkin, V.M.; Khlopov, M.Y.; Sapozhnikov, M.G. Antiproton interactions with light elements as a test of GUT cosmologies. Riv. Nuovo C. 1982, 5, 1–80. [Google Scholar] [CrossRef]
- Dolgov, A.D.; Illarionov, A.F.; Kardashev, N.S.; Novikov, I.D. Cosmological model of a baryon island. Sov. Phys. JETP 1988, 67, 1517–1524. [Google Scholar]
- Khlopov, M.Y.; Rubin, S.G.; Sakharov, A.S. Possible Origin of Antimatter Regions in the Baryon Dominated Universe. Phys. Rev. D 2000, 62, 083505. [Google Scholar] [CrossRef]
- Charlton, M.; Eriksson, S.; Shore, G.M. Fundamental Physics in Antihydrogen Experiments. arXiv 2020, arXiv:2002.09348. [Google Scholar]
- Khlopov, M.Y.; Konoplich, R.V.; Mignani, R.; Rubin, S.G.; Sakharov, A.S. Evolution and observational signature of diffused antiworld. Astropart. Phys. 2000, 12, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; Kim, K.C.; Kumazawa, T.; Kusumoto, A.; et al. Search for Antihelium with the BESS-Polar Spectrometer. Phys. Rev. Lett. 2012, 108, 131301. [Google Scholar] [CrossRef]
- Mayorov, A.G.; Galper, A.M.; Adriani, O.; Bazilevskaya, G.A.; Barbarino, G.; Bellotti, R.; Boezio, M.; Bogomolov, E.A.; Bonvicini, V.; Bongi, M.; et al. Upper limit on the antihelium flux in primary cosmic rays. JETP Lett. 2011, 93, 628–631. [Google Scholar] [CrossRef]
- Harris, W.E. A Catalog of Parameters for Globular Clusters in the Milky Way. Astron. J. 1996, 112, 1487. Available online: http://gclusters.altervista.org/ (accessed on 1 September 2022). [CrossRef]
- A Guide to GLOBULAR CLUSTERS. Available online: https://www.astro.keele.ac.uk/workx/globulars/globulars.html (accessed on 1 September 2022).
- Kalirai, J.S.; Richer, H.B. Star clusters as laboratories for stellar and dynamical evolution. R. Soc. Publ. 2009, 368, 2010. [Google Scholar] [CrossRef] [PubMed]
- Paul, M. Star Clusters. Encyclopedia of Astronomy and Astrophysics; CRC Press: Boca Ration, FL, USA, 2001. [Google Scholar]
- Golubkov, V.S.; Mayorov, A.G. Software for Numerical Calculations of Particle Trajectories in the Earth’s Magnetosphere and Its Use in Processing PAMELA Experimental Data. Bull. Russ. Acad. Sci. Phys. 2021, 85, 383–385. [Google Scholar] [CrossRef]
- Boris, J. The Acceleration Calculation from a Scalar Potential; MATT-152; Plasma Physics Laboratory, Princeton University: Princeton, NJ, USA, 1970. [Google Scholar]
- Pukhov, A. Particle-In-Cell Codes for Plasma-based Particle Acceleration. arXiv 2016, arXiv:1510.01071. [Google Scholar] [CrossRef]
- Vay, J.-L. Simulation of beams or plasmas crossing at relativistic velocity. Phys. Plasmas 2008, 15, 056701. [Google Scholar] [CrossRef]
- Qin, H.; Zhang, S.; Xiao, J.; Liu, J.; Sun, Y.; Tang, W.M. Why is Boris algorithm so good? Phys. Plasmas 2013, 20, 084503. [Google Scholar] [CrossRef]
- Mao, H.; Wirz, R. Comparison of Charged Particle Tracking Methods for Non-Uniform Magnetic Fields. In Proceedings of the 42nd AIAA Plasmadynamics and Lasers Conference, Honolulu, HI, USA, 27–30 June 2011. [Google Scholar]
- Strong, A.W.; Moskalenko, I.V. Secondary antiprotons and propagation of cosmic rays in the galaxy and heliosphere. Astrophys. J. 2001, 564, 280–296. [Google Scholar]
- Jansson, R.; Farrar, G.R. A New Model of the Galactic Magnetic Field. Astrophys. J. 2012, 757, 14. [Google Scholar] [CrossRef]
- Beck, M.C.; Beck, A.M.; Strong, A.W. New constraints on modelling the random magnetic field of the MW. J. Cosmol. Astropart. Phys. 2016, 2016, 056. [Google Scholar] [CrossRef] [Green Version]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Khlopov, M. Cosmoparticle physics of Dark Universe. Symmetry 2022, 14, 112. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golubkov, V.; Khlopov, M.; Kirichenko, A.; Kravtsova, A.; Mayorov, A.; Yulbarisov, R. Cosmic Ray Antihelium Probe for the Origin of the Baryonic Matter in the Universe. Symmetry 2022, 14, 1953. https://doi.org/10.3390/sym14091953
Golubkov V, Khlopov M, Kirichenko A, Kravtsova A, Mayorov A, Yulbarisov R. Cosmic Ray Antihelium Probe for the Origin of the Baryonic Matter in the Universe. Symmetry. 2022; 14(9):1953. https://doi.org/10.3390/sym14091953
Chicago/Turabian StyleGolubkov, Vladislav, Maxim Khlopov, Anastasia Kirichenko, Alexandra Kravtsova, Andrey Mayorov, and Rustam Yulbarisov. 2022. "Cosmic Ray Antihelium Probe for the Origin of the Baryonic Matter in the Universe" Symmetry 14, no. 9: 1953. https://doi.org/10.3390/sym14091953