The Exact Traveling Wave Solutions of a KPP Equation
Abstract
:1. Introduction
2. The ODE That Does Not Explicitly Contain the Independent Variable
3. The Correct Boundary Conditions for Equation (10)
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Exact Solution of the Generalized Duffing–van der Pol Equation
Appendix B. Generalized Burgers–Huxley Equation
Appendix C. Perturbation Theory I
Appendix D. Perturbation Theory II
References
- Fisher, R.A. The wave of advance of advantageous genes. Ann. Eugen. 1937, 7, 355. [Google Scholar] [CrossRef]
- Kolmogorov, A.; Petrovskii, I.; Piskunov, N. A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem. In Selected Works of A. N. Kolmogorov I; Tikhomirov, V.M., Ed.; Kluwer: Dordrecht, The Netherlands, 1991; pp. 248–270. ISBN 90-277-2796-1. [Google Scholar]
- Parkes, E.J.; Duffy, B.R. An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations. Comput. Phys. Commun. 1996, 98, 288–300. [Google Scholar] [CrossRef]
- Malfliet, W.; Hereman, W. The tanh method: I. Exact solutions of nonlinear evolution and wave equations. Phys. Scr. 1996, 54, 563. [Google Scholar] [CrossRef]
- Fan, E. Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 2000, 277, 212–218. [Google Scholar] [CrossRef]
- Fu, Z.; Liu, S.; Liu, S.; Zhao, Q. New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations. Phys. Lett. A 2001, 290, 72–76. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Exact solitary waves of the Fisher equation. Phys. Lett. A 2005, 342, 99–106. [Google Scholar] [CrossRef]
- Vitanov, N.K. Application of simplest equations of Bernoulli and Riccati kind for obtaining exact traveling-wave solutions for a class of PDEs with polynomial nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 2050–2060. [Google Scholar] [CrossRef]
- He, J.-H.; Abdou, M.A. New periodic solutions for nonlinear evolution equations using Exp-function method. Chaos Solitons Fractals 2007, 34, 1421–1429. [Google Scholar] [CrossRef]
- Wang, M.; Li, X.; Zhang, J. The -expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 2008, 372, 417–423. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, X.; Lu, Y. A generalized -expansion method and its applications. Phys. Lett. A 2008, 372, 3653–3658. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Gepreel, K.A. The (G′/G)-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics. J. Math. Phys. 2009, 50, 013502. [Google Scholar] [CrossRef]
- Biswas, A. Solitary wave solution for the generalized Kawahara equation. Appl. Math. Lett. 2009, 22, 208–210. [Google Scholar] [CrossRef]
- Kudryashov, N.K. Exact Solutions and Integrability of the Duffing—Van der Pol Equation. Regul. Chaotic Dyn. 2018, 23, 471. [Google Scholar] [CrossRef]
- Constantinescu, R.; Iacobescu, F.; Pauna, A.A. Nonlinear mathematical models for physical phenomena. In Proceedings of the AIP Conference Proceedings (10th Jubilee International Conference of The Balkan Physical Union), Sofia, Bulgaria, 26–30 August 2018; AIP Publishing: Sofia, Bulgaria, 2019; Volume 2075. [Google Scholar]
- Polyanin, A.D.; Zaitsev, V.F. Handbook of Exact Solutions for Ordinary Differential Equations, 2nd ed.; Chapman & Hal/CRC: Boca Raton, FL, USA, 2003. [Google Scholar]
- Benguria, R.D.; Depassier, M.C. Speed of Fronts of the Reaction-Diffusion Equation. Phys. Rev. Lett. 1996, 77, 1171. [Google Scholar] [CrossRef]
- Cornejo-Perez, O.; Rosu, H.C. Nonlinear Second Order Ode’s: Factorizations and Particular Solutions. Prog. Theor. Phys. 2005, 114, 533–538. [Google Scholar] [CrossRef]
- Kogan, E. Shock Waves in Nonlinear Transmission Lines. Phys. Stat. Sol. 2024, 2400335. [Google Scholar] [CrossRef]
- Kogan, E. The Shocks in Josephson Transmission Line Revisited. Phys. Stat. Sol. (b) 2024, 261, 2300336. [Google Scholar] [CrossRef]
- Kogan, E. Exact Analytical Solutions for the Kinks, the Solitons and the Shocks in Discrete Nonlinear Transmission Line with Nonlinear Capacitance. Phys. Stat. Sol. (b) 2024, 261, 2400140. [Google Scholar] [CrossRef]
- Gonzalez, G.; Rosu, H.C.; Cornejo-Perez, O.; Mancas, S.C. Factorization conditions for nonlinear second-order differential equations. In International Workshop on Nonlinear and Modern Mathematical Physics; Springer International Publishing: Cham, Switzerland, 2022; pp. 81–99. [Google Scholar]
- An, J.; Henderson, C.; Ryzhik, L. Quantitative Steepness, Semi-FKPP Reactions, and Pushmi-Pullyu Fronts. Arch. Ration. Mech. Anal. 2023, 247, 88. [Google Scholar] [CrossRef]
- Kaliappan, P. An exact solution for travelling waves of μt = Dμxx + μ − μk. Phys. Nonlinear Phenomen 1984, 11, 368–374. [Google Scholar] [CrossRef]
- Murray, J.D. Mathematical Biology, 2nd corrected ed.; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Debnath, L. Nonlinear Partial Differential Equations for Scientists and Engineers; Birkhäuser: Boston, MA, USA, 2005. [Google Scholar]
- Ablowitz, M.J.; Zeppetella, A. Explicit solutions of Fisher’s equation for a special wave speed. Bull. Math. Biol. 1979, 41, 835–840. [Google Scholar] [CrossRef]
- Goursat, E. pt. 2 Differential Equations; Dunkel, O.; Hedrick, E.R., Translators; Dover Publications: New York, NY, USA, 1959; Volume 2. [Google Scholar]
- Saarloos, W.V. Front propagation into unstable states. Phys. Rep. 2003, 386, 29–222. [Google Scholar] [CrossRef]
- Ma, M.; Ou, C. Linear and Nonlinear Speed Selection for Mono-Stable Wave Propagations. Siam J. Math. Anal. 2019, 51, 321. [Google Scholar] [CrossRef]
- Cherniha, R.; Serov, M.; Pliukhin, O. Nonlinear Reaction-Diffusion-Convection Equations: Lie and Conditional Symmetry, Exact Solutions and Their Applications; Chapman and Hall/CRC: Boca Raton, FL, USA, 2017. [Google Scholar]
- Kushner, A.G.; Matviichuk, R.I. Exact solutions of the Burgers–Huxley equation via dynamics. J. Geom. Phys. 2020, 151, 103615. [Google Scholar] [CrossRef]
- BAlessio, M.; Gupta, A. A Reaction-Diffusion-Chemotaxis Model for Human Population Dynamics over Fractal Terrains. arXiv 2023, arXiv:2310.07185v2. [Google Scholar]
- Clarksonz, P.A.; Mansfield, E.L. Symmetry reductions and exact solutions of a class of nonlinear heat equations. Phys. Nonlinear Phenom. 1994, 70, 250–288. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kogan, E. The Exact Traveling Wave Solutions of a KPP Equation. Symmetry 2024, 16, 1621. https://doi.org/10.3390/sym16121621
Kogan E. The Exact Traveling Wave Solutions of a KPP Equation. Symmetry. 2024; 16(12):1621. https://doi.org/10.3390/sym16121621
Chicago/Turabian StyleKogan, Eugene. 2024. "The Exact Traveling Wave Solutions of a KPP Equation" Symmetry 16, no. 12: 1621. https://doi.org/10.3390/sym16121621
APA StyleKogan, E. (2024). The Exact Traveling Wave Solutions of a KPP Equation. Symmetry, 16(12), 1621. https://doi.org/10.3390/sym16121621