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Abstract: Algorithms for training agents with experience replay have advanced in several domains,
primarily because prioritized experience replay (PER) developed from the double deep Q-network
(DDQN) in deep reinforcement learning (DRL) has become a standard. PER-based algorithms have
achieved significant success in the image and video domains. However, the exceptional results
observed in images and videos are not as effective in many domains with simple action spaces and
relatively small states, particularly in discrete action spaces with sparse rewards. Moreover, most
advanced techniques may improve sampling efficiency using deep learning algorithms rather than
reinforcement learning. However, there is growing evidence that deep learning algorithms cannot
generalize during training. Therefore, this study proposes an algorithm suitable for discrete action
space environments that uses the sample efficiency of PER based on DDQN but incorporates support
vector machine recursive feature elimination (SVM-RFE) without enhancing the sampling efficiency
through deep learning algorithms. The proposed algorithm exhibited considerable performance
improvements in classical OpenAI Gym environments that did not use images or videos as inputs. In
particular, simple discrete space environments with reflection symmetry, such as Cart–Pole, exhibited
a faster and more stable learning process. These results suggest that the application of SVM-RFE,
which leverages the orthogonality of support vector machines (SVMs) across learning patterns, can
be appropriate when the data in the reinforcement learning environment demonstrate symmetry.

Keywords: support vector machine recursive feature elimination; deep reinforcement learning with
double Q-learning; prioritized experience replay; deep reinforcement learning; reflection symmetry

1. Introduction

Since Mnih et al. [1] proposed a deep Q-network (DQN) and demonstrated human-
level performance in the Atari 2600 games, deep reinforcement learning (DRL) has achieved
significant success in areas such as path planning, autonomous robot navigation, and
natural language processing [2,3]. Recently, techniques such as reinforcement learning
from human feedback (RLHF) [4] have emerged, enabling AI agents to be trained to satisfy
human standards. The RLHF, popularized by Christiano et al. in 2017 [5], is used in
conjunction with large language models (LLMs) [4] that require an enormous number of
training parameters. This study was pivotal in applying feedback-based approaches to the
evolution of DRL with a focus on continual reinforcement learning, various improvements,
and multilayered approaches within deep-learning models. However, these techniques
have not yet been standardized, particularly in the domains of image and video DRL,
which are increasingly reliant on advances in artificial neural networks, such as diffusion
models [6], rather than on reinforcement learning itself.

Thus, it is necessary to consider whether DRL techniques developed for the image and
video domains can be effectively applied to other fields. Although DRL techniques based
on artificial neural networks are advancing, there is growing evidence that they cannot
generalize during training [7]. A critical issue is the effective implementation of predictive
strategies for effective sampling in complex environments; this poses practical challenges
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to the widespread use of reinforcement learning [8,9]. DRL agents require billions of
interactions with their environments, resulting in extremely long training times. As the
training progresses, the probability of the agent’s learning capacity diminishing increases
significantly [7,9]. Thus, efforts to enhance the sampling efficiency of DRL algorithms
continue to be a focal point.

Double DQN (DDQN) [10] improves sample efficiency by mitigating overestimation
through the separation of action value functions and action evaluation functions whereas
dueling DQN [11] enhances sample efficiency by quickly learning the values of new actions
using state and advantage value functions, thereby reducing redundant or similar sample
training. DDQN-based prioritized experience replay (PER) [12] further improves efficiency
by assigning priority to experience replay buffer samples based on TD errors, making it
easier to select more efficient samples. PER provides two options—selecting experiences to
store and selecting experiences to replay—and improves the latter by prioritizing traces of
samples stored in the replay buffer. However, PER calculates the sampling rates for each
transition independently, which increases the likelihood of sampling highly biased and
redundant transitions. The neural experience replay sampler was designed to mitigate
PER’s bias [8]. Study [13] emphasized recently observed data to prevent forgetting past
data based on a soft actor–critic (SAC) [14,15], demonstrating a significantly higher sample
efficiency by applying the algorithm [13] with PER [12] to SAC [14,15].

However, since experience replay has achieved significant success in DQN [1], more
research has focused on DQN rather than actor–critic [16]. Study [9] was also based on a
DDQN, which proposed a prioritized technique for selecting samples before placing them
in the experience replay buffer. Similar to study [9], the algorithm proposed in this study
aims to improve the sample selection for replay. The difference between the proposed
algorithm and the previously developed algorithm [9] lies in addressing discrete space
learning issues. The latter uses a DDQN with prior knowledge using the mean square
error of n samples to select the replay samples based on the average return values of the n
samples. Although the previously developed algorithm [9] showed improved results in
the image and video domains, it did not exhibit the same improvements in discrete space
learning issues.

Existing reinforcement learning algorithms in discrete space learning typically face the
problems of slow convergence and reduced accuracy [17]. Despite the need for extensive
interactions with the learning samples during training, DRL struggles to converge in
discrete space learning and frequently falls into local minima [17]. The primary reason for
the preference for deep learning algorithms is to automate representation learning [18].
Large-scale data are necessary to automatically extract features suitable for a target task,
thereby improving the accuracy. However, often, only “little data” are available in many
domains outside of discrete space learning, necessitating analysts to engage in complex
feature engineering and a thorough understanding of the domain. With limited training
data, there is a higher probability of partial samples not reflecting the entire population,
which leads to biased learning results and significant errors in generalization.

Therefore, the proposed algorithm aims to achieve effects similar to those of feature
engineering by selecting the data required for discrete space learning using machine
learning techniques. Specifically, the proposed algorithm uses support vector machine
recursive feature elimination (SVM-RFE) [19] from machine learning to select a subset
of effective samples during DRL training to enhance the accuracy. Insights were gained
from a previous study [17] that linked an SVM [20] with actor–critic [16] relationships.
However, in contrast to study [17], which requires pre-training for the sample selection
criteria and gradient descent optimization, the proposed algorithm constructs and selects
useful feature subsets during agent training without pre-training. Although deep learning
methods have improved sample efficiency, random sampling remains highly effective in
small, discrete environments. The proposed algorithm hypothesizes that constructing a
subset of samples with highly relevant features through machine learning, rather than
identifying all potentially relevant training features, will contribute to the objective. The
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insight that machine learning can enhance sampling efficiency better than deep learning
has also been derived from a previous study [21]. Study [21] utilized a technique called
“least squares”.

The main contribution of this study is that random sampling guided by sample feature
patterns is more effective than deep learning-based sample selection, particularly in small
discrete environments. Among machine learning algorithms, SVM-RFE iteratively employs
an SVM to eliminate unnecessary features. The SVM is renowned as an algorithm that
identifies optimal boundaries. Significant performance improvements were observed, par-
ticularly in environments with reflection symmetry, such as the classic environment of the
OpenAI Gym [22]. Reinforcement learning uses the Markov decision process (MDP) [23],
which can exhibit symmetry [24]. The Cart–Pole [25] involves a system in which a pole
is poised on a cart, and the goal is to move the cart left and right to prevent the pole
from toppling. Left–right symmetry means that moving the cart to the left and right is
modeled in a physically identical manner. In other words, applying the same magnitude
of force in opposite directions resulted in the same response. However, in all application
environments where reinforcement learning is applied, the data may not exhibit symmetry
similar to that of the Cart–Pole. Nonetheless, in environments in which the data exhibit
symmetry, the application of SVM-RFE, which leverages the orthogonality of the SVM
model approximations across training patterns, is deemed appropriate.

The remainder of this paper is structured as follows. Section 2 discusses the back-
ground. Section 3 introduces the proposed algorithm, which combines SVM-RFE with
DDQN influenced by the sample efferent algorithm (PER). Section 4 summarizes the
experimental results, and Section 5 concludes the study.

2. Background
2.1. Research Trends in Reinforcement Learning Based on LLMs

The RLHF [4] is a key technique used to train machine learning models for difficult-
to-specify objectives and align AI systems with human goals [5,26,27]. The RLHF is a
fundamental component in training state-of-the-art large language models (LLMs), such
as Google Gemini [28], OpenAI’s GPT-4o [29], and Meta’s Llama 3 [30]. The RLHF has a
relative advantage over manually engineered reward functions and other learning meth-
ods because it facilitates the identification of desirable behaviors. Christiano et al. [5]
popularized the current standard methodology for the RLHF in 2017. However, models
fine-tuned with the RLHF face ongoing challenges, such as sensitivity to private data [31],
jailbreaks (breaking the constraints under which the system should operate normally),
and the generation of hallucinated misinformation [32]. Therefore, further research is
required to standardize and generalize these models. The study “Do as I can, not as I
say” [33] investigates how to extract knowledge from LLMs so that embodied agents, such
as reinforcement learning robots, can follow high-level textual instructions. Robots have a
repertoire of learned skills for “atomic” actions and can determine whether their individual
skills are likely to make progress toward completing advanced instructions beyond simply
interpreting LLM instructions. The research “Eureka” [34] leveraged LLMs for high-level
semantic frameworks in sequential decision-making tasks but showed that using LLMs for
complex low-level manipulation tasks, such as proficient pen spinning, remains unresolved.
Eureka aimed to bridge these gaps by proposing an LLM-driven human-level reward
design algorithm using state-of-the-art LLMs such as GPT-4o to optimize reward codes and
presented a new gradient-free in-context learning approach for RLHF. In addition, Eureka
suggested the possibility of developing a universal reward programming algorithm using
cutting-edge coding LLMs, such as GPT-4o.

2.2. Diffusion Models in Reinforcement Learning

Pearce et al. [35] proposed using expressive and stable diffusion models to better
simulate human behavior. A diffuser [36] uses diffusion models as trajectory generators,
with the entire trajectory of state–action pairs constituting a single sample for the diffusion
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model. A separate return model is trained to predict the cumulative reward for each
trajectory sample. The guidance of the return model is then applied to the reverse sampling
step. The research in [37] uniquely utilizes diffusion models in reinforcement learning,
applying them to the action space and transforming them into conditional diffusion models
given the state. The diffusion model samples one action at a time and injects a Q-value
function guidance during training to provide good empirical performance, particularly
when approaching policy optimization from an offline reinforcement learning perspective.

2.3. Studies on Q-Learning

The goal of reinforcement learning is to learn an optimal policy, which is an algorithm
that optimizes accumulated future rewards. Q-learning [38] is the most renowned reinforce-
ment learning algorithm. It learns the expected value of the rewards, such as the Q-value,
as represented in Equation (1).

Qπ(s, a) ≡ E[R1 + γR2 + · · ·|S0 = s, A0 = a, π] (1)

A policy specifies the probability of performing action a in state s for all states and
actions. Gradient descent is used to learn the parameter θ of the Q-value function, as
expressed in Equation (2).

θt+1 = θt + α(Rt+1 + γmaxaQ(St+1, a; θt)−Q(St, At; θt))∇θt Q(St, At; θt) (2)

The target Y for Q-learning is expressed in Equation (3).

YQ
t ≡ Rt+1 + γmaxaQ(St+1, a; θt) (3)

DQN [1] combines Q-learning with deep neural networks, parameterizing the Q-
value function with θ, the network’s parameters, to represent state s and action values.
Two key concepts improve DQN’s performance: (1) the use of a target network, which
has the same structure but different parameters θ− copied from the original network at
step τ, and (2) the experience replay buffer, storing observed transitions (state, action,
next_state, and reward) and sampling randomly when the buffer exceeds batch_size, thus
removing temporal correlations among samples. Equation (4) expresses the inclusion of
the target network.

YDQN
t ≡ Rt+1 + γmaxa′Q

∧(St+1, a′; θ−t
)

(4)

However, Q-learning tends to overestimate Q-values owing to the “estimate of optimal
future value”. This occurs because Q-learning and DQN use a greedy policy with the max
operator, estimating target Y with the same parameters θ and leading to overestimation.
To address this issue, double Q-learning [39], expressed in Equation (5), separates action
selection and evaluation with different parameters, using θt for action selection and θ′ for
evaluation, thus reducing overestimation.

YDoubleQ
t ≡ Rt+1 + γQ

(
St+1argmaxaQ(St+1, a; Qt); Q′t

)
(5)

Similar to how the DQN applies deep learning to Q-learning, the DDQN [10] applies
deep learning to double Q-learning, as expressed in Equation (6).

YDoubleDQN
t ≡ Rt+1 + γQ

(
St+1argmaxa′Q

∧(St+1, a′; Qt
)
, θ−t

)
(6)

A DDQN uses a target network to evaluate actions, minimize the propagation of
overestimated action values, and resolve overestimation issues.

3. Proposed Algorithm

Figure 1 shows the structure of the proposed algorithm, which combines SVM-RFE
with PER based on DDQN to further enhance the sample efficiency. Most algorithms devel-
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oped for the PER aim to enhance learning efficiency by prioritizing the experience replay
buffer samples in the DDQN. Study [9] also expands on the PER by updating the priorities
of TD errors and sample rewards during deep learning training. Similarly, the proposed
algorithm uses the TD errors of the PER. However, a machine learning technique called
SVM-RFE was used to construct a subset of the samples with the most relevant features
for training before randomly inserting samples into the experience replay buffer. This
approach aims to achieve the desired effects of feature engineering by effectively selecting
samples for inclusion in an experience replay buffer before sampling for effective learning.
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Although the approach of selecting a portion of the samples before inserting them into
the experience replay buffer is similar to that in [9], which uses the mean square error of
rewards with a DDQN and updates it based on a predefined reward mean square error to
overcome its limitations, the proposed algorithm forms a subset of samples based on the
criteria of the sample feature patterns determined via SVM-RFE. Therefore, in this study,
the criteria for sample selection can be changed each time the SVM-RFE is executed in
a batch, and this approach can use domain knowledge to achieve the effects of feature
engineering. As can be observed from the results of this study, using a specific sample
pattern as a criterion demonstrated much better sample efficiency in discrete environments
with fewer samples compared with the reward mean square error of [9]. In the proposed
algorithm, samples were used for agent training from the experience replay buffer if their
reward values exceeded the SVM-RFE criterion; otherwise, they were not used.

Study [17] provided insights into our approach by incorporating support vector
machines into reinforcement learning to address the traditional issues of DRL in small
discrete spaces, such as “little data”, not-easy algorithm convergence, and susceptibility
to local minima. However, Ref. [17] pre-trained the advantage function to optimize the
parameters of the support vector machine and combined actor–critic [16] with support
vector machine classification, which might not aim to improve sampling efficiency during
agent training but rather address the shortcomings of deep learning training. Study [21]
was also predicated on the actor–critic and utilized a “least square” in machine learning to
further enhance sample efficiency. Unlike this study, Ref. [21] targeted an online learning
environment, meaning it could only use data obtained through interactions with the
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environment. However, this study has the capability of offline learning, allowing for policy
convergence by exploiting only pre-collected data or batches when interactions are not
feasible, such as when no additional samples are provided. Because both online and offline
learning have their own advantages and disadvantages, it is not a question of promoting
one learning algorithm over the other. Instead, the determination of the learning algorithm
can be adapted according to the specific circumstances of the environment.

In this study, SVM-RFE was used during agent training to change the criteria for
selecting the data samples in each experience batch. It employed gradient descent through
a DDQN, as used in the PER.

3.1. Preliminaries
3.1.1. SVM-RFE

An SVM [20] is a binary classification method that determines the optimal hyperplane
to satisfy the classification requirements. Given a training set (xi , yi), i = 1, 2, . . . , l,
x ∈ Rn, y ∈ {±1} in a space with feature patterns, the hyperplane is represented as
(ω·x + b) = 0. To ensure a classification margin, the constraint in Equation (7) is required.

yi(ω·xi + b) ≥ 1, i = 1, 2, . . . , l (7)

Thus, the margin maximization problem is expressed in Equation (8), as follows [20]:

minω,b
1
2
||ω||22 (8)

Typically, the ideal goal of learning is to approximate a cost function calculated from
the training examples only. Therefore, the cost function is defined in Equation (9) as
follows [20]:

cost− f uction (J) = ∑x∈X ||ω·x− y||2 (9)

The OBD algorithm [40] approximates this by declaring the cost function used in the
SVM, as shown in Equation (10):

Optimizing (J) = (
1
2
)

δ2 J
δω2

i
(10)

Equation (10) is then defined as in [19], by minimizing the following in Equation (11):(
1
2

)
||ω||2 (11)

While extracting good feature patterns does not necessarily provide the best subset
ranking criteria, (ωi)

2 creates the effect of eliminating unnecessary features one at a time
from the cost objective function and can be a reasonably effective method to obtain a
subset of effective features for training by eliminating multiple useless feature patterns at
once. This method is known as recursive feature elimination and can be used to iteratively
remove unnecessary feature patterns as follows:

1. Train the classifier (optimize the weights ωi of the objective function).
2. Compute the ranking criterion for (ωi)

2.
3. Remove the feature patterns with the smallest criteria.

3.1.2. Previous Sampling Algorithms

The PER uses a DDQN. Therefore, the majority of sampling studies have been based
on the DDQN. In contrast to the DQN, the DDQN uses convolutional neural networks in
the Q-network to approximate action values and a separate target network to calculate
Q-network updates, thus separating the deep learning training components. In a DQN, the
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maximum operation determines the optimal value, whereas in a DDQN, the action value
of the optimal strategy is determined.

The loss functions for the DQN and DDQN are given in Equations (12) [1]
and (13) [10], respectively.

Loss(DQN) = r + γmaxa′Q
∧(s′, a′; θ−

)
−Q(s, a; θ) (12)

Loss(DDQN)= r + γQ
(
s′, arg maxa′Q

(
s′; a′; Q∧

)
; θ−

)
−Q(s, a; θ) (13)

where θ represents the parameters of the Q-network and θ− represents the parameters
of the target network. Generally, when training an AI agent, the goal is to minimize the
difference between the target and the predicted values.

The PER is based on the DDQN to address the issue of nonstationary distribution.
In the first stage, the samples resulting from the interaction between the agent and en-
vironment were stored in an experience replay buffer. In the second stage, small batch
samples for training were selected based on TD errors, and different levels of importance
were assigned to each experience; this increases the probability of significant experiences
being sampled, thereby significantly enhancing the efficiency of agent training. A DQN
obtains past experiences through random sampling, which assigns equal probability to all
experiences in the experience replay buffer, potentially neglecting the varying importance
of different experiences. Therefore, the PER based on the DDQN aims to overcome the
shortcomings of a single DQN by employing a prioritized experience replay; this minimizes
the probability that low-priority transitions cannot be extracted using a robust prioritization
technique. This method ensures that significant experience is likely to influence the training
process, thereby enhancing the overall robustness and efficiency of the reinforcement learn-
ing agent. The difference between the DQN-based and DDQN-based approaches based on
their loss functions is illustrated in Figure 2.
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3.2. Proposed Efficient Sample Subset Based on SVM-RFE

This study used the TD errors of the PER in a DDQN, positing that random sampling
remained more effective than deep learning-based sample selection in small discrete envi-
ronments. As shown in [9]—a study focusing on sample selection for experience replay
buffers based on PER—the prioritization of samples using TD errors did not demonstrate
significant advantages in discrete space environments. The primary contribution of this
study is to show that random sampling based on sample feature patterns can outperform
deep learning-based sample selection, particularly in small discrete environments.

With insights from previous research [17], this study aimed to enhance the sample
efficiency in discrete environments without relying on deep learning. Instead, support
vector machine recursive feature elimination (SVM-RFE) was used for feature engineering
during the DDQN agent training. The samples stored in the experience replay buffer were
selectively chosen based on the SVM-RFE criteria to ensure that only subsets of effective
training samples were included. Subsequently, samples were randomly selected. Random
sampling ensures sampling efficiency [1]. In the PER, the transition of priority and rank-
based prioritization based on the TD errors is used for sample selection. This study, as well
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as TD errors, formed sample subsets based on TD error characteristics using SVM-RFE,
rather than TD error ranking. It is assumed that TD errors exhibit certain patterns, and
samples (s, a, R, r, s′) are set with reward R as y and other vector values as x, similar to [17].
Then, x is input into SVM-RFE. Future studies will incorporate special processing layers for
the input vectors, as described in [41].

In this study, SVM-RFE did not iterate until a single feature pattern remained. Instead,
a criterion was randomly selected from a small number of remaining feature patterns for
random sampling. Furthermore, the ξ -greedy strategy was employed to facilitate random
sampling for DDQN, ensuring some level of randomness within the SVM-RFE-based
sample subset to minimize the probability of exclusion. In the PER, samples are stored
in the experience replay buffer, with priorities assigned based on the absolute value of
TD errors. Reference [9] proposed tracking updates to increase the probability of sample
selection with high TD errors. This study adopted a similar approach by periodically
re-executing SVM-RFE on sample batches to continually update the criterion, achieving
effects similar to those of priority tracking updates. However, enhancing the PER priority
using deep learning, similar to [9], posed challenges in small discrete environments owing
to issues such as convergence accuracy deficiency and susceptibility to local minima [17].
Reference [17] attempted to address these issues by excluding the deep learning structure,
linking SVM with actor–critic models, and applying gradients to the “advantage function”,
which was directly suggested to solve discrete environment problems. Reference [21]
was also predicated on the actor–critic and utilized a machine learning algorithm for
engineering effects on the data. This study gained insight from [17], which proposed a
method using machine learning, such as SVM-RFE, for feature engineering effects while
using gradient methods with a DDQN without a specifically suggested function.

Algorithm 1 describes the proposed method. The command “Store transitions (St−1,
At−1, Rt, γt, St) in V” stores samples in the buffer for use in SVM-RFE. Rsvm−r f e is the
criterion for SVM-RFE, and the samples are stored in the replay memory H based on this
criterion. In “For j = 1 to κ do,” TD errors are calculated. In “Call Rsvm−r f e,” the criterion
for stored samples is periodically recalculated. The procedure Rsvm−r f e sets y to one if
the reward is greater than zero for each sample. Sample feature patterns are calculated
based on the SVM model’s weights ω, and one feature pattern is randomly selected as the
criterion if multiple patterns remain.

Algorithm 1: DDQN influenced by PER with SVM-RFE.

Input: minibatch κ, step− size η, replay period K, size K,
V for SVM− RFE, exponent α, β, budget T

Initialize replay memory H = ∅, ∆ = 0, P1 = 1, ξ = 0.1, random(b),
SetSVM = 0

Observe S0 and A0 ∼ πθ(S 0)
For i = 1 to T do

Observe St, Rt, γt
Store transition trajectories (St−1, At−1, Rt, γt, St) in V
If SetSVM = 1 and Rt > Rsvm−r f e and b > ξ then

Store transition trajectories (St−1, At−1, Rt, γt, St) in H
with Pt = maxi<tPi

Else
Store transition trajectories (St−1, At−1, Rt, γt, St) in H

with Pt = maxi<tPi
If t ≡ 0 mod K then

For j = 1 to κ do
Do sample transition trajectories j ∼ P(j) = pα

j /∑
i

pα
i

Do compute ωj = (N·P(j))− β/maxiωi
Do compute TD− error,

δj = Rj + γjQtarget

(
Sj, aargmaxQ

(
Sj, a

))
−Q

(
Sj−1, Aj−1

)
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Algorithm 1: Cont.

Do update Pj ←
∣∣∣δj

∣∣∣
Do accumulate ∆← ∆ + ωj·δj·∇θQ

(
Sj−1, Aj−1

)
End for
Call Procedure Rsvm−r f e
Set SetSVM ← 1
Update θ ← θ + η·∆ , reset ∆ = 0

Set θtarget ← θ

End if
Choose At ∼ πθ(S 0)

End for

Procedure Rsvm−r f e
Surviving_List[1 . . . K], VforSVM− RFE
For j = 1 to K

Set xj as (Sj, Aj, γj, Sj+1) in V
If Rj > 0, yj = 1 in V
Else yj = −1 in V

For j = 1 to K− 1
Train a model of SVM for ωj

Compute the ranking criterion, ω2
j

Remove the smallest ranking criterion, Surviving_List[j− 1]
Return one out of a few smallest Rsvm−r f e = Surviving_List[1]

4. Results

This study used the OpenAI Gym [22] platform as the environment for comparative
experiments. This implementation was based on the DDQN [10] and integrated supervised
learning through SVM-RFE to demonstrate the superiority of prioritized experience re-
play specifically tailored for discrete action space environments without relying on deep
learning methods.

In this study, the “Classic Control” [42] environments of OpenAI Gym, namely
Cart–Pole [25,43,44], Acrobot [45–47], and MountainCar [48–51], were selected as the exper-
imental settings. The experiments used the well-known DDQN influenced by the PER and
the proposed SVM-RFE integrated prioritized experience replay. The superior performance
of our approach was validated through various comparisons, including reward metrics
and optimal action percentages.

Classic control environments representative of reinforcement learning are modeled
as MDPs based on the Bellman equations [23]. Symmetry can appear in MDPs, and the
Cart–Pole exhibits reflection symmetry [24]. Notably, the results for Cart–Pole and Acrobot
effectively demonstrate the advantages of the proposed algorithm. However, MountainCar
provided rewards only when the car reached the top of the hill, presenting fewer sample
states and sparser reward returns than Cart–Pole and Acrobot. Consequently, while the
SVM-RFE-based prioritized experience replay proposed in this study was optimized for
sample rewards, the improvement in returns was marginal and less pronounced than that
in Cart–Pole or Acrobot when compared with the DDQN influenced by the PER.

4.1. Cart–Pole

The Cart–Pole [25] is a representative of “Classic Control”. The dynamics of Cart–Pole
exhibit reflection symmetry with respect to the vertical axis. A pole is attached to a cart
moving along the track. The pole was positioned at a 90

◦
angle to the cart, and the objective

was to maintain the balance of the pole as the cart moved left and right. Table 1 lists
two action options, {0, 1}, that represent the direction of the force applied to the cart. The
observed values were the position and velocity of the cart. During an episode, the cart
position ranged between −4.8

◦
and +4.8

◦
, and the pole angle ranged between −0.418
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and +0.418 rad. A reward was given for maintaining the pole upright, as represented
by a positive value of 1. The reward threshold for the cart pole was 500. An episode
terminates when one of the following conditions is met: (1) the pole angle exceeds −12

◦
to

+12
◦
, (2) the position of the cart exceeds −2.4 to +2.4 (i.e., the cart reaches the edge of the

display), or (3) the episode length exceeds 500 steps (this condition can be optional). The
movements of the cart pole demonstrated symmetry with respect to a plane perpendicular
to the direction of the movement of the cart in the state–action space. Therefore, evaluating
the improvement effects based on reward increases is suitable for environments such as
the Cart–Pole.

Table 1. Environment of Cart–Pole [25].

Cases Action Spaces

0 Move the cart to the left
1 Move the cart to the right

Cases Observation Spaces Minimum Maximum

0 Cart’s Position −4.8 +4.8
1 Cart’s Velocity −Inf +Inf
2 Pole’s Angle −0.418 rad (−24◦) +0.418 rad (+24◦)
3 Pole’s Angular Speed −Inf −Inf

Each Step The Reward

To maintain the pole in an upright position for the
maximum duration +1

Cases Termination

0 Pole′s angle is more than ± 12
◦

1 Cart′s position is more than ± 2.4
2 Episode duration is more than 500

For a better solution, specific considerations such as outputting “the best test reward”
at each episode step were considered. In some cases, if the episode ends without reaching
the maximum value, a negative reward, −1, is assigned, indicating that extending the
episode does not always increase “the best test reward”. Figure 3 shows the average
instances of “the best test reward” over 100 episodes. The proposed SVM-RFE-integrated
sample-efficient method was compared with the well-known DDQN based on the PER.
Similar results were obtained in this study. However, the existing method exhibited greater
instability in the expected rewards. Hence, in Figure 4, only the worst-case results among
various execution examples were compared, confirming that the existing method was much
more unstable than the average cases of “the best test reward”. This indicates that the
sample-efficient method can achieve reasonable results at an earlier stage, owing to the
sample efficiency rather than significantly improving it by extending the episode length.

4.2. Acrobot

Acrobot [45] is also a part of “Classic Control”, similar to Cart–Pole. The system
consists of a chain structure linearly connected by two links, with one end of the chain
fixed. As listed in Table 2, a joint operates between the two links. The objective of the
task was to apply torque to the joint (actuator) such that the chain, starting from the initial
state of hanging downward, swung or rotated its free end above a given height (the black
horizontal line above the system). The two blue links were connected by two green joints.
Therefore, the action space appeared to be activated by applying a torque to operate the
joint between the two links. As shown, θ1 is the angle of the first joint, and θ2 is the angle
of the second joint relative to the first link. An angle of 0 for θ1 indicates that the first link is
pointing downward, and an angle of 0 for θ2 indicates that the angle between the two links
is the same. θ1 and θ2 are velocity-limited to ±4π and ±9π rad/s, respectively. A reward
was received when the free end reached the specified target height (the black horizontal
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line above the system) in as few steps as possible. If the target was not reached, a negative
reward of −1 was assigned, and the episode was terminated with a reward of zero upon
reaching the target. The reward threshold was −100. The episode typically started with
both links pointing downward and ended if one of the following conditions was met: the
free end satisfied −cos θ1 − cos(θ2 + θ1) > 1.0 or the episode length exceeded 500 steps.
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Table 2. Environment of Acrobot [45].

Cases Action Spaces

0 Apply a torque of− 1 to the driven joint
1 Apply a torque of 0 to the driven joint
2 Apply a torque of + 1 to the driven joint

Cases Observation Spaces Minimum Maximum

0 cos(θ1) −1 +1
1 sin(θ1) −1 +1
2 cos(θ2) −1 +1
3 sin(θ2) −1 +1
4 Angular velocity of θ1 ∼ −12.567(−4 ∗ pi) ∼ 12.567(4 ∗ pi)
5 Angular velocity of θ2 ∼ −28.274(−9 ∗ pi) ∼ 28.274(9 ∗ pi)

Each Step The Reward

To reach the target height before termination 0 (threshold : −100 )
If the target is not reached before termination −1

Cases Termination

1 The free end reaches the target height:
−cos(θ1)− cos(θ2 + θ1) > 1.0

2 Episode duration is more than 500

Figure 5 shows the average number of episodes for lengths less than or equal to
150, 200, and 500. Similar to the case of Cart–Pole, the proposed sample-efficient method
integrating SVM-RFE was compared with the well-known DDQN influenced by the PER.
The proposed method showed a higher frequency of episodes that ended with shorter
lengths. However, for a maximum episode length of 500, both the proposed and the
well-known methods performed similarly. The results indicate that the proposed method
generally reached conclusions faster on average because the worst-case scenario, that is, the
longest episode length, occurred less frequently. Figure 6 presents a box plot comparing the
optimal action percentages for episodes of average length for a more qualitative comparison.
Although the box plot was small, the proposed SVM-RFE-integrated sample-efficient
method exhibited significant differences. The proposed method demonstrated a lower
variability at the median value because of the relatively small difference between the
minimum and maximum values. These results indicate that the proposed method was
considerably more stable in terms of agent learning.
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4.3. MountainCar

MountainCar [48] is an example of an environment with extremely sparse rewards [52].
Similar to Acrobot [45] and Cart–Pole [25], MountainCar [48] is a classic discrete environ-
ment in OpenAI Gym [22]. The MountainCar comprises a car placed at the bottom of
a sine curve (MDP) [23]. As listed in Table 3, the only possible control is acceleration,
which can be applied in different directions. The objective of this environment was to
tactically accelerate the car to reach the top of the right hill. Because the car engine was
not powerful enough to climb a hill in one step, the only way to gain momentum was to
move back and forth. Initially, the car started at rest at the bottom of the valley between the
hills (approximately at the −0.5 mark). The episode ended when the car reached the flag
position (approximately +0.5) or after 200 steps. The available actions for the cars were 1.
push left, 2. push right, and 3. do nothing. A penalty of −1 was applied for each step taken
until the goal was reached.

Table 3. Environment of MountainCar [48].

Cases Action Spaces

0 Speed up to the left
1 Do not speed up
2 Speed up to the right

Cases Observation Spaces Minimum Maximum

0 Position of the car along the x-axis −1.2 0.6
1 Velocity of the car −0.07 +0.07

Each Step The Reward

To arrive at the flag atop the right hill in the shortest time
possible

−1
(When a penalty is applied)

Cases Termination

1 The car’s position is at least 0.5, which is the target
location On the peak of the right hill.

2 Episode duration is more than 200

Figure 7 shows a comparison of the changes in rewards from episodes 500 to 1000.
When comparing the proposed sample-efficient method integrating SVM-RFE with the
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well-known DDQN based on the PER, it was difficult to identify significant changes in the
reward. Therefore, we selected only the worst-case scenario in Figure 8 and the best-case
scenario in Figure 9 for comparison. In the worst-case scenario, the proposed and existing
methods were very similar. However, in the best-case scenario, the proposed method
exhibited a slight improvement, although the improvement was not significant. In other
words, the reward of the agent determines “how quickly the agent can learn within the
expected period”. Unlike Cart–Pole or Acrobot, ensuring rapid and accurate learning on
MountainCar is difficult. MountainCar is representative of a sparse environment compared
with Cart–Pole and Acrobot. Therefore, instead of focusing solely on rewards, it may be
beneficial to consider other aspects, such as those in the Bayesian study [53], to confirm
improvements in the agent’s learning from the loss function. In addition, the agent has been
extensively explored in sparse environments, which has led to significant variability. In
such cases, determining the effectiveness of various rare samples using supervised learning
methods may be challenging. Therefore, in sparse environments, selecting a specific model
and accumulating knowledge using a prior model, similar to other studies [53], may be
more effective. The next step was to investigate various techniques that could demonstrate
the meaningful effects of the sample-efficient method, even in sparse environments.
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5. Discussion

When receiving rewards in environments like MountainCar is more infrequent com-
pared to Cart–Pole or Acrobot, it can be observed that the results for MountainCar do not
significantly improve compared to Acrobot or Cart–Pole; this indicates that the data for
feature engineering effects must be more specific and diverse. This study was based on the
premise that random sampling is much more effective than deep learning in small discrete
environments. Based on previous studies [17,21], we integrated a machine learning method
to refine the random sampling more precisely. The premise of this study is not to assert
that machine learning is superior to deep learning but rather that the environments in
which deep learning and machine learning algorithms are applied can differ. This suggests
that the engineering effects of machine learning must be more detailed and vary in sparse
environments. In sparse environments, the more the agent explores, the greater the varia-
tion. Therefore, a loss function can be suggested for sparse environments, as proposed in
study [53]. In particular, the loss function of the PER based on the DDQN used in this study
will be re-proposed based on a previous study [53], and demonstrating more effective
sampling compared to various algorithms will be the next step of the research.

6. Conclusions

In this study, we proposed an algorithm for selecting a subset of effective samples for
learning in discrete space environments using SVM-RFE, a machine learning technique.
The goal was to achieve feature-engineering-like effects that would improve the rewards
and accuracy of agent learning within a relatively short period. Although leveraging prior
knowledge to improve learning often requires specialized application structures or deep
learning enhancements, this study aims to construct a subset of samples with the most
relevant features for training without such structures. The objective was to use machine
learning to build this subset, thereby improving learning efficiency.

The experimental results of this study revealed that random, informed by sample
feature patterns, is more effective than deep learning-based sample selection, particularly
in small discrete environments. Compared to the existing DDQN influenced by the PER,
significant differences were observed in the reflection symmetry environments. Since
reinforcement learning is based on MDPs with symmetrical properties, the data used for
agent learning can exhibit symmetry. SVM-RFE can effectively leverage the symmetrical
characteristics of data by repeatedly utilizing the orthogonality of SVM approximations.
However, despite being based on the MDPs, it is difficult to observe significant differences
in sparse environments. Therefore, future studies should focus on proposing loss functions
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that can demonstrate the meaningful effects of sample-efficient methods, even in sparse
environments, and devise various techniques to handle these functions.
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