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Abstract: Inspired by the fact that both the dilaton potential encoding the trace anomalies of QCD and
the Polyakov loop potential measuring the deconfinement phase transition can be expressed in the
logarithmic forms, as well as the fact that the scale symmetry is expected to be restoring and colors
are deconfined in extreme conditions such as high temperatures and/or densities, we conjecture a
relation between the dilaton potential and the Polyakov loop potential. Explicitly, we start from the
Coleman–Weinberg type potential of a real scalar field—a dilaton or conformal compensator—and
make an ansatz of the relation between this scalar field and the Polyakov loop to obtain the Polyakov
loop potential, which can be parameterized in Lattice QCD (LQCD) in the pure glue sector. We
find that the coefficients of Polyakov potential fitted from Lattice data are automatically satisfied in
this ansatz, the locations of deconfinement and scale restoration are locked to each other, and the
first-order phase transition can be realized. Extensions to the low-energy effective quark models
are also discussed. The conjectured relation may deepen our understanding of the evolution of the
universe, the mechanism of electroweak symmetry breaking, the phase diagram of QCD matter, and
the properties of neutron stars.
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1. Introduction

It is well known that massless quantum chromodynamics (QCD) has scale symmetry,
but this symmetry is broken by the trace anomaly at the quantum level [1]. In the low-
energy effective field theories (EFTs) of QCD, which are widely used in the study of the
non-perturbative phenomena of strong interaction, the trace anomaly effect is implemented
through anomaly matching [2]. Normally, it is written in the form of the Coleman–Weinberg-
type logarithmic potential [2–6].

Although the trace anomaly exists in the QCD vacuum, the scale symmetry is expected
to be restored in some extreme conditions, such as high temperatures and/or densities,
which may exist in the early universe, heavy-ion collisions at RHIC, LHC, and cores of
massive neutron stars. That is, in some extreme conditions, the quantum anomaly effects
will be submerged by high temperatures and/or densities due to the vanishming of the
beta function of strong interaction theory. Therefore, the evolution of the scale symmetry,
or the physics of dilaton, is interested in cosmology, astrophysics, particle physics, and
nuclear physics (see, e.g., Refs. [7–11] and references therein).

In these extreme conditions, quarks are deconfined [12–18], and this deconfinement
phase transition is mimicked in effective models through a Polyakov loop Φ [19], which
is defined as the trace of the Wilson line in Euclidian space in the temporal direction [20].
Physically, the expectation value ⟨Φ⟩ is capable being of the order parameter of the decon-
finement phase transition since ⟨Φ⟩ ∝ e−(F−F0)/T in the heavy-quark limit, where F0 is the
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free-energy of gluons and F − F0 means the least work to excite a quark in the thermal
gluon medium. In terms of this relation, it is obvious that when ⟨Φ⟩ = 0, the system
is in the confined phase with an infinite amount of energy to pull out a quark from the
system, but when ⟨Φ⟩ ̸= 0, it is in the deconfined phase, and states with a single quark are
possible [20].

As an ab initio calculation, Lattice QCD (LQCD) can address the issues related to the
deconfinement phase transition and the restoration of scale symmetry at high temperatures
and therefore provides abundant phenomena that can help us deepen our understanding of
the strong interaction. However, finite quark chemical potential disables the Monte Carlo
simulations when the numerical path integral is performed on a large discretized Euclidian
space–time lattice since the exponential of the QCD action is no longer a real number and
is not a weight function for the field configurations. This is known as the fermion sign
problem [21,22]. For more details about LQCD, refer to, e.g., Refs. [20,23] and references
therein. The behavior of the Polyakov loop as a function of temperature is calculated on the
lattice for a pure glue system [24,25], the deconfinement phase transition is of the first order,
and the transition temperature is approximately 270 MeV. For a system involving 2 + 1
dynamical quark flavors, the lattice calculation indicates that the transition is a smooth
crossover [26], and the Polyakov loop is no longer an order parameter due to the explicit
Z3 symmetry breaking by quarks [20].

Generally, the Polyakov loop potential is approximated as the polynomial of the
Polyakov loop Φ, and its conjugation with the parameters is fixed by fitting the Lattice
data [25,27–29]. However, a simplified version of the general form of the Polyakov loop
potential consists of a logarithmic function of Φ in addition to a Φ2 term [19,30,31].

Considering that the scale symmetry will be restored and the colors are deconfined in
the extreme conditions, we conjectured a lock between the elimination of the trace anomaly
and the deconfinement transition or a relation between the dilaton field χ (or so-called
conformal compensator) and Polyakov loop Φ based on the fact that both χ and Φ fields
are related to the gluonic configuration according to the anomaly matching [2] and the
definition of the Polyakov loop [20]. Explicitly, regarding ⟨χ⟩ as a function of ⟨Φ⟩ in the
sense of the mean field approximation (MFA), and considering that ⟨χ⟩(⟨Φ⟩ = 0) ̸= 0
means the trace anomaly exists in the confined phase and ⟨χ⟩(⟨Φ⟩ = 1) = 0 indicates the
restoration of the scale symmetry in the deconfined phase, we introduce a function of ⟨χ⟩,
which is a polynomial of ⟨Φ⟩ and ⟨Φ⟩∗ up to O(⟨Φ⟩4) and Z3 is symmetric. It is extremely
interesting that the coefficients of the Polyakov potential fitted from Lattice QCD (LQCD)
automatically satisfy the condition ⟨χ⟩(⟨Φ⟩ = 1) = 0. The logarithmic Polyakov potential,
which is similar to that in Refs. [31–33] can be yielded after substituting χ(Φ, Φ∗) into the
Coleman–Weinberg type potential V(χ).

The relation suggested in this work sets up a bridge between the restoration of scale
symmetry and deconfined phase transition; therefore, it may deepen our understanding of
the evolution of the universe, the mechanism of the electroweak symmetry breaking, the
phase diagram of QCD, and the properties of compact stars and gravitational waves.

2. Trace Anomaly and the Polyakov Loop

In the effective models in terms of hadrons, the trace anomaly of QCD can be described
effectively by the Coleman–Weinberg type potential in the form [2–6,34]

V(χ) =
m2

σ f 2
σ

4

(
χ

fσ

)4[
ln
(

χ

fσ

)
− 1

4

]
, (1)

where the field χ is the conformal compensator, mσ is the dilaton mass with fσ as its
decay constant. Potential (1) is widely used in particle physics and astrophysics to under-
stand the properties of Higgs and the compact star matter (see, e.g., Refs. [5,35,36] and
references therein).
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From the profile of the dilaton potential sketched in Figure 1, one can easily see that
there is a nontrivial vacuum at χ = fσ, which breaks the scale symmetry spontaneously.
When the temperature and/or density increase, this nontrivial vacuum will approach the
zero point χ = 0 and the scale symmetry is restored by the extreme environments.
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Figure 1. The profile of the dilaton potential. The arrows indicate the evolution of the potential with
the increase in temperature and/or density.

On the other hand, in the framework of statistical mechanics, the deconfinement phase
transition can be described effectively by the Polyakov loop [37]

Φ(x) =
1

Nc
trc

[
P exp

[
−igs

∫ β

0
dx4 Aa

4(x, x4)Ta
]]

, (2)

with Nc = 3 and Aa
4(x, x4) being the temporal component of the gluon field, P being the

path-ordering operator, and Ta, a = 1, · · · , 8 being the generators of SU(3) gauge group.
In the confined phase, ⟨Φ⟩ = 0 and, with the increasing of temperature and/or density, it
monotonically increases to ⟨Φ⟩ = 1 in the deconfined phase. In terms of Φ, the Polyakov
potential generally has two versions in which one is the simplest polynomial form consisting
of terms Φ∗Φ, Φ∗3 + Φ3 and (Φ∗Φ)2, which are Z3 symmetric—see, e.g., Ref. [25]—and the
other is an improved expression of which the higher order polynomial terms are replaced
by the logarithm of a Z3 symmetric function J(Φ, Φ∗) [19,30]. These Polyakov potentials
contain no baryon density effect due to the lack of the baryon chemical potential. The
authors of Ref. [31] proposed a simplified version of the potentials used in [25,30], and they
incorporated terms that are dependent on the chemical potential to address the issues of
compact stars. At zero baryon density, this kind of Polyakov potential reads

U (Φ) = a3T4
0 ln

(
1 − 6Φ2 + 8Φ3 − 3Φ4

)
+ a0T4Φ2. (3)

Here, the transition temperature of the pure glue system T0 is fixed to 270 MeV [19,25,29–31],
and a0 = −1.85, a3 = −0.40, which are determined by reproducing the Lattice data and the
information about the phase diagram [31].

It is interesting to note that both the dilaton potential (1) and the Polyakov potential (3)
are logarithmic. Inspired by this similarity, with respect to the picture in which the trace
anomaly vanishes and colors are deconfined at high temperatures and/or densities and
the fact that both χ and Φ depend on the configuration of the gluon field, we make a
conjecture of the Z3 symmetric relation between the dilaton field and the Polyakov loop in
MFA as follows:

⟨χ⟩
fσ

= 1 − a⟨Φ⟩∗⟨Φ⟩ − b
2

(
⟨Φ⟩∗3 + ⟨Φ⟩3

)
− c

(
⟨Φ⟩∗⟨Φ⟩

)2. (4)
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When the deconfinement phase transition happens, the field χ will vanish, which means
that the degree of freedom of the dilaton will disappear with the emergence of the gluonic
degree of freedom and the potential V will also vanish corresponding to the restoration of
the scale symmetry. Hence, we have ⟨χ⟩(⟨Φ⟩ = 1) = 0, namely,

a + b + c = 1. (5)

Note that since the physical vacuum depends on the temperature, namely the ex-
pectation value of the Polyakov loop is a function of the temperature, the values of the
parameters a, b, and c should be temperature-modified quantities, like what happens in the
dense system where the parameters in the model are density dependent ones through the
well-known Brown–Rho scaling [38]. Like in the dense system, we call this temperature
dependence an intrinsic temperature dependence (ITD), and the temperature effect in the
physical system should include both ITD and the effect of to hadron fluctuations (see,
e.g., [36]).

The constraint (5) is fixed at the deconfinement temperature. We simply assume that
the temperature dependences of the parameters satiate this constraint. We admit that we
cannot explicitly fix these temperature dependences from fundamental QCD. One might
give an explicit dependence using the holographic QCD model in which the temperature
effect enters through the Hawking temperature of a black hole in the AdS bulk, i.e., the
five-dimensional anti-de Sitter space–time.

Substituting Equation (4) into Equation (1), one can express the dilaton potential in
terms of the Polyakov loop as V(Φ, Φ∗), therefore connecting the trace anomaly with
quark confinement. If the baryon or quark density is zero, the Polyakov loop will be a real
field [39], and the dilaton potential will read

V(Φ) =
m2

σ f 2
σ

4

(
1 − aΦ2 − bΦ3 − cΦ4

)4
[

ln
(

1 − aΦ2 − bΦ3 − cΦ4
)
− 1

4

]
=

m2
σ f 2

σ

4
ln
(

1 − aΦ2 − bΦ3 − cΦ4
)
+ · · · . (6)

We can expand the factor (1 − aΦ2 − bΦ3 − cΦ4)4 (the primary contribution of (1 − aΦ2 −
bΦ3 − cΦ4)4 is the lowest order of Φ due to Φ < 1) in the first line of the above equation,
and the lowest order of Φ multiplied by the logarithmic term is shown explicitly in the
second line. Comparing Equations (3) and (6), one finds that a Φ2 term should be added to
the potential V(Φ), and therefore, the Polyakov potential incorporated the trace anomaly is

as follows (it should be noted that the term m2
σ f 2

σ a
16 Φ2 exists in the straightforward expansion

of V(Φ, Φ∗), but with only the potential V, the first-order phase transition in the pure glue
theory cannot be realized):

U (Φ, Φ∗) = V(Φ, Φ∗) +
m2

σ f 2
σ

4
dΦ∗Φ, (7)

with d being a new parameter. It should be noted that in the deconfinement phase, the
potential of the trace anomaly must vanish, i.e., V(⟨Φ⟩ = 1) = 0, but U (⟨Φ⟩ = 1) =
m2

σ f 2
σ

4
d ̸= 0.

Comparing (3) and (6), one can relate the transition temperature to the dilaton proper-
ties as follows:

T0 ≡
(

m2
σ f 2

σ

4|a3|

)1/4

≈ 275 MeV, (8)

where mσ = 640 MeV and fσ = 150 MeV which are consistent with those used in the
chiral-scale effective theory [9,40–42]. Interestingly, the present naive estimation of T0 is
close to that from LQCD (Tc = 270 MeV), and it is amazing that the coefficients of Φ2, Φ3
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and Φ4 in the logarithmic term (i.e., a = 6, b = −8, c = 3) of the potential Equation (3)
obtained from LQCD satisfy the constraint (5), which implies the relation of the χ field and
Φ field Equation (4) is reasonable. If our ansatz makes sense, we may utilize our Polyakov
potential Equation (7) to investigate the deconfinement transition such as the order of the
transition and the equation of state of dense nuclear matter based on low-energy models
of QCD.

3. Qualitative Analysis

We next analyze the potential (7) in the thermal system more closely with respect to
the data from LQCD simulations [24,25].

There are four parameters, a, b, c and, d, in (7), and three of them, like a, b, and d, can
be taken as independent ones due to the constraint (5). We find that a and d can be fixed
as a = 6, d = −0.1, and b is a function of the temperature such that the first-order phase
transition can be realized.

In Figure 2, we sketch the Polyakov potentials at different temperatures—different
values of b. The first figure shows that ⟨Φ⟩ = 0 and the system is in the confinement
phase at low temperature. With the increasing temperature, another local minimum point
emerges, and at the critical temperature T̃c, the vacuum will jump from the location of
⟨Φ⟩ = 0 to that of ⟨Φ⟩ ̸= 0, i.e., ⟨Φ⟩ ≈ 0.75, and thus the first-order phase transition will
take place as shown in the second figure. The last two figures show that on the one hand,
the equality of minimal values of V remains unchanged with the increase in temperature,
and this issue implies that the Polyakov potential contains not only the contribution of the
trace anomaly but also the extra quadratic term of Φ, which can pull the minimum point of
⟨Φ⟩ ̸= 0 down so that the first-order phase transition can be realized; on the other hand, the
minimum point of V will approach the gray line when the temperature increases, implying
that the trace anomaly will vanish at the high-temperature limit.
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Potential=0

b  -8.00 (T  0)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Φ

P
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Figure 2. The curves of U (Φ) and V(Φ) as the functions of Φ. From left to right, the temperature is
increasing from zero, with b(T = 0) = −8, b(T = 362.5 MeV) = −16, b(T = 526.4 MeV) = −21, and
b(T = 560.5 MeV) = −23 fixed by using LQCD data [24,25], i.e., the magnitude of b is increasing
with the growth of temperature. The gray line corresponding to the zero of the potential is shown for
the sake of clarity.

In Figure 3, we estimate the parameter b(T) as a function of temperature, utilizing
the ⟨Φ⟩ from LQCD [24,25]. Specifically, we first obtain the function ⟨Φ⟩(b) according
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to the condition ∂U
∂Φ

∣∣∣
Φ=⟨Φ⟩

= 0 and then extract the ⟨Φ⟩(T) from the data of LQCD. We

then obtain the function b(T) numerically by canceling the variable ⟨Φ⟩. It should be
emphasized that since the phase transition is first-order and ⟨Φ⟩ is always zero at low
temperatures, we simply use a linear function of b(T), T < T(⟨Φ⟩ ≈ 0.728) ≈ 356 MeV
which decreases monotonously with temperature and satisfies the condition of b(0) = −8
and b(T ≈ 356 MeV) ≈ −15.02. As shown in Figure 3, the absolute value of b increases
monotonously with temperature. We find that b changes rather slowly in a very large
interval of the temperature and sharply increases at T ≈ 710 MeV. At this moment, we do
not know how to understand such behavior of b(T) on the physical level. One possible
reason is that the thermal fluctuation should be included at very high temperatures, and
thus this sharp increase in b will vanish with the inclusion of the fluctuation.

⨯⨯⨯ ⨯ ⨯

b(T)/b(0)

b(T)/b(0) fixed from Lattice Data⨯

350 395 440 485 530 575 620 665 710

0

40

80

120

160

200

T[MeV]

b
(T

)/
b
(0
)

Figure 3. The parameter b(T) as a function of temperature fixed in terms of the ⟨Φ⟩(T) calculated by
LQCD, here b(0) = −8.

To show the reasonability of the fixed function b(T), we evaluate the expectation value
of the Polyakov loop as a function of T with a comparison to the data of LQCD in Figure 4.
It is obvious that the first-order phase transition is realized, and after the phase transition,
we reproduce the result of LQCD qualitatively. We should note that the calculated transition
temperature T̃c = T(⟨Φ⟩ ≈ 0.728) ≈ 356 MeV is larger than 270 MeV. This enormous
discrepancy is caused by the fact that when the phase transition happens, the minimum
point of our Polyakov loop potential Equation (7) will jump directly from zero to ⟨Φ⟩ ≈ 0.728
so that we fit b(T) starting from ⟨Φ⟩ ≈ 0.728, and the data of LQCD from ⟨Φ⟩ ≈ 0.4 to
⟨Φ⟩ ≈ 0.7 cannot be used. The drastic jump of the minimum point may result from MFA
and might be remedied by the quantum corrections. Nevertheless, the primary goal of
this work—setting up a possible relation between the trace anomaly of QCD and the color
confinement and realizing the first-order phase transition—can be accomplished.

⨯

⨯
⨯⨯
⨯⨯
⨯⨯
⨯

⨯⨯⨯
⨯

⨯Numerical Result

Lattice Data⨯
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Figure 4. The expectation value of the Polyakov loop as a function of temperature. Here, we normalize
the variable T by Tc = 270 MeV in order to compare the result with that of LQCD [24,25].
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We next check the trace anomaly in the thermal system by calculating the value of
V(Φ = ⟨Φ⟩), which is a function of temperature. The result presented in Figure 5 shows
that, as expected, the trace anomaly potential at ⟨Φ⟩ will be melted at a high-temperature
limit and the scale symmetry will be restored.

The trace anomaly potential at < >

V=0

726.0 726.5 727.0 727.5 728.0 728.5 729.0 729.5

0.0

0.2

0.4

0.6

0.8

1.0

T[MeV]

V
(<

>
)/
V
(T

=
0
)

Figure 5. The value of Coleman–Weinberg type potential V(Φ, Φ∗) at ⟨Φ⟩ as a function of temperature.

We finally want to emphasize that the behaviors of the above variables changing with
the increase in temperature are actually from the data of LQCD, and the disappearance
of the trace anomaly is especially the result of the constraint for the parameters, i.e.,
Equation (5). In fact, we have no information about the parameters a, b, and c as the
functions of temperature without the help of LQCD, and we have not yet found the method
that can calculate these parameters theoretically. The holographic model of QCD is probably
a possible way. Despite this, the first-order phase transition can be realized by the potential
Equation (7), and this implies that the restoration of scale symmetry and the deconfinement
phase transition may have a certain relationship.

4. Trace Anomaly in Effective Models

We next extend the above discussion on the pure gluon system to include quarks. In
the presence of quarks, the deconfinement phase transition is no longer of the first order
but a smooth crossover, as shown by LQCD [20,43]. For this reason, it is of interest to
investigate the deconfinement phase transition utilizing the low-energy effective quark
models compensated by Polyakov potential. For simplicity, we will not consider the current
quark mass term.

Firstly, we consider the 2 + 1 flavor Polyakov–Nambu–Jona–Lasino model (PNJL)
model coupled to the background gluon field [44]

LPNJL = q̄i /Dq +
Gs

2

8

∑
a=0

[(q̄λaq)2 − (q̄γ5λaq)2]

− GV
2

8

∑
a=0

[(q̄γµλaq)2 + (q̄γµγ5λaq)2]

+ K{det f [q̄(1 − γ5)q] + det f [q̄(1 + γ5)q]}, (9)

where Dµ = ∂µ + iδµ
0 gs A0

aλa/2, with gs being the gauge coupling. It is clear that the
Lagrangian (9) is not scale-invariant. The trace anomaly in the PNJL model is incorporated
by guaranteeing the scale invariance of Equation (9) and adding the Polyakov potential,
which is constructed from Coleman–Weinberg-type potential (1), which breaks the scale
symmetry. Hence, the trace anomaly PNJL model, which we call scale-PNJL (sPNJL), reads
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LsPNJL = q̄i /Dq +
Gs

2
χ−2

8

∑
a=0

[(q̄λaq)2 − (q̄γ5λaq)2]

− GV
2

χ−2
8

∑
a=0

[(q̄γµλaq)2 + (q̄γµγ5λaq)2]

+ Kχ−5

×
{

det f [q̄(1 − γ5)q] + det f [q̄(1 + γ5)q]
}

−U (Φ, Φ∗), (10)

with the Polyakov potential (7).
One may find that there are divergences in the interactions when the scale symmetry

is restored, i.e., at χ = 0, if the couplings Gs, GV , and K are constants. This trouble
may be overcome by assuming that these couplings are functions of χ and satisfy the
following constraints:

lim
χ→0

Gsχ−2 = lim
χ→0

GVχ−2 = lim
χ→0

Kχ−5 = 0. (11)

This constraint implies that the interaction between quarks will be decreased in the de-
confinement phase [45]. Furthermore, the constraints show that the sPNJL couplings are
entangled with the Polyakov loop; that is, we can obtain the so-called entanglement-PNJL
(EPNJL) model in Refs. [46–50] from our sPNJL model.

Another model we want to analyze is the Polyakov–quark–meson model (PQMM) [29,51–53].
The Lagrangian of the PQMM without the Polyakov potential reads [54]

LPQMM = Lquark + Lmeson, (12)

where the SU(3)R × SU(3)L symmetric quark sector reads

Lquark = ψ̄[i /D − gTa(σa + iγ5πa)]ψ, (13)

and the purely mesonic Lagrangian is

Lmeson = Tr
(

∂µM†∂µM
)

− λ1

[
Tr(M†M)

]2
− λ2Tr

[
(M†M)2

]
+ c

[
Det(M) + Det(M†)

]
, (14)

with M being a complex 3 × 3 matrix of meson fields.
In Equation (14), λ1 and λ2 are the coupling constants of two possible quartic terms

and c is the coupling constant of the cubic term, which breaks U(1)A symmetry. The details
about the symmetries of PQMM can be found in Refs. [54,55].

One can easily check that in PQMM (12), only the last term in Lmeson breaks scale
symmetry. Therefore, the scale symmetry implemented model, which we call scale-PQMM
(sPQMM), becomes

LsPQMM = Lquark + L̃meson −U (Φ, Φ∗), (15)

where the Polyakov potential (7) is added and the scale symmetric meson sector is

L̃meson = Tr(∂µM†∂µM)

− λ1

[
Tr(M†M)

]2
− λ2Tr

[
(M†M)2

]
+ cχ

[
Det(M) + Det(M†)

]
. (16)
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The last term gives the coupling between the mesons and the dilaton. It is interesting to
note that in the deconfined phase, χ = 0, the determinant terms in both PNJL and PQMM,
which embody the U(1)A anomaly, are melted, anticipating the restoration of the U(1)A
symmetry at high temperatures. Since the large mass of the η′ meson is generated by the
U(1)A anomaly, the decrease in its value will emerge in an extremely heated bath [56–60].

To end this section, we make a brief comment on the mentioned sPNJL and sPQMM.
The primary aim of this section is to demonstrate the method to construct the effective quark
models in which the QCD trace anomaly is incorporated and what possible conclusions
result from the models, for example, the derivation of EPNJL model and the description of
the restoration of U(1)A mentioned above. The numerical calculations based on these two
low-energy effective quark models are not performed in this work, and precisely speaking,
the current quark masses should be included when comparing the results with those of
LQCD. Like the scenario used in Refs. [25,30], one may use the Polyakov potential (7) with
the parameters that we have fitted in terms of the LQCD data in pure glue sector and fix
other parameters of the quark models with the input of some hadronic observables such
as pion mass and its decay constant. However, more accurate parameter fixing may be
performed when reproducing the crossover behavior of the deconfinement transition, and
this issue will be investigated in our future works.

5. Summary and Discussion

We attempt to set up a relation between the trace anomaly of QCD and the deconfine-
ment phase transition with respect to the observation that at extremely high temperatures
and/or densities, the scale symmetry of QCD manifests and the deconfinement phase
transition takes place. Considering that both the trace anomaly potential and the Polyakov
loop potential have logarithmic forms and the conformal compensator and the Polyakov
loop are related by the configuration of the gluon field, we conjecture a relation between
the expectation values of the conformal compensator χ and the Polyakov loop Φ.

It is found that the first-order phase transition in the pure glue sector can be realized
phenomenologically by the Polyakov potential, which is composed of the trace anomaly
potential V and the quadratic term of Φ. That is, the trace anomaly is locked to the
deconfinemet [61]. We should say that although the Φ2 is essential for realizing the first-
order phase transition, we do not know what its origin is. This issue may imply that the
Polyakov potential includes other effects of the strongly interacting gluons except for the
trace anomaly, and the kinetic energy of gluons should be determined [19].

A fly in the ointment is that the critical temperature evaluated by our Polyakov
potential is larger than that of LQCD; this evident discrepancy may be caused by the MFA
used in this work. Actually, near the critical temperature, the thermal fluctuation will
impact the properties of the system, and we will look for a method to include the thermal
fluctuation in future works. Nevertheless, the primary purpose of this work is to illustrate
the possible relationship between the restoration of scale symmetry and the deconfinement
phase transition at extreme conditions and to manifest the first-order phase transition by
our Polyakov potential. We indeed accomplished this purpose.

Since the quark degrees of freedom should be included to investigate the deconfine-
ment phase transition at high temperatures, we constructed the Lagrangians of sPNJL and
sPQMM in the chiral limit in which the Polyakov potential based on the trace anomaly
potential is incorporated. On the one hand, we find that the conformal compensator χ has
the power to build a bridge between the restoration of U(1)A symmetry and the deconfine-
ment phase transition, and on the other hand, it is interesting that the previously proposed
EPNJL model can be obtained naturally from our models.

In this work, we are just trying to conjecture a possible relationship between the
restoration of scale symmetry and the deconfinement transition at high temperatures based
on a rather phenomenological ansatz. Hence, there is a very fundamental question: How
can we build a bridge theoretically between the trace anomaly and the deconfinement
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phase transition based on some low-energy effective models or theories of QCD? This will
be clarified in future works.
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