Explanatory Model for Elite Canoeists’ Performance Using a Functional Electromechanical Dynamometer Based on Detected Lateral Asymmetry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedure
2.3.1. Neuromuscular Properties Assessment
2.3.2. Upper and Lower Limbs ROM Assessment
2.3.3. Leg Press Explosive Strength Test
2.3.4. Canoe Incremental Dynamometric Test
2.4. Statistical Analysis
3. Results
4. Discussion
5. Practical Applications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Álvarez-Yates, T.; García-García, O. Effect of a Hamstring Flexibility Program Performed Concurrently During an Elite Canoeist Competition Season. J. Strength Cond. Res. 2020, 34, 838–846. [Google Scholar] [CrossRef] [PubMed]
- López-Miñarro, P.A.; Alacid, F.; Rodríguez-García, P.L. Comparison of sagittal spinal curvatures and hamstrings muscle extensibility among young elite paddlers and non-athletes. Int. SportMed J. 2010, 1, 301–312. [Google Scholar]
- López-Miñarro, P.A.; Muyor, J.M.; Alacid, F.; Vaquero-Cristóbal, R.; López-Plaza, D.; Isorna, M. Comparison of hamstring extensibility and spinal posture between kayakers and canoeists. Kinesiology 2013, 45, 163–170. [Google Scholar]
- Rynkiewicz, M.; Rynkiewicz, T.; Starosta, W. Asymmetry of spinal segments mobility in canoeists and its relationship with racing speed. J. Hum. Kinet. 2013, 36, 37–43. [Google Scholar] [CrossRef]
- Maloney, S.J. The relationship between asymmetry and athletic performance: A critical review. J. Strength Cond. Res. 2019, 33, 2579–2593. [Google Scholar] [CrossRef]
- Álvarez-Yates, T.; García-García, O. Determinants of flatwater canoeing and kayaking performance: A systematic review. Med. Sport. 2021, 74, 355–383. [Google Scholar] [CrossRef]
- Steeves, D.; Thornley, L.J.; Goreham, J.A.; Jordan, M.J.; Landry, S.C.; Fowles, J.R. Reliability and Validity of a Novel Trunk-Strength Assessment for High-Performance Sprint Flat-Water Kayakers. Int. J. Sports Physiol. Perform. 2019, 14, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Ualí, I.; Herrero, A.J.; Garatachea, N.; Martín, P.J.; Alvear-Ordenes, I.; García-López, D. Maximal strength on different resistance training rowing exercises predicts start phase performance in elite kayakers. J. Strength Cond. Res. 2012, 26, 941–946. [Google Scholar] [CrossRef]
- Aguilar-Sánchez, J.; Ruiz-Orellana, L.; Chirosa-Ríos, L.J.; Lozano Zapata, R.E.; Bustos Viviescas, B.J.; Chirosa-Ríos, I.; Rodríguez-Perea, Á.; Morenas-Aguilar, M.D. Relationship between throwing velocity and specific strength assessed with Functional Electromechanical Dynamometer (FEMD) in handball players. EBM-J. Sport. Sci. 2023, 19, 107–116. [Google Scholar]
- Heller, J.; Pavel, V.; Kinkorová, I. Upper body anaerobic and aerobic capacity in paddlers: Aspects of age and gender. In Advances in Strength and Conditioning Research; Ducan, M., Lyons, M., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2009; pp. 25–35. [Google Scholar]
- Sitkowski, D.; Grucza, R. Age-related changes and gender differences of upper body anaerobic performance in male and female sprint kayakers. Biol. Sport. 2009, 26, 325–338. [Google Scholar] [CrossRef]
- McKean, M.R.; Burkett, B. The relationship between joint range of motion, muscular strength, and race time for sub-elite flat water kayakers. J. Sci. Med. Sport. 2010, 13, 537–542. [Google Scholar] [CrossRef]
- García-García, O.; Cancela-Carral, J.M.; Huelin Trillo, F. Neuromuscular profile of top level women kayakers, assessed through tensiomyography. J. Strength Cond. Res. 2015, 29, 844–853. [Google Scholar] [CrossRef]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef]
- Bishop, C.; Lake, J.; Loturco, I.; Papadopoulos, K.; Turner, A.; Read, P. Interlimb asymmetries: The need for an individual approach to data analysis. J. Strength Cond. Res. 2021, 35, 695–701. [Google Scholar] [CrossRef] [PubMed]
- García-García, O.; Cuba-Dorado, A.; Fernández-Redondo, D.; López-Chicharro, J. Neuromuscular parameters predict the performance in an incremental cycling test. Int. J. Sports Med. 2018, 39, 909–915. [Google Scholar] [CrossRef] [PubMed]
- García-García, O.; Cuba-Dorado, A.; Álvarez-Yates, T.; Carballo-López, J.; Iglesias-Caamaño, M. Clinical utility of tensiomyography for muscle function analysis in athletes. Open Access J. Sports Med. 2019, 10, 49–69. [Google Scholar] [CrossRef] [PubMed]
- Perotto, A.O.; Delagi, E.F.; Lazzeti, J.; Morrison, D. Anatomic Guide for the Electromyographer: The Limbs; Charles, C., Ed.; Springfield: Thomas, IL, USA, 2005; pp. 217–260. [Google Scholar]
- Wilk, K.E.; Reinold, M.M.; Macrina, L.C.; Portefield, R.; Devine, K.M.; Suarez, K.; Andrews, J.R. Glenohumeral Internal Rotation Measurements Differ Depending on Stabilization Techniques. Sports Health 2009, 1, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Mullaney, M.J.; McHugh, M.P.; Johnson, C.P.; Tyler, T.F. Reliability of shoulder range of motion comparing a goniometer to a digital level. Physiother. Theory Pract. 2010, 26, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Williamson, J.D.; Lawson, B.L.; Sigley, D.; Nasypany, A.; Baker, R.T. Intra- and inter-rate reliability for limb length measurement and trial error assessment of the upper quarter Y-balance test in healthy adults. Int. J. Sports Phys. Ther. 2019, 14, 707. [Google Scholar] [CrossRef]
- Gorman, P.P.; Butler, R.J.; Plisky, P.J.; Kiesel, K.B. Upper quarter y balance test: Reliability and performance comparison between genders in active adults. J. Strength. Cond. Res. 2010, 26, 3043–3048. [Google Scholar] [CrossRef]
- Gajdosik, R.; Lusin, G. Hamstring muscle tightness: Reliability of an active-knee-extension test. Phys. Ther. 1983, 63, 1085–1088. [Google Scholar] [CrossRef]
- Vivancos, A.L.; Zambudio, A.C.; Ramırez, F.C.; Del Águila, A.; Castrillón, F.J.O.; Pardo, P.J.M. OC14 Reliability and validity of a linear position transducer for strength assessment. Br. J. Sports Med. 2014, 48, A5. [Google Scholar] [CrossRef]
- Rodríguez-Perea, A.; Chirosa-Ríos, L.; Martinez-Garcia, D.; Ulloa-Díaz, D.; Guede-Rojas, F.; Jerez-Mayorga, D.; Chirosa-Ríos, I.J. Reliability of isometric and isokinetic trunk flexor strength using a functional electromechanical dynamometer. PeerJ 2019, 7, e7883. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Perea, A.; Jerez-Mayorga, D.; García-Ramos, A.; Martínez-García, D.; Chirosa Ríos, L.J. Reliability and concurrent validity of a functional electromechanical dynamometer device for the assessment of movement velocity. Proceedings of the Institution of Mechanical Engineers, Part P. J. Sport. Eng. Technol. 2021, 235, 176–181. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum: New York, NY, USA, 1988. [Google Scholar]
- Viera, A.J.; Garrett, J.M. Understanding interobserver agreement: The kappa statistic. Fam. Med. 2005, 37, 360–363. [Google Scholar]
- Dos’Santos, T.; Thomas, C.; Jones, P.A. Assessing Interlimb Asymmetries: Are We Heading in the Right Direction? Strength Cond. J. 2021, 43, 91–100. [Google Scholar] [CrossRef]
- Harrison, S.M.; Cleary, P.W.; Cohen, R.C.Z. Dynamic simulation of flat water kayaking using a coupled biomechanical-smoothed particle hydrodynamics model. Hum. Mov. Sci. 2019, 64, 252–273. [Google Scholar] [CrossRef]
- Limonta, E.; Squadrone, R.; Rodano, R.; Marzegan, A.; Veicsteinas, A.; Merati, G.; Sacchi, M. Tridimensional kinematic analysis on a kayaking simulator: Key factors to successful performance. Sport Sci. Health 2010, 6, 27–34. [Google Scholar] [CrossRef]
- Kendal, S.J.; Sanders, R.H. The Technique of Elite Flatwater Kayak Paddlers Using the Wing Paddle. Int. J. Sport. Biomech. 1992, 8, 233–250. [Google Scholar] [CrossRef]
- Ueda, H.; Han, I.; Kim, S.; Kiyota, H. Physiological characteristics and multiplejoint isokinetic strength of upper extremity inoutrigger canoe paddlers: A preliminary study. Isokinet. Exerc. Sci. 2018, 26, 133–138. [Google Scholar] [CrossRef]
- Bílý, M.; Balás, J.; Martin, A.J.; Cochrane, D.; Coufalova, K.; Süss, V. Effect of paddle grip on segmental fluid distribution in elite slalom paddlers. Eur. J. Sports Exerc. Sci. 2013, 13, 372377. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C. Interlimb Asymmetries: Are Thresholds a Usable Concept? Strength Cond. J. 2021, 43, 32–36. [Google Scholar] [CrossRef]
- Iglesias-Caamaño, M.; Álvarez-Yates, T.; Carballo-López, J.; Cuba-Dorado, A.; García-García, Ó. Is Asymmetry Different Depending on How It Is Calculated? Symmetry 2022, 14, 2195. [Google Scholar] [CrossRef]
- McKean, M.; Burkett, B. The Influence of Upper-Body Strength on Flat-Water Sprint Kayak Performance in Elite Athletes. Int. J. Sports Physiol. Perform. 2014, 9, 707–714. [Google Scholar] [CrossRef]
- Edwards, A. Injuries in kayaking. Sports Health 1993, 11, 8–11. [Google Scholar]
- Gäbler, M.; Prieske, O.; Elferink-Gemser, M.T.; Hortobágyi, T.; Warnke, T.; Granacher, U. Measures of Physical Fitness Improve Prediction of Kayak and Canoe Sprint Performance in Young Kayakers and Canoeists. J. Strength Cond. Res. 2023, 37, 1264–1270. [Google Scholar] [CrossRef]
- Nilsson, J.E.; Rosdahl, H.G. Contribution of Leg-Muscle Forces to Paddle Force and Kayak Speed During Maximal-Effort Flat-Water Paddling. Int. J. Sports Physiol. Perform. 2016, 11, 22–27. [Google Scholar] [CrossRef]
- López-Plaza, D.; Alacid, F.; Muyor, J.M.; López-Miñarro, P.Á. Sprint kayaking and canoeing performance prediction based on the relationship between maturity status, anthropometry and physical fitness in young elite paddlers. J. Sports Sci. 2017, 35, 1083–1090. [Google Scholar] [CrossRef]
- Hamano, S.; Ochi, E.; Tsuchiya, Y.; Muramatsu, E.; Suzukawa, K.; Igawa, S. Relationship between performance test and body composition/physical strength characteristic in sprint canoe and kayak paddlers. Open Access J. Sports Med. 2015, 6, 191–199. [Google Scholar]
- Nuzzo, J.L. Narrative Review of Sex Differences in Muscle Strength, Endurance, Activation, Size, Fiber Type, and Strength Training Participation Rates, Preferences, Motivations, Injuries, and Neuromuscular Adaptations. J. Strength Cond. Res. 2023, 37, 494–536. [Google Scholar] [CrossRef] [PubMed]
- Afonso, J.; Peña, J.; Sá, M.; Virgile, A.; García-de-Alcaraz, A.; Bishop, C. Why Sports Should Embrace Bilateral Asymmetry: A Narrative Review. Symmetry 2022, 14, 1993. [Google Scholar] [CrossRef]
Men (n = 12) | Women (n = 9) | |||||||
---|---|---|---|---|---|---|---|---|
Min | Max | Mean | SD | Min | Max | Mean | SD | |
Age (years) | 16 | 36 | 21.45 | 5.279 | 15 | 21 | 17.78 | 1.986 |
Height (cm) | 170.0 | 190.0 | 178.06 | 6.694 | 153.0 | 176.5 | 161.83 | 7.416 |
Weight (kg) | 65.40 | 87.30 | 76.96 | 7.813 | 55.10 | 74.90 | 62.06 | 7.075 |
Body Fat (%) | 7.30 | 14.70 | 12.10 | 2.334 | 16.00 | 23.60 | 20.49 | 2.347 |
Muscle mass (kg) | 55.10 | 71.50 | 64.29 | 6.091 | 41.10 | 57.90 | 46.61 | 5.347 |
Bone mass (kg) | 2.90 | 3.70 | 3.36 | 0.299 | 2.20 | 3.10 | 2.50 | 0.278 |
BMI 1 | 21.70 | 26.40 | 24.12 | 1.424 | 20.90 | 26.20 | 23.60 | 1.643 |
Water (%) | 60.70 | 68.20 | 63.63 | 2.124 | 58.20 | 65.20 | 60.92 | 1.946 |
Gender | Mean (cm) ± SD | % Asymmetry | Asymmetry | Asymmetry Direction | Threshold | |||
---|---|---|---|---|---|---|---|---|
Stroke Side | Non-Stroke Side | (Mean ± SD) | IC 95% | |||||
Deltoid | Tc | Males | 15.77 ±2.056 | 16.00 ± 1.370 | 6.11 ± 5.788 | −5.349–18.039 | NS | 7.27 |
Females | 15.73 ± 3.790 | 21.39 ± 18.111 | 14.72 ± 24.720 | 2.071–25.605 | NS | 19.66 | ||
Total | 15.75 ± 2.841 | 18.31 ± 11.820 | 9.80 ± 16.788 | 1.797–18.386 | NS | 13.16 | ||
Dm | Males | 3.65 ± 1.344 | 4.02 ± 1.207 | 30.76 ± 20.566 | 14.007–38.720 | NS | 34.87 | |
Females | 3.12 ± 0.729 | 3.63 ± 1.203 | 23.31 ± 14.646 | 10.108–34.974 | NS | 26.24 | ||
Total | 3.42 ± 1.131 | 3.86 ± 1.191 | 27.56 ± 18.240 | 15.688–33.217 | NS | 31.21 | ||
Vrd | Males | 188.55 ± 76.970 | 200.79 ± 56.431 | 28.72 ± 20.906 | 10.415–37.449 | NS | 32.90 | |
Females | 163.71 ± 47.971 | 167.10 ± 72.280 | 21.84 ± 17.797 | 7.666–34.868 | S | 25.40 | ||
Total | 177.91 ± 65.860 | 186.35 ± 64.289 | 27.77 ± 19.474 | 13.012–32.188 | NS | 31.66 | ||
Erector Spinae | Tc | Males | 17.21 ± 4.567 | 16.30 ± 2.942 | 8.65 ± 8.546 | 4.401–15.550 | S | 10.36 |
Females | 15.44 ± 2.004 | 15.09 ± 2.475 | 5.98 ± 7.012 | 0.066–11.284 | S | 7.38 | ||
Total | 16.45 ± 3.726 | 15.78 ± 2.755 | 7.50 ± 7.853 | 3.871–11.779 | S | 9.08 | ||
Dm | Males | 6.09 ± 1.934 | 6.53 ± 2.127 | 9.72 ± 7.894 | 3.204–16.914 | NS | 11.30 | |
Females | 4.43 ± 1.851 | 5.57 ± 1.579 | 22.75 ± 11.137 | 16.140–29.936 | NS | 24.98 | ||
Total | 5.38 ± 2.034 | 6.12 ± 1.929 | 15.31 ± 11.293 | 11.686–21.411 | NS | 17.57 | ||
Vrd | Males | 293.85 ± 96.744 | 325.00 ± 103.023 | 12.84 ± 12.834 | .591–20.732 | NS | 15.40 | |
Females | 231.43 ± 96.196 | 296.89 ± 75.901 | 24.13 ± 15.230 | 14.197–34.462 | NS | 27.19 | ||
Total | 267.10 ± 99.252 | 312.95 ± 91.351 | 17.68 ± 14.732 | 10.353–34.462 | NS | 20.62 | ||
Latissimus Dorsi | Tc | Males | 35.16 ± 9.589 | 30.25 ± 8.865 | 20.19 ± 16.811 | 12.652–33.572 | S | 23.56 |
Females | 23.65 ± 5.031 | 21.28 ± 7.328 | 15.92 ± 13.043 | 4.650–25.700 | S | 18.53 | ||
Total | 30.23 ± 9.737 | 26.41 ± 9.242 | 18.36 ± 15.105 | 11.724–26.563 | S | 21.38 | ||
Dm | Males | 9.53 ± 2.788 | 9.02 ± 3.531 | 25.83 ± 12.866 | 17.376–39.187 | S | 28.40 | |
Females | 7.40 ± 1.958 | 8.06 ± 3.603 | 21.02 ± 18.420 | 9.476–31.422 | NS | 24.70 | ||
Total | 8.61 ± 2.642 | 8.61 ± 3.505 | 23.77 ± 15.255 | 16.630–32.101 | S | 26.82 | ||
Vrd | Males | 233.76 ± 97.429 | 251.23 ± 115.771 | 30.75 ± 14.302 | 22.036–42.545 | NS | 33.61 | |
Females | 259.39 ± 89.486 | 320.96 ± 169.910 | 20.89 ± 14.307 | 10.058–30.695 | NS | 23.75 | ||
Total | 244.74 ± 92.697 | 281.11 ± 142.021 | 26.52 ± 14.812 | 19.060–33.607 | NS | 29.48 | ||
Pectoralis Major | Tc | Males | 21.67 ± 3.016 | 22.56 ± 3.405 | 9.80 ± 8.692 | 2.827–15.705 | NS | 11.54 |
Females | 20.38 ± 2.034 | 21.49 ± 4.389 | 11.00 ± 8.848 | 4.345–17.304 | NS | 12.77 | ||
Total | 21.12 ± 2.661 | 22.10 ± 3.761 | 10.31 ± 8.558 | 5.478–14.613 | NS | 12.02 | ||
Dm | Males | 9.31 ± 3.338 | 7.74 ± 2.573 | 21.08 ± 12.063 | 12.452–32.360 | S | 23.49 | |
Females | 9.179 ± 2.737 | 7.97 ± 3.389 | 26.51 ± 16.336 | 17.106–37.137 | S | 29.78 | ||
Total | 9.25 ± 3.021 | 7.84 ± 2.872 | 23.41 ± 13.942 | 17.703–31.824 | S | 26.20 | ||
Vrd | Males | 342.18 ± 114.359 | 277.97 ± 90.299 | 22.76 ± 12.933 | 12.660–32.698 | S | 25.35 | |
Females | 357.85 ± 95.830 | 294.37 ± 109.526 | 26.10 ± 14.760 | 16.448–36.611 | S | 29.05 | ||
Total | 348.90 ± 104.544 | 284.89 ± 96.707 | 24.19 ± 13.491 | 17.498–31.711 | S | 26.89 | ||
Trapezius | Tc | Males | 29.56 ± 17.987 | 37.50 ± 22.026 | 26.04 ± 25.561 | 7.837–40.359 | NS | 31.15 |
Females | 30.02 ± 15.196 | 28.51 ± 17.212 | 16.17 ± 15.797 | 0.519–32.745 | S | 19.33 | ||
Total | 29.78 ± 16.358 | 33.65 ± 20.152 | 21.60 ± 21.779 | 8.919–31.811 | NS | 25.95 | ||
Dm | Males | 7.34 ± 3.056 | 8.26 ± 3.170 | 25.17 ± 14.734 | 13.797–34.664 | NS | 28.12 | |
Females | 6.75 ± 1.927 | 7.05 ± 2.349 | 13.46 ± 15.089 | 2.229–22.905 | NS | 16.48 | ||
Total | 7.08 ± 2.564 | 7.74 ± 20.152 | 19.90 ± 15.680 | 11.055–25.743 | NS | 23.04 | ||
Vrd | Males | 212.43 ± 50.016 | 203.13 ± 85.179 | 26.42 ± 14.989 | 17.006–40.562 | S | 29.42 | |
Females | 199.55 ± 67.631 | 215.73 ± 68.595 | 21.00 ± 16.990 | 9.445–32.786 | NS | 24.40 | ||
Total | 206.63 ± 57.321 | 208.53 ± 76.899 | 23.98 ± 15.731 | 16.659–33.240 | S | 27.13 |
Gender | Mean (cm) ± SD | % Asymmetry | Asymmetry | Asymmetry Direction | Threshold | |||
---|---|---|---|---|---|---|---|---|
Stroke Side | Non-Stroke Side | (Mean ± SD) | IC 95% | |||||
Biceps Femoris | Tc | Males | 34.55 ± 10.105 | 41.57 ± 12.821 | 23.64 ± 17.927 | 7.683–33.388 | NS | 27.23 |
Females | 40.27 ± 18.390 | 37.68 ± 9.555 | 19.86 ± 17.842 | 6.644–32.510 | S | 23.42 | ||
Total | 37.00 ± 14.136 | 39.90 ± 11.437 | 22.02 ± 17.543 | 10.940–29.173 | NS | 25.53 | ||
Dm | Males | 7.71 ± 2.415 | 9.34 ± 2.558 | 24.08 ± 15.427 | 13.741–34.893 | NS | 27.16 | |
Females | 9.75 ± 1.846 | 8.86 ± 2.765 | 23.06 ± 15.281 | 11.480–32.764 | S | 26.12 | ||
Total | 8.58 ± 2.375 | 9.14 ± 2.592 | 23.64 ± 14.985 | 15.718–30.721 | NS | 26.64 | ||
Vrd | Males | 184.78 ± 60.215 | 191.86 ± 56.166 | 19.58 ± 15.399 | 5.307–29.331 | NS | 22.66 | |
Females | 211.56 ± 58.273 | 191.51 ± 62.563 | 16.92 ± 18.416 | 4.338–28.513 | S | 20.60 | ||
Total | 196.26 ± 59.472 | 191.71 ± 57.452 | 18.44 ± 16.3678 | 8.352–25.393 | S | 21.71 | ||
Rectus Femoris | Tc | Males | 27.43 ± 6.399 | 25.56 ± 3.418 | 17.89 ± 13.573 | 10.141–26.966 | S | 20.61 |
Females | 26.56 ± 5.250 | 24.85 ± 3.523 | 20.21 ± 7.332 | 11.638–28.567 | S | 21.68 | ||
Total | 27.06 ± 5.808 | 25.25 ± 3.394 | 18.89 ± 11.145 | 13.361–25.295 | S | 21.12 | ||
Dm | Males | 8.35 ± 2.487 | 7.46 ± 1.842 | 33.93 ± 11.712 | 22.765–42.887 | S | 36.27 | |
Females | 7.63 ± 2.419 | 7.36 ± 1.794 | 20.97 ± 16.245 | 11.213–31.460 | S | 24.22 | ||
Total | 8.04 ± 2.422 | 7.42 ± 1.777 | 28.37 ± 14.973 | 19.945–34.217 | S | 31.37 | ||
Vrd | Males | 250.15 ± 79.767 | 236.79 ± 66.466 | 30.58 ± 16.639 | 19.872–43.905 | S | 33.91 | |
Females | 235.58 ± 83.388 | 244.22 ± 77.266 | 24.10 ± 15.986 | 11.707–35.890 | NS | 27.30 | ||
Total | 243.91 ± 79.596 | 239.97 ± 69.512 | 27.81 ± 16.288 | 19.320–36.367 | S | 31.06 | ||
Semitendinosus | Tc | Males | 41.12 ± 5.799 | 44.50 ± 7.904 | 15.30 ± 8.703 | 4.297–22.513 | NS | 17.04 |
Females | 33.38 ± 7.058 | 39.87 ± 4.311 | 17.61 ± 19.106 | 9.486–27.815 | NS | 21.44 | ||
Total | 37.80 ± 7.337 | 42.52 ± 6.878 | 16.29 ± 13.750 | 9.567–22.488 | NS | 19.04 | ||
Dm | Males | 10.37 ± 1.701 | 9.84 ± 3.126 | 19.69 ± 14.587 | 9.542–32.583 | S | 22.60 | |
Females | 9.33 ± 3.052 | 9.67 ± 2.734 | 20.29 ± 18.005 | 9.344–32.529 | NS | 23.89 | ||
Total | 9.92 ± 2.365 | 9.77 ± 2.893 | 19.94 ± 15.710 | 12.828–29.171 | S | 23.09 | ||
Vrd | Males | 207.13 ± 53.580 | 178.10 ± 53.138 | 17.69 ± 14.120 | 5.785–28.152 | S | 20.51 | |
Females | 222.03 ± 53.551 | 193.78 ± 49.768 | 16.56 ± 15.947 | 5.165–27.671 | S | 19.74 | ||
Total | 213.52 ± 52.755 | 184.82 ± 51.059 | 17.20 ± 14.727 | 8.761–24.626 | S | 20.15 | ||
Tibialis Anterior | Tc | Males | 34.27 ± 18.995 | 30.23 ± 19.613 | 16.89 ± 20.658 | 2.126–35.960 | S | 21.02 |
Females | 27.80 ± 15.947 | 38.15 ± 16.861 | 37.96 ± 25.910 | 20.646–54.692 | NS | 43.14 | ||
Total | 31.50 ± 17.634 | 33.63 ± 18.477 | 25.92 ± 24.848 | 16.356–40.356 | NS | 30.89 | ||
Dm | Males | 4.24 ± 1.316 | 3.86 ± 1.672 | 16.300 ± 10.238 | 6.422–24.012 | S | 18.34 | |
Females | 4.12 ± 1.982 | 4.30 ± 1.296 | 30.97 ± 19.210 | 20.725–38.424 | NS | 34.81 | ||
Total | 4.19 ± 1.590 | 4.05 ± 1.506 | 22.59 ± 16.144 | 16.157–28.634 | S | 25.81 | ||
Vrd | Males | 114.98 ± 40.360 | 114.86 ± 36.091 | 15.99 ± 15.842 | 4.729–26.416 | S | 19.15 | |
Females | 125.82 ± 33.768 | 102.47 ± 39.621 | 30.51 ± 15.705 | 20.574–42.396 | S | 33.65 | ||
Total | 119.62 ± 37.179 | 109.55 ± 37.199 | 22.21 ± 17.057 | 15.838–31.220 | S | 25.62 |
Gender | Mean (cm) ± SD | % Asymmetry | Asymmetry | Asymmetry Direction | Threshold | ||
---|---|---|---|---|---|---|---|
Stroke Side | Non-Stroke Side | (Mean ± SD) | IC 95% | ||||
Shoulder ER | Males | 79.87 ± 12.285 | 74.04 ± 12.767 | 10.39 ± 7.066 | 6.298–15.766 | S | 11.80 |
Females | 81.31 ± 9.319 | 82.72 ± 8.304 | 6.58 ± 5.524 | 1.922–11.449 | NS | 7.68 | |
Total | 80.49 ± 10.876 | 77.76 ± 11.688 | 8.76 ± 6.588 | 5.501–12.217 | S | 10.07 | |
Shoulder IR | Males | 61.44 ± 11.879 | 61.05 ± 13.794 | 11.16 ± 6.003 | 6.827–17.376 | S | 12.36 |
Females | 70.86 ± 14.913 | 69.05 ± 13.146 | 9.91 ± 8.847 | 4.388–15.003 | S | 11.68 | |
Total | 65.48 ± 13.762 | 64.48 ± 13.793 | 10.63 ± 7.178 | 7.157–14.640 | S | 12.06 | |
Shoulder Flexion | Males | 166.41 ± 8.221 | 170.39 ± 8.163 | 3.01 ± 3.032 | 0.354–4.523 | NS | 3.62 |
Females | 165.82 ± 11.188 | 164.56 ± 15.035 | 4.03 ± 3.210 | 2.107–6.301 | S | 4.67 | |
Total | 166.16 ± 9.346 | 167.89 ± 11.654 | 3.45 ± 3.073 | 1.843–4.799 | NS | 4.06 | |
Active Knee Extension | Males | 146.49 ± 11.794 | 155.14 ± 9.074 | 5.81 ± 4.139 | 1.474–7.818 | NS | 6.64 |
Females | 156.60 ± 12.802 | 162.67 ± 12.113 | 4.60 ± 5.377 | 1.216–7.600 | NS | 5.67 | |
Total | 150.82 ± 12.974 | 158.37 ± 10.888 | 5.29 ± 4.623 | 2.277–6.777 | NS | 6.21 | |
YBT Upper Quarter in Medial direction | Males | 102.91 ± 5.764 | 99.15 ± 6.962 | 6.34 ± 5.632 | 4.217–11.001 | S | 7.47 |
Females | 96.12 ± 5.510 | 96.42 ± 5.701 | 6.02 ± 3.830 | 2.768–9.491 | S | 6.78 | |
Total | 99.86 ± 6.503 | 97.92 ± 6.414 | 6.20 ± 4.786 | 4.482–9.257 | S | 7.15 | |
YBT Upper Quarter in Inferolateral direction | Males | 94.62 ± 9.085 | 94.38 ± 7.969 | 5.77 ± 4.074 | 2.897–7.602 | S | 6.59 |
Females | 92.74 ± 9.895 | 91.84 ± 12.802 | 3.08 ± 1.585 | 0.689–5.351 | NS | 3.40 | |
Total | 93.77 ± 9.251 | 93.23 ± 9.845 | 4.56 ± 3.417 | 2.479–5.791 | S | 5.24 | |
YBT Upper Quarter in Superolateral direction | Males | 67.32 ± 9.245 | 66.45 ± 10.395 | 4.61 ± 3.671 | 1.269–7.690 | S | 5.35 |
Females | 73.44 ± 10.196 | 71.18 ± 10.894 | 4.99 ± 5.357 | 2.056–8.417 | S | 6.06 | |
Total | 70.08 ± 9.925 | 68.58 ± 10.614 | 4.78 ± 4.383 | 2.598–1.118 | S | 5.66 |
Gender | Mean (cm) ± SD | % Asymmetry | Asymmetry | Asymmetry Direction | Threshold | ||
---|---|---|---|---|---|---|---|
Stroke Side | Non-Stroke Side | (Mean ± SD) | IC 95% | ||||
Vm (m/s) | Males | 0.66 ± 0.260 | 0.698 ± 0.270 | 8.49 ± 6.282 | 3.822–13.710 | NS | 9.75 |
Females | 0.73 ± 0.320 | 0.767 ± 0.320 | 6.88 ± 7.060 | 1.777–11.575 | NS | 8.29 | |
Total | 0.69 ± 0.283 | 0.73 ± 0.287 | 7.77 ± 6.514 | 4.241–11.201 | NS | 9.07 | |
Vmax (m/s) | Males | 1.23 ± 0.481 | 1.25 ± 0.454 | 7.56 ± 5.738 | 3.205–10.432 | NS | 8.71 |
Females | 1.42 ± 0.602 | 1.41 ± 0.582 | 6.98 ± 3.702 | 3.181–10.342 | NS | 7.72 | |
Total | 1.31 ± 0.532 | 1.32 ± 0.509 | 7.25 ± 4.819 | 4.246–9.333 | NS | 8.22 | |
Tvmax (s) | Males | 454.54 ± 180.939 | 385.54 ± 90.40 | 13.21 ± 9.916 | 11.144–22.413 | S | 15.20 |
Females | 471.67 ± 103.277 | 426.44 ± 56.549 | 13.45 ± 8.732 | 7.557–18.723 | S | 15.20 | |
Total | 462.25 ± 147.782 | 403.95 ± 77.997 | 13.32 ± 9.158 | 10.993–18.925 | S | 15.15 | |
Pm (W) | Males | 273.09 ± 130.092 | 287.08 ± 137.013 | 8.37 ± 6.428 | 3.702–13.638 | NS | 9.65 |
Females | 253.96 ± 136.277 | 253.81 ± 124.211 | 6.67 ± 7.021 | 1.517–11.362 | NS | 8.07 | |
Total | 264.48 ± 129.700 | 272.11 ± 129.092 | 7.60 ± 6.577 | 4.058–11.052 | NS | 8.92 | |
Pmax (W) | Males | 618.78 ± 331.231 | 642.25 ± 335.842 | 10.50 ± 6.970 | 5.717–14.709 | NS | 11.90 |
Females | 610.48 ± 329.222 | 608.744 ± 320.563 | 9.01 ± 6.117 | 4.358–13.267 | NS | 10.24 | |
Total | 615.06 ± 321.557 | 627.17 ± 320.816 | 9.83 ± 5.947 | 6.348–12.677 | NS | 11.02 | |
Tpmax (s) | Males | 398.27 ± 182.305 | 328.36 ± 95.115 | 19.68 ± 10.805 | 14.202–28.733 | S | 21.84 |
Females | 424.78 ± 99.230 | 368.22 ± 63.190 | 14.06 ± 9.303 | 6.514–20.911 | S | 15.92 | |
Total | 410.20 ± 147.720 | 346.30 ± 82.805 | 17.15 ± 10.302 | 12.476–22.704 | S | 19.21 | |
Fm (N) | Males | 411.92 ± 64.239 | 412.52 ± 66.517 | 0.64 ± 0.5057 | −0.645–1.8581 | NS | 0.74 |
Females | 344.34 ± 70.542 | 335.24 ± 61.603 | 2.41 ± 2.385 | 1.345–3.650 | S | 2.89 | |
Total | 381.51 ± 73.871 | 377.75 ± 74.043 | 1.44 ± 1.830 | 0.689–2.327 | S | 1.80 | |
Fmax (N) | Males | 733.37 ± 210.439 | 770.30 ± 211.317 | 2.94 ± 3.675 | 3.299–8.027 | NS | 3.67 |
Females | 488.43 ± 113.613 | 493.45 ± 112.780 | 2.43 ± 2.288 | 0.097–4.781 | NS | 2.89 | |
Total | 623.14 ± 210.649 | 645.72 ± 220.968 | 4.36 ± 3.538 | 2.387–5.715 | NS | 5.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez-Yates, T.; Iglesias-Caamaño, M.; Cuba-Dorado, A.; Serrano-Gómez, V.; Ferreira-Lima, V.; Nakamura, F.Y.; García-García, O. Explanatory Model for Elite Canoeists’ Performance Using a Functional Electromechanical Dynamometer Based on Detected Lateral Asymmetry. Symmetry 2024, 16, 347. https://doi.org/10.3390/sym16030347
Álvarez-Yates T, Iglesias-Caamaño M, Cuba-Dorado A, Serrano-Gómez V, Ferreira-Lima V, Nakamura FY, García-García O. Explanatory Model for Elite Canoeists’ Performance Using a Functional Electromechanical Dynamometer Based on Detected Lateral Asymmetry. Symmetry. 2024; 16(3):347. https://doi.org/10.3390/sym16030347
Chicago/Turabian StyleÁlvarez-Yates, Tania, Mario Iglesias-Caamaño, Alba Cuba-Dorado, Virginia Serrano-Gómez, Victor Ferreira-Lima, Fábio Yuzo Nakamura, and Oscar García-García. 2024. "Explanatory Model for Elite Canoeists’ Performance Using a Functional Electromechanical Dynamometer Based on Detected Lateral Asymmetry" Symmetry 16, no. 3: 347. https://doi.org/10.3390/sym16030347
APA StyleÁlvarez-Yates, T., Iglesias-Caamaño, M., Cuba-Dorado, A., Serrano-Gómez, V., Ferreira-Lima, V., Nakamura, F. Y., & García-García, O. (2024). Explanatory Model for Elite Canoeists’ Performance Using a Functional Electromechanical Dynamometer Based on Detected Lateral Asymmetry. Symmetry, 16(3), 347. https://doi.org/10.3390/sym16030347