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Abstract: In dynamic environments characterized by information asymmetry, swarm robots
encounter significant challenges in efficiently collaborating to complete tasks. This study
investigates the effects of factors such as resource information, shared costs, transmission
efficiency, and strategy-switching probabilities arising from uneven information sharing
among robots from the perspective of information disparity. A payoff matrix is developed
to model the selection between search and exploration strategies under conditions of
information asymmetry. Utilizing evolutionary game theory and replicator dynamics, the
study analyzes how robots adapt their strategies in response to variations in resource
information and shared costs. The findings reveal that the system ultimately evolves
toward one of two dominant strategies: search or exploration. Numerical simulations
demonstrate that information disparity, shared costs, transmission efficiency, and strategy-
switching probabilities collectively drive the transition of robots from a search strategy to an
exploration strategy, enabling them to acquire unknown environmental information more
effectively and expedite task completion. The results suggest that in environments with
balanced information, the system predominantly favors the search strategy to optimize
resource utilization. Conversely, in environments with pronounced information asymmetry,
the system is more inclined to adopt the exploration strategy, enhancing adaptability to
environmental changes and accelerating task completion.

Keywords: information asymmetry; swarm robotics; evolutionary game theory; strategy
selection; interaction

1. Introduction
With the rapid development of artificial intelligence and multi-agent systems (MASs),

Swarm Robotics Systems (SRSs) have gradually become effective tools for solving complex
problems [1,2]. The research inspiration for swarm robotics systems comes from collective
behaviors in nature, such as the collective decision-making mechanisms of insects like ants
and bees [3]. In these systems, multiple robots collaborate to perform tasks, leveraging
distributed computing and local decision-making to achieve global objectives [4]. The
advantages of swarm robotics systems lie in their high flexibility, robustness, and adapt-
ability, enabling them to efficiently complete tasks such as search [5], exploration [6], and
monitoring [7] in dynamic and uncertain environments. Research over the past few decades
has shown that collective intelligence and distributed control are among the core strengths
of swarm robotics systems [8]. MASs, as a core component of swarm robotics systems, pro-
vide the theoretical foundation and technical support for cooperation and decision-making
among multiple agents [9]. In these systems, multiple agents must collaborate, exchange
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information, and make distributed decisions to achieve collective goals. In the presence
of information asymmetry and communication delays, research on MASs has provided
effective solutions to help robots make efficient decisions in complex environments [10].

However, in practical applications, the issue of information asymmetry among robots
has become increasingly prominent. The evolutionary game dynamics driven by informa-
tion disparity represent a core challenge in swarm robotics systems. Information asymme-
try [11] refers to the fact that each robot in the group does not have perfectly symmetrical
information when performing tasks due to perception range, communication delays, and
sensor accuracy. This disparity may lead robots to make decisions based on local informa-
tion, affecting the coordination of the group and the efficiency of task execution.

In swarm robotics systems, the evolutionary dynamics driven by information asym-
metry involve interactions and cooperation between robots. In these interactions, each
robot makes decisions based on its local information and needs to exchange information
and collaborate with other robots to achieve a common goal [12]. This information-driven
evolutionary game is not merely a simple cooperation-versus-defection issue but a dynamic
and adaptive strategy optimization process. Game theory [13,14], particularly evolutionary
game theory (EGT) [15–17], provides a powerful analytical framework for this evolution, as
it can describe the strategy adjustment process of swarm robots in multi-round interactions
and analyze how individuals evolve optimal cooperative strategies based on historical
actions and local feedback in information asymmetry environments. In swarm robotics
systems, information asymmetry means that each robot can only rely on limited local
information when making decisions. Therefore, robots must continuously interact with
others and adjust their behavior strategies. The key to this evolutionary process lies in
how to optimize the current strategy based on past experiences and real-time feedback,
thereby achieving the optimal collaboration of the entire group [18]. Strategy evolution in
evolutionary game theory not only depends on the choices of individual robots but is also
influenced by the strategies of other robots in the group, thus forming a “collective game”.
In this process, interactions between robots and the flow of information play a crucial role.

Information asymmetry is particularly prominent when swarm robots perform search
and exploration tasks. Each robot can only perceive a portion of the surrounding environ-
ment, and how to share information with other robots to complement local perceptions and
form global knowledge becomes a key aspect of group collaboration. In this process, the
evolutionary dynamics driven by information asymmetry exhibit complex and dynamic
characteristics. When making task-related decisions, each robot must consider not only the
local task progress but also engage in information exchange or collaboration with other
robots to allocate global tasks and schedule resources [19]. However, due to information
asymmetry, robots may face uncertainty in collaboration and even encounter strategic
conflicts. For instance, a robot might choose to “defect” instead of cooperating, leading to
resource waste or task duplication, which negatively affects the overall collaboration of the
group [20]. Designing effective game mechanisms to coordinate cooperation and competi-
tion between robots and optimize the strategy evolution process is critical to improving the
performance of swarm robotics systems.

Although existing studies have explored individual strategy choices, they have yet to
comprehensively consider factors such as information asymmetry, communication delays,
strategy selection, and the interaction relationships between robots. This gap has created
challenges in understanding the micro-level mechanisms influencing task completion
efficiency in dynamic environments. Based on this, the main contributions of this paper are
as follows:

1. This paper investigates the strategy selection problem in swarm robotics under con-
ditions of information asymmetry. Focusing on the role of information sharing, it
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comprehensively examines multiple influencing factors, including shared resource
information, shared costs, communication delays, and strategy switching among
robots. To model interactions between a robot and its neighbors, a payoff matrix is
developed to evaluate the selection of search and exploration strategies.

2. Using evolutionary game theory and replicator dynamics, this paper examines the
stable strategy combinations and evolutionary trajectories emerging from interactions
among robots. The analysis reveals that when the payoff from switching strategies
exceeds the difference between resource information and shared costs, the robots
stabilize in either the (search, search) or (exploration, exploration) state. Conversely,
when the payoff from switching strategies is lower than the difference in resource
information and shared costs, the robots stabilize in the (search, search) state.

3. Numerical simulations are used in this study to examine how variations in different
parameters affect the probabilities of robots selecting search or exploration strategies.
The findings reveal that factors such as the proportion of shared resource information,
the shared cost ratio, communication delays, and the probability of strategy switching
play a crucial role in shaping the evolution of robot strategies. Specifically, adjusting
these factors can effectively drive robots to transition from a search strategy to an
exploration strategy, enabling them to acquire more environmental information and
complete tasks more efficiently. This approach not only enhances task completion
efficiency but also improves the system’s ability to respond to diverse emergencies.

The structure of this paper is as follows: Section 2 introduces the decision-making
choices of swarm robots and related work in game theory research. Section 3 elaborates on
the swarm robotics system model established in this study, covering the construction of
both the general model and the evolutionary game model. Section 4 presents an analysis
of evolutionary stability, discussing strategy choices and their stability under different
conditions. Section 5 verifies and analyzes the proposed model through simulation results.
Finally, Section 6 summarizes the research findings and discusses future work.

2. Related Work
This section presents related research on strategy selection, exploring the impact of

information asymmetry on different strategy choices and the application of evolutionary
game theory in swarm robotics. It provides insights into the evolution of information-
sharing strategies among swarm robots in dynamic scenarios, which has inspired the
development of an evolutionary game model for information-sharing in such systems.

2.1. Research Status on Strategy Selection Based on Information Asymmetry

In recent years, the issue of strategy selection based on information asymmetry has
received widespread attention across multiple disciplines, particularly in economics [21,22],
management [23], decision science [24], and medicine [25]. In decision-making processes,
differences in the amount and quality of information possessed by different decision-makers
or systems often lead to biases in the decision outcomes. In many practical scenarios,
information asymmetry directly impacts decision-making efficiency and the optimization
of resource allocation [26,27]. For example, in market transactions, differences in the
perceptions of product quality, price, and risk between buyers and sellers often lead to
divergent choices. This information asymmetry can result in market failure or suboptimal
resource allocation [28]. With the development of information technology, research on
information asymmetry has expanded beyond economic transactions to include areas such
as data privacy and multi-source information fusion.

Many studies have attempted to design effective decision-making strategies in the
context of information asymmetry, particularly in intelligent decision systems where the
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impact of information disparity on strategy selection is more complex. Fu et al. [29]
proposed a framework based on agent methods and evolutionary algorithms, aiming
to optimize the decision-making process in project-driven supply chains by integrating
information asymmetry. Lin et al. [30] investigated the information design problem in
reinforcement learning agents, introducing the concepts of Markov signaling games and
signal gradients to address the impact of information provision on agent behavior and its
non-stationarity. Liu et al. [31] introduced a new multi-agent system (iAgents) that resolves
information asymmetry through an information reasoning mechanism (InfoNav), allowing
agents to actively exchange human information in collaboration. Additionally, H. Tavafoghi
et al. [32] studied dynamic multi-agent decision problems with asymmetric information and
non-strategic agents, proposing the concept of “full information” to effectively compress
agent information. Through sequential decomposition and backward induction methods,
they addressed the interdependence between agent strategies and beliefs and developed a
globally optimal dynamic plan.

These findings provide profound insights into strategy selection and optimization
in swarm robotics systems. However, current research primarily focuses on bridging
information gaps, with less attention given to how to leverage information asymmetry
to optimize strategy selection. For swarm robotics systems, effective strategy selection
in the context of information asymmetry is crucial. Future research should focus on
exploring how to utilize information asymmetry to optimize collaborative decision-making
in robot swarms, particularly in multi-robot collaboration, by enhancing information
sharing and optimizing local decision-making to improve group decision efficiency and
overall performance.

2.2. Research Status of Evolutionary Game Theory in Swarm Robotics

Evolutionary game theory plays a crucial role in complex social environments, partic-
ularly in the strategy selection of swarm robotics. This theoretical framework allows us to
deeply analyze the behavioral strategies of swarm robots using mathematical methods and
to examine the mechanisms behind their emergence and evolution. Especially in dynamic
environments, where individual decisions are influenced by factors such as resources,
competition, and cooperation, evolutionary game theory helps to understand these social
interactions [33].

Game theory has been increasingly applied inMASs, particularly in areas such as robot
coordination and emergency rescue, providing effective decision support. Du et al. [34]
used evolutionary game theory to achieve coordinated control inMASs by modeling the
local interactions of agents as a game process, enabling task division and the achieve-
ment of overall goals through evolutionary dynamics. The Strategy Dynamics Particle
Swarm Optimization (SDPSO) method incorporates evolutionary game theory to control
population states, thereby improving optimization performance [35]. In the absence of
communication, game theory models allow multi-robot systems to navigate toward target
locations in a decentralized manner. Robots estimate the behaviors of local teammates to
avoid obstacles, prevent collisions, and maintain team cohesion [36]. Researchers have
also applied evolutionary game models to analyze strategies for loot box sales in games,
revealing that interactions between companies and players can lead to win–win or lose–lose
situations and that enhanced regulation contributes to the healthy development of the
industry [37].

In emergency rescue, evolutionary game models have been used to analyze the cooper-
ation between government rescue teams, social emergency organizations, and government
support agencies. The results show that shared rescue goals and effective resource allo-
cation are key to improving cooperation efficiency [38]. N. Fontbonne [39] proposed the
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Horizontal Information Transfer (HIT) and Centralized Cooperative Co-evolutionary Algo-
rithm (CCEA) to optimize robot coordination and collective behavior and demonstrated
its effectiveness in multi-robot tasks. KAR Youssefi et al. [40] introduced a decentralized
asynchronous swarm robot search algorithm that combines game theory to optimize robot
decentralized strategies, effectively preventing early convergence and improving search
efficiency. Xiong et al. [41] proposed a target search model combining bio-inspired tech-
niques and evolutionary game theory, analyzing the task allocation problem in multi-robot
systems within unknown areas. The model demonstrated that under weak selection condi-
tions, it can promote the coexistence of two strategies, providing theoretical support for
the design of self-organizing collective dynamics inMASs. These research findings indicate
that the application of game theory can help robot teams collaborate efficiently, enhanc-
ing overall work efficiency and quality, which is of significant importance in emergency
rescue operations.

The above research provides valuable insights from different perspectives into the
motivations behind strategy selection in swarm robotics systems based on game theory.
In swarm robot tasks, the choice between search and exploration strategies is influenced
by both environmental conditions and the behaviors of other robots, necessitating consid-
eration of the strategy evolution and cooperative adaptation process. Using evolutionary
game theory for analysis can reveal the stability, adaptability, and efficiency of swarm robot
systems under different strategy combinations, helping to optimize the overall effectiveness
of task completion.

3. System Model
To further explore the strategy selection problem in swarm robotics systems and op-

timize the efficiency and performance of task completion, this section constructs both a
general model and an evolutionary game model. The general model provides an under-
standing of the overall framework and basic rules of the swarm robotics system, enabling
better analysis and description of the interactions between robots. The evolutionary game
model, on the other hand, reveals the evolutionary patterns of strategy selection and the
formation path of optimal strategies by considering the dynamic evolution of individual
robot strategies. To facilitate a better understanding of the system, Figure 1 illustrates the
key models and their interrelationships.
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3.1. General Model

Consider a swarm consisting of N robots, where each robot is denoted by i (i ∈ N).
The swarm G = (V, ε) can be defined by a set of nodes V = {ν1, ν2, · · · , νn} and a set
of edges ε ⊆ V × V. The neighbor set of node Ni is denoted as Ni = {j ∈ V(i, j) ∈ ε},
assuming i is not its own neighbor.

The network game model can be defined as the following four-tuple:

Γg = (V, Si, Ci, Ui), (1)

• A set of nodes V = {ν1, ν2, · · · , νn}, where each node represents a participant, with a
total of N robots, who can randomly choose their own strategies; for convenience, they
are divided into two populations: n and m. The set of search robots n is represented
as S = (1, 2, . . . , S), and the set of exploration robots m is represented as E =

(1, 2, . . . , E).
• Si represents the strategy set Si ∈ {S, E}, where in this scenario, the strategies include

search and exploration.
• Ci denotes the interaction relationships between robots and their neighbors, includ-

ing the transmission, sharing, and collaboration of information. The information
connections between robots are represented by defining a neighbor set.

• Ui represents the payoff for a robot under a chosen strategy. By assessing the benefits
of different strategies, the robot adjusts its strategy to achieve higher payoffs. The
payoffs here are defined and evaluated based on the amount of resource information
obtained, which includes the cost of acquiring resources and the sum of resource
information obtained after interacting with neighbors.

3.2. Model Assumptions and Payoff Matrix Construction

In emergency scenarios, swarm robots need to rationally select between exploration
and search strategies to achieve higher payoffs for rescue operations. The search strategy
focuses on locating trapped individuals and beneficial resource information within known
areas, incurring negligible costs. In contrast, the exploration strategy may involve find-
ing new rescue routes or resources, thus requiring higher costs to obtain new resource
information, leading to asymmetric information in strategy selection.

Assume the participants in this evolutionary game are robot i and its neighbor j.
Suppose robot i chooses the exploration strategy with a probability of x and the search
strategy with a probability of 1 − x; neighbor j chooses the exploration strategy with a
probability of y and the search strategy with a probability of 1− y. When robot i chooses the
search strategy, the amount of information it gains is Eis. If robot i chooses the exploration
strategy, it will incur a cost Cie (the cost of obtaining information, including resource
consumption, time consumption, energy consumption, etc.), and it will receive a fixed
amount of information Iie. Similarly, when neighbor robot j chooses the search strategy, the
amount of information it gains is Ejs. If neighbor j chooses the exploration strategy, it will
incur a cost Cje, and it will receive a fixed amount of information Ije.

3.2.1. Information Interaction

In order to obtain higher resource information, robots typically need to engage in
information interaction, with robot i being able to interact only with its neighbors to learn
about relevant local information. Based on this, the robot may change its strategy or
maintain its current strategy. If the two parties choose different strategies at a certain
moment, robot i will share the resource information it has obtained with its neighbor at a
certain proportion

(
Ije = α·Iie

)
, and the neighbor robot will also bear a certain proportion
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of the consumption cost
(
Cje = β·Cie

)
. When both parties choose the exploration strategy,

although the exploring robot incurs a cost, it cannot be shared with other robots; when both
parties choose the search strategy since they are both searching for resources in a known
environment, the benefits obtained are relatively low.

Therefore, they will incur additional costs to support other strategy choices during
this period, and the probability of them choosing to switch strategies is µ, {µ ∈ (0, 1)}.
All parameters are greater than 0, and Cij < Cie or Cje.

3.2.2. Environmental Information Parameters

When robots interact with each other, the surrounding environment imposes a com-
munication delay d on them. Here, we define e−d as the attenuation factor due to the
communication delay d. Thus,

(
D = 1 − e−d

)
represents the proportion of communication

information that can be transmitted normally, which is the successful transmission efficiency.
Additionally, the urgency of the event, denoted as γ, {γ ∈ (0, 1)}, affects the equilibrium
of strategy selection. The higher the urgency, the higher the payoff of information obtained
when robots choose the exploration strategy.

Based on this, the payoff situation for robot i and its neighbor robot j under the choice
of two strategies can be represented by the following 2 × 2 payoff matrix, as shown in
Table 1.

Table 1. Evolutionary game payoff matrix.

Robot i

Neighbor Robot j

Strategy Selection
Probabilities Explore (y) Search (1 − y)

Explore (x) Eis + Iie − Cie + D·Ije,
Ejs + Ije − Cje + D·Iie

Eis + Iie −Cie + D·Ejs,
Ejs + D·α·Iie − β·Cie

Search (1 − x) Eis + D·α·Ije − β·Cje,
Ejs + Ije −Cje + D·Eis

Eis + D·Ejs − µ·Cij,
Ejs + D·Eis − µ·Cij

3.3. Evolutionary Game Model

In the evolutionary game model, the dynamic evolution of individual strategy selection
is described by the replicator dynamic equation. Specifically, the probability of an individual
selecting a particular strategy changes over time, depending on the difference between
its expected payoff and the average expected payoff. When robot i and its neighbor j
choose between exploration or search strategies, they continuously adjust the probability of
selecting each strategy based on their respective payoff situations. Figure 2 systematically
illustrates this dynamic process and its interrelationships, providing a framework for the
subsequent detailed calculations.
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According to evolutionary game theory and the replicator dynamics equation, the
rate of change in the probability x that robot i chooses the exploration strategy should be
proportional to the difference between the expected payoff of choosing the exploration
strategy and the average expected payoff. At time t, when robot i chooses the exploration
strategy, its payoff is u11:

u11 = y
(
Eis + Iie − Cie + D·Ije

)
+ (1 − y)

(
Eis + Iie − Cie + D·Ejs

)
, (2)

When robot i chooses the search strategy, its payoff is u12:

u12 = y
(
Eis + D·α·Ije − β·Cje

)
+ (1 − y)

(
Eis + D·Ejs − µ·Cij

)
, (3)

The expected payoff for robot i is u1:

u1 = xu11 + (1 − x)u12, (4)

The replication dynamics equation for robot i can be further expressed as

f (x) =
dx
dt

= x(u11 − u1) = x(1 − x)
(
y·D·Ije + Iie − Cie − y·D·α·Ije + y·β·Cje + µ·Cij − y·µ·Cij

)
, (5)

Similarly, if neighbor j chooses the exploration strategy, the payoff is u21:

u21 = x
(
Ejs + Ije − Cje + D·Iie

)
+ (1 − x)

(
Ejs + Ije − Cje + D·Eis

)
, (6)

When neighbor robot j chooses the search strategy, its payoff is u22:

u22 = x
(
Ejs + D·α·Iie − β·Cie

)
+ (1 − x)

(
Ejs + D·Eis − µ·Cij

)
, (7)

The expected payoff for neighbor j is u2:

u1 = yu21 + (1 − y)u22, (8)

By the same reasoning, the replication dynamics equation for neighbor j can be
obtained as

f (y) =
dy
dt

= y(u21 − u2) = y(1 − y)
(

x·D·Iie + Ije − Cje − x·D·α·Iie + x·β·Cie + µ·Cij − x·µ·Cij
)
, (9)

By solving the system of two-dimensional dynamic Equations (5) and (9), we can obtain

the following five equilibrium points: (0, 0), (0, 1), (1, 0), (1, 1), and (
Cje−Ije−µ·Cij

D·Iie ·(1−α)+β·Cie−µ·Cij
,

Cie−Iie−µ·Cij
D·Ije(1−α)+β·Cje−µ·Cij

). Notably, the fifth equilibrium point is abbreviated as (x∗, y∗) here.

Equations (5) and (9) describe the dynamic process of strategy selection probabilities.
Furthermore, to analyze the stability of these dynamic equations at the equilibrium points,
the Jacobian matrix is constructed, with its elements being the partial derivatives with
respect to the strategy probabilities, reflecting the interrelationships between strategies.
The Jacobian matrix is shown in Equation (10):

J =

 ∂ f (x)
∂x

∂ f (x)
∂y

∂ f (y)
∂x

∂ f (y)
∂y

, (10)
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The elements of the Jacobian matrix are given in Equation (11).

∂ f (x)
∂x = (1 − 2x)

[
y·
(

D·Ije(1 − α) + β·Cje − µ·Cij
)
+ Iie − Cie + µ·Cij

]
∂ f (x)

∂y = x(1 − x)
[
D·Ije(1 − α) + β·Cje − µ·Cij

]
∂ f (y)

∂x = y(1 − y)
[
D·Iie(1 − α) + β·Cie − µ·Cij

]
∂ f (y)

∂y = (1 − 2y)
[
x·
(

D·Iie(1 − α) + β·Cie − µ·Cij
)
+ Ije − Cje + µ·Cij

] , (11)

According to the stability theorem of differential equations, the stability of an equi-
librium point as an Evolutionarily Stable Strategy (ESS) can be determined by calculating
the eigenvalues of the Jacobian matrix. Specifically, when the determinant (det) is greater
than zero and the trace (tr) is less than zero, the equilibrium point is an ESS, which applies
to two-player games. The det is the product of the eigenvalues, and the tr is the sum of
the eigenvalues. If the trace is zero, the corresponding equilibrium point is a saddle point.
The calculation results of the determinant and trace of the Jacobian matrix at different
equilibrium points are shown in Table 2.

Table 2. Determinant and trace values for each equilibrium point.

Equilibrium Point Determinant Trace

(0, 0)
(
Iie − Cie + µ·Cij

)(
Ije − Cje + µ·Cij

) (
Iie − Cie + µ·Cij

)
+

(
Ije − Cje + µ·Cij

)
(0, 1)

(
Cje − Ije − µ·Cij

)(
Iie − Cie + β·Cje + D·Ije − D·α·Ije

) (
Cje − Ije − µ·Cij

)
+(

Iie − Cie + β·Cje + D·Ije − D·α·Ije
)

(1, 0)
(
Cie − Iie − µ·Cij

)(
Ije − Cje + β·Cie + D·Iie − D·α·Iie

) (
Cie − Iie − µ·Cij

)
+(

Ije − Cje + β·Cie + D·Iie − D·α·Iie
)

(1, 1)
(
Ije − Cje + β·Cie + D·Iie − D·α·Iie

)(
Iie − Cie + β·Cje + D·Ije − D·α·Ije

) (
Ije − Cje + β·Cie + D·Iie − D·α·Iie

)
+(

Iie − Cie + β·Cje + D·Ije − D·α·Ije
)

(x∗, y∗)
−x*·y*(D·Iie·(1 − α) + β·Cie − Cje + Ije

)(
D·Ije·(1 − α) + β·Cje − Cie + Iie

) 0

4. Evolutionary Stability Analysis
By analyzing the signs of the determinant and trace of the Jacobian matrix, the Evolu-

tionarily Stable Strategy (ESS) can be effectively determined. Based on the ESS determina-
tion criteria, we can solve for the stable equilibrium points under different evolutionary
paths. That is, (0, 0) and(1, 1) are the stable strategies of the evolutionary game, while
(0, 1) and (1, 0) are unstable points, and (x∗, y∗) is a saddle point of the evolutionary game.
Next, a detailed analysis of these conditions will be provided.

4.1. Pur Strategy Stability Analysis

In the context of pure strategies, the strategy selection and evolutionary paths of
robots under specific payoff conditions exhibit differences in stability. By constructing
the Jacobian matrix and analyzing the stability of the equilibrium points, we discuss two
scenarios separately.

4.1.1. Switching Payoff Greater than Resource Difference

Theorem 1. When the payoff obtained by both robots from switching strategies is greater than
the difference between the resource information and shared cost in the interaction process, both the
robot and its neighbor will choose to follow the strategy. Specifically, if one robot chooses the search
strategy, the other will also choose the search strategy; if one robot chooses the exploration strategy,
the other will also choose the exploration strategy.
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Proof. When Iie + µ·Cij < Cie, Ije + µ·Cij < Cje, Ije + β·Cie + D·Iie < D·α·Iie + Cje,
Iie + β·Cje + D·Ije < Cie + D·α·Ije, that is Iie − Cie + µ·Cij > D·α·Iie − β·Cie − D·Iie and
Ije − Cje + µ·Cij > D·α·Ije − β·Cje − D·Ije. The stability of each equilibrium point is shown
in Table 3. Under this condition, the points (0, 0) and (1, 1) are stable strategies. The point
(0, 0) indicates that both robot i and its neighbor j have a probability of 0 for choosing
the exploration strategy, meaning they will both choose the search strategy. The robots
aim to maximize the amount of resource information. Although under this condition, the
robots can always find better strategies to replace their current choices, these strategies are
unstable due to evolutionary pressures or competition that arise during interactions with
neighbors. This leads to adjustments in strategies, and ultimately, the system stabilizes at
the point (0, 0), where the main payoff from the search strategy is better than the payoffs
from other strategies. Thus, the robots will not change their strategies for a certain period
of time. Similarly, the point (1, 1) is a stable strategy, indicating that both robot i and its
neighbor j choose the exploration strategy with a probability of 1, meaning they will both
choose the exploration strategy. In the current environment, the payoff from choosing
exploration is higher than the payoff from other strategies, so the robots will not change
their strategies. □

Table 3. Stability of the Jacobian matrix at equilibrium points under the conditions of Theorem 1.

Equilibrium
Point Determinant Symbol Trace Symbol Stability

(0, 0) + − ESS
(0, 1) − + Unstable
(1, 0) − + Unstable
(1, 1) + − ESS
(x∗, y∗) − 0 Saddle point

4.1.2. Switching Payoff Less than Resource Difference

Theorem 2. When the payoff obtained by both robots from switching strategies is less than the
difference between the resource information and shared cost in the interaction process, the robots will
still choose the same strategy, but the result is more likely to stabilize in the (search, search) state.

Proof. When Iie + µ·Cij < Cie, Ije + µ·Cij < Cje, Ije + β·Cie + D·Iie > D·α·Iie + Cje,
Iie + β·Cje + D·Ije > Cie + D·α·Ije, that is Iie − Cie + µ·Cij < D·α·Iie − β·Cie − D·Iie and
Ije − Cje + µ·Cij < D·α·Ije − β·Cje − D·Ije. The stability of each equilibrium point is shown
in Table 4. Under this condition, the point (0, 0) is the only stable strategy, meaning that
both the robot and its neighbor will choose the search strategy because, under this condition,
the cost of choosing exploration exceeds the resource information gained. Although there
is an amount of exploration information greater than the resource information exchanged
during the evolutionary process, these strategies are unstable due to evolutionary pressures
or competition. This leads to adjustments in strategies, and ultimately, the system will
stabilize at the point (0, 0), where the main payoff from the search strategy is greater than
the payoff from other strategies. Therefore, for a certain period of time, the robot will not
change its strategy. □
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Table 4. Stability of the Jacobian matrix at equilibrium points under the conditions of Theorem 2.

Equilibrium
Point Determinant Symbol Trace Symbol Stability

(0, 0) + − ESS
(0, 1) + + Unstable
(1, 0) + + Unstable
(1, 1) + + Unstable

4.1.3. Comprehensive Comparison

Both Theorem 1 and Theorem 2 exhibit stability for the same strategy, but the mecha-
nisms influencing them differ significantly. In Theorem 1, the system stabilizes with both
search and exploration strategies. This is because the benefits derived from switching strate-
gies are sufficient to offset the differences between resource information and shared costs,
allowing the robots to flexibly switch between these two strategies when interacting with
their neighbors. This flexibility enables the robots to fully utilize environmental information
and resources in various scenarios, thereby optimizing task execution efficiency in dynamic
and uncertain environments. For example, when there is a large amount of unknown
information in the environment, the exploration strategy helps the robots discover new
resources and information, while in relatively resource-rich situations, the search strategy
efficiently utilizes the available resources.

In Theorem 2, since the benefits of switching strategies are insufficient to offset the
differences between resource information and shared costs, the robots tend to adopt the
more conservative search strategy. In this case, the robots choose the search strategy to
maximize efficiency under known resources and information, avoiding unnecessary costs
and risks. The conservative strategy choice helps reduce resource waste and unnecessary
expenses in uncertain environments while ensuring efficient operation under known condi-
tions. The search strategy effectively locates the target in a known environment, reducing
the uncertainty and potential risks associated with exploration.

It can be observed that the benefit of switching strategies plays a crucial role in the
strategy selection process, particularly in relation to the difference between resource infor-
mation and shared costs. When the benefits are higher, the robot can maintain flexibility
between the search and exploration strategies, balancing the advantages and disadvantages
of both to adapt to different environmental changes and task requirements. Conversely,
when the benefits are lower, the robot tends to adopt the more conservative search strategy
to minimize uncertainty and risk. This strategy selection mechanism reflects the robot’s
adaptability and decision optimization capability when facing dynamic environments,
helping to enhance the overall efficiency and performance of the system in complex and
ever-changing environments.

4.2. Mixed Strategy Stability Analysis

In the analysis of mixed strategy stability, we determine the stability by studying the
local dynamics of the equilibrium points. According to the determinant and trace results in
Table 2, the Jacobian matrix at the saddle point (x∗, y∗) is used to describe the behavior of
the system near this point. The diagonal elements of the matrix are zero, meaning that at
this equilibrium point, the probability values of variables x and y do not directly affect their
own changes but rather are influenced by the interaction with the other player’s strategy.
Therefore, the stability of the system is determined by the cross terms (i.e., the interaction
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effects between strategies). The specific form of the Jacobian matrix at this point is given by
Equation (12).

J =

[
0 ∂ f (x)

∂y
∂ f (y)

∂x 0

]
, (12)

The values of the elements in the matrix are given in Equation (13).
∂ f (x)

∂y =
x∗(D·Iie ·(1−α)+β·Cie−Cje+Ije)(D·Ije ·(1−α)+β·Cje−µ·Cij)

D·Iie ·(1−α)+β·Cie−µ·Cij

∂ f (y)
∂x =

y∗(D·Ije ·(1−α)+β·Cje−Cie+Iie)(D·Iie ·(1−α)+β·Cie−µ·Cij)
D·Ije ·(1−α)+β·Cje−µ·Cij

, (13)

It can be further concluded that the determinant and trace at this point are given by
Equations (14) and (15), respectively.

detJ = −x∗·y∗
(

D·Iie·(1 − α) + β·Cie − Cje + Ije
)(

D·Ije·(1 − α) + β·Cje − Cie + Iie
)
, (14)

trJ = 0, (15)

At this point, the characteristic equation of the determinant is: the characteristic
equation is:

λ2 − trJ·λ + detJ = 0, (16)

Here, λ represents the eigenvalue of the characteristic equation, which is the eigen-
value of the Jacobian matrix at the saddle point P. It is used to analyze the local stability of
the model at the saddle point. When trJ2 − 4detJ > 0, the eigenvalues at the saddle point
P are real numbers, meaning the solutions to the characteristic equation of the Jacobian
matrix are real. In this case, according to the Jury condition [42], the sufficient and necessary
condition for the stability of the saddle point P is given by Equation (17).

1 + trJ + detJ > 0
1 − trJ + detJ > 0
|detJ| < 1

, (17)

Based on the above conditions, Equation (18) can be derived as follows:{
1 +

(
−x∗·y∗

(
D·Iie·(1 − α) + β·Cie − Cje + Ije

)(
D·Ije·(1 − α) + β·Cje − Cie + Iie

))
> 0∣∣−x∗·y∗

(
D·Iie·(1 − α) + β·Cie − Cje + Ije

)(
D·Ije·(1 − α) + β·Cje − Cie + Iie

)∣∣ < 1
, (18)

Then, the stability range is obtained:

−1 < x∗·y∗
(

D·Iie·(1 − α) + β·Cie − Cje + Ije
)(

D·Ije·(1 − α) + β·Cje − Cie + Iie
)
< 1. (19)

That is, the saddle point P (x∗, y∗) is a stable equilibrium point within the range
defined by the parameters; however, if the parameters exceed this range, the point becomes
unstable. When the point is unstable, the robot will choose search and exploration strategies
with a certain probability distribution. The phase diagram of the system evolution is shown
in Figure 3.

From the diagram, it can be understood that when the equilibrium point P (x∗, y∗)
moves within the region SNOE, different initial states of P (x∗, y∗) will result in different
ultimate evolutionary outcomes of the strategy.

If x∗ < 1
2 , y∗ < 1

2 , at this point, the area of the quadrilateral SPEN will be greater
than the area of the quadrilateral SOEP, and the system’s final strategy will evolve stably
to point N (1, 1), meaning that the robot and its neighbor’s final strategy choice will be
(explore, explore). If x∗ = 1

2 , y∗ = 1
2 , the area of the quadrilateral SPEN will be equal to the
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area of the quadrilateral SOEP, and the system’s final strategy may evolve stably to point
N (1, 1), meaning that the robot and its neighbor’s final strategy choice will be (explore,
explore), or it may evolve stably to point O (0, 0), meaning that the robot and its neighbor’s
final strategy choice will be (search, search). Therefore, under this condition, the strategies
of the robot and its neighbor can be either exploration or search. If x∗ > 1

2 , y∗ > 1
2 , the

area of the quadrilateral SPEN will be less than the area of the quadrilateral SOEP, and the
system’s final strategy will evolve stably to point O (0, 0), meaning that the robot and its
neighbor’s final strategy choice will be (search, search).
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5. Numerical Simulation Analysis
In this section, we will validate the feasibility of our model using numerical simulations

and explore the dynamic behavior of strategy selection and the evolutionary process in
swarm robotics systems. We used MATLAB R2016a for the simulations and set the initial
parameters. First, we will simulate the evolutionary path, demonstrating the evolutionary
process of individual robots under different strategy choices, thus revealing how the system
tends toward equilibrium. Next, we will set different parameters to analyze the impact
of various factors on the system’s evolutionary path, including communication delay,
strategy selection probability, and information-sharing efficiency. Through the simulation
results with parameter variations, we will further investigate the impact of these factors on
collaboration in swarm robotics.

5.1. Parameter Settings and Selection

In order to validate the effectiveness and feasibility of the proposed evolutionary
game model, numerical simulations were conducted. Table 5 summarizes the parameters
used in this study. The simulation settings and selections of these parameters are based
on empirical observations, logical assumptions, and the characteristics of the modeled
scenario while considering the differences in strategy selection, resource consumption,
and information sharing between the robots and their neighbors. The meaning of each
parameter and the rationale for its selection are briefly explained in the table. The initial
ratio between the robot and its neighbor is set as x0 = y0 = 0.5.

Table 5. Parameters used in numerical simulations and their setting rationale.

Parameter Symbol Parameter Description Basis or Source of Parameter Selection

Cie Cost of the exploration strategy for the robot Empirically set based on the resource
consumption of the robot’s tasks

Cje
Cost of the exploration strategy for

the neighbor
Assumes the neighbor has slightly higher

resource costs
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Table 5. Cont.

Parameter Symbol Parameter Description Basis or Source of Parameter Selection

Iie Resource information obtained by the robot Effective resource information acquired in
the simulation scenario

Ije Resource information obtained by the neighbor Assumes the neighbor has a higher
resource acquisition capability

x0, y0 Initial probability of strategy selection Assumes equal initial probabilities for
both strategies

D Proportion of resource information successfully
exchanged under communication delay

Reflects transmission efficiency under
communication delay

Cij Cost of switching from one strategy to another Set based on the resource cost of
strategy switching

µ Probability of switching strategies Assumes a relatively low probability of
switching strategies

α
Proportion of shared resources when different

strategies are chosen Assumes a high level of resource-sharing

β
Proportion of costs borne when both choose the

search strategy
Reflects the imbalance in resource

cost-sharing

5.2. System Evolution Path Simulation

In this section, the data selected are based on different scenarios to simulate the
evolution paths of the robot and its neighbor. First, based on Theorem 1, we choose the
initial ratio of both to be less than 1

2 . For example, the initial parameters chosen are as
follows: D = 0.9, Iie = 20, Ije = 25, Cie = 25, Cje = 30, Cij = 10, µ = 0.4, α = 0.8, β = 0.3,
and the replication dynamic equations for this scenario are dx

dt = x(1 − x) (9.5y − 1) and
dy
dt = y(1 − y) (8.6x − 1), where x∗ = 0.1163, y∗ = 0.1053. The simulation results are
shown in Figure 4.
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As shown in Figure 4, in Theorem 1, there is one saddle point, two stable points,
and two unstable points. The evolution path of the system will change depending on
the initial x* and y*. In the case of (search, search), both robots choose the conservative
search strategy to maximize the resource utilization efficiency of the known environment,
whereas in the case of (explore, explore), both robots use the exploration strategy to more
effectively discover new information and adapt to environmental changes. This is similar
to the Hawk–Dove game: if the value of the resource is higher than the cost of competing
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for it, the robots are more likely to adopt a consistent strategy to optimize their gains.
Whether stabilizing at (search, search) or (explore, explore), this indicates that the system
demonstrates higher consistency and stability in this scenario.

Furthermore, in Theorem 2, we choose the initial ratio of robots and neighbors
to be greater than 1

2 . For example, the chosen initial parameters are as follows:
D = 0.9, Iie = 20, Ije = 25, Cie = 25, Cje = 30, Cij = 10, µ = 0.4, α = 0.8, β = 0.2,
and the replication dynamic equations for this scenario are dx

dt = x(1 − x) (1.96y − 2.2),
dy
dt = y(1 − y) (1.44x − 2.2), where x∗ = 1.5278, y∗ = 1.1224. The simulation results are
shown in Figure 5.
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As shown in Figure 5, there is one stable point and three unstable points. The system’s
evolution path will move from the unstable points toward the stable point. In other words,
the robots may initially attempt the exploration strategy, but as the interactions evolve
and the payoffs are calculated, they will eventually converge toward the stable state of
(search, search). This conservative choice effectively avoids uncertainty and high-cost risks,
representing a rational strategy under conditions of limited resources.

5.3. Simulation Analysis of Factor Variations

To thoroughly analyze the impact of various factors on the evolutionary game model,
this section will conduct a simulation analysis to observe how changes in key parameters
affect the system’s behavior. By altering critical factors, the goal is to examine how these
factors influence the evolutionary path of the group robots, the final decision strategy, and
the number of steps required to reach the final decision. Further, it aims to reveal the
influence of different factors on the system’s evolutionary path and verify the model’s
reliability and applicability. The initial parameter values in the model are set as follows: the
cost of exploration for both the robot and its neighbor is set as Cie = 25 and Cje = 30, the size
of the resource information obtained is set as Iie = 20 and Ije = 25, the initial probability of
choosing each strategy is x0 = y0 = 0.5, assuming the proportion of information resources
that can be normally interacted with under communication delay conditions is D = 0.9,
the cost of switching from search to exploration strategy when both parties choose search
is Cij = 10, and the probability of switching strategies is µ = 0.4, the proportion of shared
resource information when choosing different strategies is α = 0.8, and the cost proportion
borne by the party choosing search strategy when both choose search is β = 0.3. Based on
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the above numerical values, this paper explores the impact of various parameters on the
strategy choices of both the robot and its neighbor.

5.3.1. Analysis of the Variation in Shared Information Ratio

When the shared resource information ratios for robot i and its neighbor j are set to 0.8,
0.84, 0.88, 0.92, and 0.96, the results showing the impact of the shared information resource
ratio on the system’s evolutionary path are illustrated in Figure 6.
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From Figure 6a, it can be observed that as the system’s shared information ratio
decreases from 0.96 to 0.80, the rate at which robot i transitions to the exploration state
gradually increases. From Figure 6b, it is evident that as the system’s shared information
ratio decreases from 0.96 to 0.80, the rate at which neighbor j transitions to the exploration
strategy also gradually increases. This indicates that during the dynamic strategy evolution
process, as the amount of shared information among robots decreases, they are more
inclined to choose the exploration strategy as their ultimate strategy. When both the robot
and its neighbor choose the exploration strategy, the system’s transition step size to the
exploration strategy shortens from 3 to 2.

5.3.2. Analysis of the Variation in the Cost-Sharing Ratio

When the cost-sharing ratios for robot i and neighbor j are set to 0.10, 0.12, 0.14, 0.16,
and 0.18, the impact of the cost-sharing ratio on the system’s evolutionary path is shown in
Figure 7.

From Figure 7a, it can be observed that as the system’s cost-sharing ratio increases from
0.10 to 0.18, the probability of robot i’s strategy shifting toward the exploration strategy
gradually increases. Similarly, from Figure 7b, it is evident that as the system’s cost-sharing
ratio increases from 0.10 to 0.18, the probability of neighbor j’s strategy shifting toward the
exploration strategy also gradually increases. This implies that during the dynamic strategy
evolution process, as the shared cost among robots increases, they are more inclined to
choose the exploration strategy as their ultimate strategy. When both the robot and its
neighbor choose the exploration strategy, the system’s transition step size to the exploration
strategy shortens from 8 to 4.
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5.3.3. Analysis of Communication Delay Variation

When the successful transmission efficiency between robot i and neighbor j is set to
0.5, 0.6, 0.7, 0.8, and 0.9, the impact of the successful transmission efficiency on the system’s
evolutionary path is shown in Figure 8.
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From Figure 8, it can be observed that as the system’s successful transmission efficiency
increases from 0.5 to 0.9, the probability of both robot i and neighbor j transitioning to the
exploration strategy gradually increases. This means that during the dynamic strategy
evolution process, as the communication delay in the surrounding rescue environment
gradually decreases, i.e., as the transmission efficiency in the environment increases, both
robots are more likely to choose the exploration strategy as the final strategy. The system’s
transition step length to the exploration steady state is 2.
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5.3.4. Analysis of Switching Strategy Probability Variation

When the switching strategy probability for robot i and neighbor j is set to 0.1, 0.3, 0.5,
0.7, and 0.9, the impact of the switching strategy probability on the system’s evolutionary
path is shown in Figure 9.
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Based on the observations in the figures, it can be noted that as the switching strategy
probability between robot i and neighbor j increases from 0.1 to 0.9, the rate at which the
system transitions to the exploration state gradually increases. This indicates that during
the dynamic strategy evolution process, as the probability of switching strategies gradually
increases, the adaptability of the robots and their neighbors in dynamic decision-making
is enhanced. As a result, the system can transition to the exploration state more quickly,
thereby improving task execution efficiency. The system’s transition step length to the
exploration steady state is 1.5.

5.4. Discussion

Based on the simulation analysis results in Section 5.2, under conditions of informa-
tion disparity, a decrease in the ratio of shared resource information and an increase in
shared costs lead to improved transmission efficiency and a higher probability of strategy
switching. Consequently, the robot system transitions gradually from a search strategy
to an exploration strategy. This shift enhances the system’s ability to acquire unknown
environmental information more effectively, thereby accelerating task completion.

During strategic interactions among swarm robots, a decrease in the proportion of
shared information leads the system’s evolution to favor the exploration strategy. This
shift is driven by the potential benefits arising from information asymmetry. Limited
information exchange reduces the robots’ ability to perceive their environment, making
the search strategy insufficient for acquiring the necessary environmental data to address
dynamic changes. In contrast, the exploration strategy enhances the system’s overall
effectiveness and task completion efficiency by actively uncovering new information or
resources and adapting existing strategies. Consequently, under conditions of information
asymmetry, the exploration strategy offers greater long-term benefits.
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Further analysis reveals that as the proportion of shared resource information de-
creases and the shared cost ratio among neighbors increases, the relative advantage of the
exploration strategy becomes more pronounced, encouraging robots to adopt this approach.
Notably, when neighbors bear higher costs, robots can effectively reduce their own burden
and enhance collective coordination by selecting the exploration strategy. Additionally, im-
provements in successful transmission efficiency further reinforce the system’s preference
for the exploration strategy. Efficient communication mechanisms enable robots to quickly
and accurately acquire environmental feedback, facilitating rapid adaptation to dynamic
conditions and accelerating task execution. By enhancing adaptability to unknown envi-
ronments and optimizing decision-making with newly acquired environmental data, the
exploration strategy significantly boosts overall task completion efficiency.

Additionally, an increase in the probability of strategy switching steers the system’s
evolutionary path toward the exploration strategy. This trend is largely influenced by the
incentive mechanism. As the incentives for switching strategies increase, robots and their
neighbors are more inclined to adopt the exploration strategy, particularly in environments
characterized by significant information disparities. This is because strategy switching
provides higher potential rewards, encouraging robots to actively explore unknown ar-
eas, gather additional information and resources, and ultimately improve the system’s
overall performance.

6. Conclusions
This paper investigates the strategy selection of group robots in dynamic environ-

ments characterized by information differences, with a particular focus on the evolutionary
process of search and exploration strategies. By constructing an evolutionary game model
and employing numerical simulation analysis, the study explores the impact of factors
such as the proportion of shared resource information, shared costs, transmission efficiency,
and the probability of strategy switching on robot strategy selection. The findings indicate
that as the proportion of shared information decreases and as shared costs, successful trans-
mission efficiency, and strategy-switching probability increase, the robot system gradually
shifts from a search strategy to an exploration strategy. In environments with balanced
information, the system tends to optimize resource utilization through the search strategy.
However, under conditions of information asymmetry, the exploration strategy emerges
as the dominant choice due to its potential for higher rewards. The exploration strategy
enhances the robots’ adaptability and task completion efficiency by actively acquiring new
information and adjusting to environmental changes. This research highlights the critical
role of information disparities in the strategy selection of group robots, offering theoretical
support for decision-making in dynamic, information-asymmetric environments. Future
research will explore more complex strategy selection models, integrating optimization
algorithms such as reinforcement learning to enhance the efficiency and adaptability of
strategy selection. Additionally, the applicability of the model in multi-robot collaborative
tasks will be further validated to optimize the application of group robotic systems. From
a strategy validation perspective, evaluating resource allocation efficiency through back-
ward deduction of Nash equilibrium points will provide strong support for performance
evaluation in multi-robot systems.
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