Three-Dimensional Prospective Modeling and Deep Metallogenic Prediction of the Lintan Gold Deposit in Guizhou Province, China
Abstract
:1. Introduction
2. Geological Background
2.1. Overview of Regional Geology
2.2. Geological Characteristics of the Deposit
3. Geological Modeling for 3D Visualization of the Mining Area
3.1. Modeling Method
3.2. Three-Dimensional Stratigraphic, Tectonic, and Ore Body Modeling
3.3. Three-Dimensional Geochemical Modeling
3.4. 3D Geophysical Modeling
4. Geological–Geophysical–Geochemical Integrated Prediction
4.1. Establishing Predictive Models
4.2. Ore-Forming Geological Conditions
4.3. Geochemical Anomaly Information
4.4. Geophysical Anomaly Information
4.5. Tectonic Geochemical Information
4.6. Integrated Prediction and Deep Prospecting Analysis
5. Conclusions
- (1)
- The 3D geological model allows for the intuitive analysis of the spatial relationships between ore bodies and various metallogenic system elements, particularly their contact and associations with strata and structures. The primary ore-grade model distinctly interprets the concentration and distribution trends of grade variations in 3D space. Combined with structural geochemical halos, it provides further insights into the spatial distribution patterns of ore bodies. The 3D geological modeling of the Lintan gold deposit reveals that the ore bodies are primarily hosted within the Xuman Formation and are strictly controlled by the Lintan anticline and the F14 structure.
- (2)
- By establishing an exploration model, geological metallogenic conditions, geochemical signatures, and geophysical indicators can be analyzed in 3D space, enabling the identification of commonalities for metallogenic prediction and evaluation. This approach reduces the ambiguity and uncertainty of relying on single-source data. Comprehensive analysis indicates that the Lintan gold deposit is strictly controlled by the F14 structure, with high-grade Au blocks displaying upward enrichment trends in two spatial directions, which are presumed to be closely related to the F25 and F12 structures within the region. The CSAMT low-resistivity zone also demonstrates a strong spatial correspondence between the F14 structure and the known ore bodies. Additionally, the deep low-resistivity anomaly zone provides geophysical indicators for further exploration in the deeper peripheral regions.
- (3)
- Based on the integrated 3D geological model, geochemical element model, geophysical model, and the comprehensive analysis of geological–geochemical–geophysical exploration information, it is concluded that the Lintan gold deposit exhibits exploration potential in the near east–west trending deep zones and in the northeastern direction.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zuo, R. Geodata science-based mineral prospectivity mapping: A review. Nat. Resour. Res. 2020, 29, 3415–3424. [Google Scholar] [CrossRef]
- Behera, S.; Panigrahi, M.K. Panigrahi. Gold prospectivity mapping and exploration targeting in Hutti-Maski schist belt, India: Synergistic application of Weights-of-Evidence (WOE), Fuzzy Logic (FL) and hybrid (WOE-FL) models. J. Geochem. Explor. 2022, 235, 106963. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Wang, G.; Carranza, E.J.M.; Pang, Z.; Wang, H. From 2D to 3D modeling of mineral prospectivity using multi-source geoscience datasets, Wulong Gold District, China. Nat. Resour. Res. 2020, 29, 345–364. [Google Scholar] [CrossRef]
- Pirajno, F. Hydrothermal Mineral Deposits: Principles and Fundamental Concepts for the Exploration Geologist; Springer: Berlin, Germany, 1992. [Google Scholar]
- Xue, J.L.; Pang, Z.S.; Cheng, Z.Z.; Chen, H.; Jia, R.Y. Basic problems and methods of deep mineral exploration. Geol. Bull. China 2020, 39, 1125–1136. [Google Scholar]
- Bettles, K. Exploration and geology, 1962 to 2002, at the Goldstrike property, Carlin Trend, Nevada. Soc. Econ. Geol. Spec. Publ. 2002, 9, 275–298. [Google Scholar]
- Bradshaw, P.M.D. Conceptual models in exploration geochemistry—The Canadian Cordillera and Canadian Shield. J. Geochem. Explor. 1975, 4, 1–213. [Google Scholar] [CrossRef]
- Cameron, E.M.; Hamilton, S.M.; Leybourne, M.I.; Hall, G.E.M.; McClenaghan, M.B. Finding deeply buried deposits using geochemistry. Geochem. Explor. Environ. Anal. 2004, 4, 7–32. [Google Scholar] [CrossRef]
- Dentith, M.; Mudge, S.T. Geophysics for the Mineral Exploration Geoscientist; Cambridge University Press: Cambridge, UK, 2014; pp. 1–438. [Google Scholar]
- Mussett, A.E.; Khan, M.A. Looking into the Earth: An Introduction to Geological Geophysics; Cambridge University Press: New York, NY, USA, 2000. [Google Scholar]
- Melo, A.T.; Sun, J.; Li, Y. Geophysical inversions applied to 3d geology characterization of an iron oxide copper-gold deposit in Brazil. Geophysics 2017, 82, K1–K13. [Google Scholar] [CrossRef]
- Payne, C.E.; Cunningham, F.; Peters, K.J.; Nielsen, S.; Puccioni, E.; Wildman, C.; Partington, G.A. From 2D to 3D: Prospectivity modelling in the Taupo volcanic zone, New Zealand. Ore Geol. Rev. 2015, 71, 558–577. [Google Scholar] [CrossRef]
- Wang, L.F.; Wang, G.W.; Xu, W.H.; Xu, S.; He, Y.; Wang, C.; Yang, T.; Zhou, X.; Haung, L.; Zuo, L.; et al. Intelligent geoscience information mining and knowledge discovery using big data analytics: A case study of the Shangfanggou Mo (Fe) mine in Henan Province. Earth Sci. Front. 2023, 30, 317–334. [Google Scholar]
- Zhou, Y.Z.; Chen, S.; Zhang, Q.; Xiao, F.; Wang, S.G.; Liu, Y.P.; Jiao, S.T. Advances and prospects of big data and mathematical geogience. Act Petrol. Sin. 2018, 34, 255–263. [Google Scholar]
- Bai, Y.; Guo, C.; Zhu, P.; Tian, J.; He, Z. Three-Dimensional Prediction and Evaluation of Baiyanghe Uranium Deposit in the Xuemistan Volcanic Belt, Xinjiang. Minerals 2023, 13, 1408. [Google Scholar] [CrossRef]
- Bliss, J.D. Developments in Mineral Deposit Modeling; U.S. Geological Survey Bulletin: Reston, VA, USA, 1992. [Google Scholar]
- Li, Y.; Oldenburg, D.W. 3-D inversion of magnetic data. Geophysics 1996, 61, 394–408. [Google Scholar] [CrossRef]
- Mallet, J.L. Geomodeling; Oxford University Press: Oxford, UK, 2002; p. 599. [Google Scholar]
- Martelet, G.; Calcagno, P.; Gumiaux, C.; Truffert, C.; Bitri, A.; Gapais, D.; Brun, J.P. Integrated 3D geophysical and geological modeling of the Hercynian suture zone in the Champtoceaux area (south Brittany, France). Tectonophysics 2004, 382, 117–128. [Google Scholar] [CrossRef]
- Vandermost, A.; Kemp, E.A. Increasing the interpretive potential and mineral prospectivity through 3-D data exploration, property characterization, and exploration model reconciliation [abs.]. In Proceedings of the Society of Economic Geologists, Annual Meeting, Keystone, CO, USA, 14–16 May 2006; pp. 387–389. [Google Scholar]
- Li, C.; Liu, B.; Xiao, K.; Kong, Y.; Wang, L.; Tang, R.; Xie, M.; Wu, Y. Metallogenic Prediction of the Zaozigou Gold Deposit Using 3D Geological and Geochemical Modeling. Minerals 2023, 13, 1205. [Google Scholar] [CrossRef]
- Li, W.; Chen, J.P.; Jia, Y.L.; Zhou, G.Y.; Mao, X.C.; Xiao, K.Y. Three-dimensional Modeling and Comprehensive Metallogenic Prediction of the Zaozigou Gold Deposit, Gansu Province. Acta Geosci. Sin. 2020, 41, 144–156. [Google Scholar]
- Yu, P.P.; Chen, J.P.; Wang, Q. Three-dimensional mineral prospectivity modelling and deep metallogenic prediction of the Tiegelongnan copper-gold deposit in Tibet, China. Acta Petrol. Sin. 2019, 35, 897–912. [Google Scholar]
- Chen, M.H.; Mao, J.W.; Phillip, J.U.; Tony, N.; Wu, L.L.; Zheng, J.M.; Qin, Y.Z. Structure analysis and structural metallogenesis of Jinfeng (Lannigou) gold deposit in Guizhou Province. Miner. Depos. 2007, 26, 380–396. [Google Scholar]
- Emsbo, P.; Hutchinson, R.W.; Hofstra, A.H.; Volk, J.A.; Bettles, K.H.; Baschuk, G.J.; Johnson, A.C. Syngenetic Au on the Carlin Trend: Implications for Carlin-type deposits. Geology 1999, 27, 59–62. [Google Scholar] [CrossRef]
- Cline, J.S.; Hofstra, A.; Munteau, J.; Tosdal, D.; Hickey, K. Carlin-type gold deposits in Nevada: Critical geologic characteristics and viable models. In Economic Geology 100th Anniversary Volume; Society of Economic Geologists, Inc.: Littleton, CO, USA, 2005; pp. 451–484. [Google Scholar]
- Hofstra, A.H.; Cline, J.S. Characteristics and models for Carlintype gold deposits. Rev. Econ. Geol. 2000, 13, 163–220. [Google Scholar]
- Nekrasov, I.Y. Geochemistry, Mineralogy and Genesis of Gold Deposits; A.A. Balkema: Rotterdam, The Netherlands, 1996; p. 329. [Google Scholar]
- Teal, L.; Jackson, M. Geologic Overview of the Carlin Trend Gold Deposits and Descriptions of Recent Deep Discoveries; SEG Discovery: Houston, TX, USA, 1997; pp. 1–25. [Google Scholar]
- Zhang, Z.J.; Zhang, W.H. Study on the organic mineralisation fluids of gold (Hg, Sb) deposits in Lan Nigou, Guizhou Province, China. Miner. Depos. 1998, 17, 343–353. [Google Scholar]
- Zheng, L.J.; Tan, Q.P.; Zuo, Y.J.; Xia, Y.; Xie, Z.J.; Zheng, L.L.; Liu, J.Z. Two hydrothermal events associated with Au mineralization in the Youjiang Basin, southwestern China. Ore Geol. Rev. 2022, 144, 104816. [Google Scholar] [CrossRef]
- Zeng, Y.F.; Liu, W.J. Evolution of the Right River Basin and Layer-Controlled Mineral Deposits. Front. Earth Sci. 1995, 2, 238–240. [Google Scholar]
- Du, Y.S.; Huang, H.W.; Huang, Z.Q.; Xu, Y.J.; Yang, J.H.; Huang, H. Basin Translation from Late Palaeozoic to Triassic of Youjiang Basin and Its Tectonic Significance. Geol. Sci. Technol. Inf. 2009, 28, 10–15. [Google Scholar]
- Xu, Y.G.; He, B.; Luo, Z.Y.; Liu, H.Q. Study on Mantle and Large Igneous Provinces in China: An Overview and Perspectives. Bull. Mineral. Petrol. Geochem. 2013, 32, 25–39. [Google Scholar]
- Calcagno, P.; Chilès, J.P.; Courrioux, G.; Guillen, A. Geological modelling from field data and geological knowledge: Part I. modelling method coupling 3D potentialfield interpolation and geological rules. Phys. Earth Planet. Inter. 2008, 171, 147–157. [Google Scholar] [CrossRef]
- Lajaunie, C.; Courrioux, G.; Manuel, L. Foliation fields and 3D cartography in geology: Principles of a method based on potential interpolation. Math. Geol. 1997, 29, 571–584. [Google Scholar] [CrossRef]
- Nielsen, S.H.H.; Cunningham, F.; Hay, R.; Partington, G.; Stokes, M. 3D prospectivity modelling of orogenic gold in the Marymia Inlier, Western Australia. Ore Geol. Rev. 2015, 71, 578–591. [Google Scholar] [CrossRef]
- Nielsen, S.H.H.; Partington, G.A.; Franey, D.; Dwight, T. 3D mineral potential modelling of gold distribution at the Tampia gold deposit. Ore Geol. Rev. 2019, 109, 276–289. [Google Scholar] [CrossRef]
- Olierook, H.K.H.; Scalzo, R.; Kohn, D.; Chandra, R.; Farahbakhsh, E.; Clark, C.; Reddy, S.M.; Müller, R.D. Bayesian geological and geophysical data fusion for the construction and uncertainty quantification of 3D geological models. Geosci. Front. 2021, 12, 479–493. [Google Scholar] [CrossRef]
- Li, H.Q. Automatic Resource Estimation for 2D Geological Block Segment Method Based on Surpac. Met. Mine 2021, 552, 122–128. [Google Scholar]
- Dong, Y.F.; Si, R.J.; Xiang, Z.L.; Feng, C.C.; Zahng, G.Q.; Zhang, Y.M. Analysis of Mineralization Space in Guilaizhuang Gold Mining Area Based on Surpac Software. Gold Sci. Technol. 2019, 27, 163–171. [Google Scholar]
- Aug, C. Modélisation Géologique 3D et Caractérisation des Incertitudes par la Méthode du Champ de Potentiel. Ph.D. Dissertation, École Nationale Supérieure des Mines de Paris, Paris, France, 2004. [Google Scholar]
- Bosch, M.; Guillen, A.; Ledru, P. Lithologic tomography: An application to geophysical data from the Cadomian belt of northern Brittany, France. Tectonophysics 2001, 331, 197–227. [Google Scholar] [CrossRef]
- Putz, M.; Stüwe, K.; Jessell, M.; Calcagno, P. Three-dimensional model and late stage warping of the Plattengneis Shear Zone in the Eastern Alps. Tectonophysics 2006, 412, 87–103. [Google Scholar] [CrossRef]
- Telford, W.M.W.; Geldart, L.P.; Sheriff, R.E. Applied Geophysics; Cambridge University Press: London, UK, 1990. [Google Scholar]
- Vieira, L.B.; Moreira, C.A.; Côrtes, A.R.P.; Luvizotto, G.L. Geophysical modeling of the manganese deposit for Induced Polarization method in Itapira (Brazil). Geofís. Int. 2016, 55, 107–117. [Google Scholar] [CrossRef]
- Aizebeokhai, A.P.; Oyeyemi, K.D. Application of geoelectrical resistivity imaging and VLF-EM for subsurface characterization in a sedimentary terrain, Southwestern Nigeria. Arab. J. Geosci. 2015, 8, 4083–4099. [Google Scholar] [CrossRef]
- Forson, E.D.; Wemegah, D.D.; Hagan, G.B.; Appiah, D.; Addo-Wuver, F.; Adjovu, I.; Otchere, F.O.; Mateso, S.; Menyeh, A.; Amponsah, T. Data-driven multi-index overlay gold prospectivity mapping using geophysical and remote sensing datasets. J. Afr. Earth Sci. 2022, 190, 104504. [Google Scholar] [CrossRef]
- Lisitsin, V.A. Mineral Prospectivity Analysis and Quantitative Resource Assessments for Regional Exploration Targeting: Development of Effective Integration Models and Practical Applications. Ph.D. Thesis, The University of Western Australia, Perth, Australia, 2015; p. 666. [Google Scholar]
- Scalzo, R.; Kohn, D.; Olierook, H.; Houseman, G.; Chandra, R.; Girolami, M.; Cripps, S. Efficiency and robustness in Monte Carlo sampling for 3-D geophysical inversions withObsidian v0.1.2: Setting up for success. Geosci. Model Dev. 2019, 12, 2941–2960. [Google Scholar] [CrossRef]
- Savin, C.; Ritz, M.; Join, J.L.; Bachelery, P. Hydrothermal system mapped by CSAMT on Karthala volcano, Grande Comore Island, Indian Ocean. J. Appl. Geophys. 2001, 48, 143–152. [Google Scholar] [CrossRef]
- Chen, J.P.; Lv, P.; Wu, W.; Zhao, J.; Hu, Q. A 3D method for predicting blind ore bodies, based on a 3D visualization model and its application. Earth Sci. Front. 2007, 14, 54–62. [Google Scholar] [CrossRef]
- Chen, J.P.; Yu, P.P.; Shi, R.; Yu, M.; Zhang, S.C. Research on three dimensional quantitative prediction and evaluation methods of regional concealed orebodies. Earth Sci. Front. 2014, 21, 211–220. [Google Scholar]
- Ma, Y.X.; Yan, T.J.; He, P.; Liu, Z.J.; Su, H.; Guo, S. Exploration in coverage area: A case study of the Changtuxili Mn-Ag-Pb-Zn polymetallic ore deposit, Inner Mongolia. Geophys. Geochem. Explor. 2019, 43, 709–717. [Google Scholar]
- Govett, G.J.S. Rock Geochemistry in Mineral Exploration—Handbook of Exploration Geochemistry, Version 3; Elsevier: New York, NY, USA, 1983; pp. 181–225. [Google Scholar]
- Han, R.S.; Chen, J.; Gao, D.R.; Huang, Z.L.; Ma, D.Y.; Zhao, D.S. Applicition of Tectono-geoehemical Ore Finding Method in orientation Prognosis of Concealed Ores. Geol. Prospect. 2003, 39, 25–28. [Google Scholar]
- Heitt, D.G.; Dunbar, W.W.; Thompson, T.B.; Jackson, R.G. Geology and geochemistry of the Deep Star gold deposit, Carlin trend, Nevada. Econ. Geol. 2003, 98, 1107–1135. [Google Scholar] [CrossRef]
- McCuaig, T.C.; Beresford, S.; Hronsky, J. Translating the mineral systems approach into an effective exploration targeting system. Ore. Geol. Rev. 2010, 38, 128–138. [Google Scholar] [CrossRef]
- Li, H.; Zhang, G.Y.; Yu, B.; Li, D.L. Structural superimposed halos method for prospecting blind ore-body in the deep of oredistricts. Earth Sci. Front. 2010, 17, 287–293. [Google Scholar]
- Li, S.T.; Liu, J.Z.; Xia, Y.; Xie, Z.J.; Tan, Q.P.; Wang, Z.P.; Zhou, G.H.; Yang, C.F.; Meng, M.H.; Tan, L.J.; et al. Tectono-geochemistry Weak Mineralization Information Extraction Method and Its Application in the Carlin-type Gold Accumulation Area of Southwestern Guizhou. Gold Sci. Technol. 2021, 29, 53–63. [Google Scholar]
- Luo, D.W.; Yao, S.Z.; Wang, C.X.; Zhang, H.C.; Ji, G.S. Evalution of Denudation Degree of Carlin-Type Gold Deposits in Southwest Guizhou Province. Earth Sci. 2016, 41, 199–217. [Google Scholar]
- Tan, Q.P.; Xia, Y.; Xie, Z.J.; Wang, Z.P.; Li, S.T.; Wei, D.T.; Yan, J.; Zhao, Y.M. Tectono-geochemistry and Concealed Ores Prospecting in the Shuiyindong Gold Deposit of Southwestern Guizhou. Acta Geosci. Sin. 2020, 41, 886–898. [Google Scholar]
Mining Control Element | Predictors of Mineralization | Characteristic Variable | Analytical Methods |
---|---|---|---|
Geology | Tectonic, fracture zones | F14, F12 tectonic, and controlled by the Lintan anticline | Three-dimensional nested spatial relationships between alteration in situ space and ore-controlling structures |
Ore-bearing stratum | Slope-basin-phase carbonate and clastic depositional area of the Middle Triassic Xuman Formation to Bianyang Formation | Trend of ore body hosted lithology and grade concentration in three-dimensional spatial distribution | |
Alteration zone | Pyrite mineralization, etc. | Interrelationships between ore bodies and alteration zones | |
Geochemistry | Single element exception | Spatial distribution of Au elemental grades | Calculation of trends in the spatial concentration and distribution of elements through geostatistical methods, as well as characteristics of the distribution of elements in geological survey profiles, and comprehensive comparative analysis and prediction with geophysical models |
Constructed stacked halos | Analyzing Au, Ag, As, Hg, Sb trends | Based on the method of tectonic geochemical study, analyze the near-mineral halo, tailing halo and other | |
Geophysics | CSAMT | Testing and analyzing ground power information at different depths | According to the information of geoelectricity at different depths, combined with the results of surface lithology, drilling holes, and physical characteristics, it is inferred that various types of high, medium, and low resistance body lithology or geological information |
Ore Stratum | Cubic Number (math.) | Au ≥ 0.8 g/t Number of Blocks | Au ≥ 0.8 g/t Proportion (Ore Content %) | Mineralogy (%) (Au ≥ 0.8 g/t) | Au ≥ 2.2 g/t Number of Blocks | Au ≥ 2.2 g/t Proportion (Ore Content %) | Mineralogy (%) (Au ≥ 2.2 g/t) |
---|---|---|---|---|---|---|---|
ore body | 167,965 | 92,470 | |||||
Xuman Formation | 4109 | 1953 | 47.5298 | 1.1627 | 7 | 0.1704 | 0.0076 |
Niluo Formation | 7246 | 4073 | 56.2103 | 2.4249 | 1126 | 15.5396 | 0.0168 |
Xuman Formation | 177,464 | 161,939 | 91.2517 | 96.4123 | 91,337 | 51.4679 | 98.7747 |
Rock Type | Quantity | F(%) | ρ(Ω•m) | Electrical Characteristics | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Minimum Value | Maximum Value | Arithmetic Mean | Median | Minimum Value | Maximum Value | Geometric Mean | Median | |||
Bianyang Formation Mudstone | 6 | 1.19 | 2.63 | 1.623 | 1.44 | 22.48 | 121.05 | 71.841 | 77.79 | Low resistivity, low polarization |
Bianyang Formation Sandstone | 57 | 0.31 | 3.04 | 1.171 | 1.08 | 6.3 | 1617.22 | 244.927 | 256.97 | |
Ore | 33 | 0.23 | 21.2 | 3.751 | 1.98 | 4.6 | 3273.28 | 445.348 | 635.26 | Medium-low resistivity, high polarization |
Luolou Formation Mudstone-Limestone | 27 | 0.51 | 5.17 | 1.853 | 1.83 | 16.08 | 8905.71 | 888.776 | 954.45 | High resistivity, medium polarization |
Maokou Formation Limestone | 35 | 0.11 | 7.28 | 1.081 | 0.48 | 400.61 | 22,851.38 | 3186.994 | 4224.35 | High resistivity, low polarization |
Wujiaqing Formation Limestone | 29 | 0.08 | 5.06 | 1.082 | 0.58 | 737.32 | 22,373.41 | 3555.245 | 3790.89 |
Au | Ag | Co | Ni | Cu | Zn | Mo | Sb | W | Tl | Pb | Bi | Ba | As | Hg | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Valid samples | 635.0 | 428.0 | 375.0 | 226.0 | 307.0 | 250.0 | 526.0 | 615.0 | 469.0 | 305.0 | 316.0 | 311.0 | 372.0 | 667.0 | 585.0 |
average value | 108.0 | 0.1 | 12.3 | 24.9 | 26.0 | 74.3 | 0.3 | 5.8 | 2.1 | 1.1 | 16.2 | 0.3 | 230.5 | 621.9 | 1971.6 |
Median | 19.5 | 0.1 | 12.1 | 25.0 | 26.3 | 74.4 | 0.3 | 4.4 | 2.0 | 1.1 | 16.2 | 0.3 | 229.9 | 274.5 | 1301.9 |
standard deviation | 193.6 | 0.0 | 1.3 | 1.7 | 3.3 | 4.6 | 0.1 | 4.6 | 0.4 | 0.1 | 2.4 | 0.0 | 36.5 | 709.3 | 1875.1 |
Minimum value | 1.4 | 0.1 | 10.0 | 21.7 | 19.0 | 66.6 | 0.2 | 0.5 | 1.5 | 0.9 | 8.0 | 0.2 | 172.9 | 0.9 | 26.4 |
Maximum value | 997.9 | 0.1 | 14.8 | 27.8 | 31.8 | 82.0 | 0.4 | 17.4 | 3.0 | 1.3 | 20.4 | 0.6 | 429.9 | 2596.0 | 6975.9 |
Mean + Standard Deviation | 301.6 | 0.1 | 13.6 | 26.6 | 29.4 | 78.9 | 0.3 | 10.3 | 2.5 | 1.2 | 18.6 | 0.4 | 267.0 | 1331.2 | 3846.7 |
Mean − standard deviation | −85.6 | 0.1 | 10.9 | 23.1 | 22.7 | 69.8 | 0.2 | 1.2 | 1.7 | 1.0 | 13.8 | 0.3 | 194.0 | −87.4 | 96.5 |
lower limit of the theoretical anomaly | 495.1 | 0.1 | 15.0 | 28.4 | 32.7 | 83.5 | 0.4 | 14.9 | 2.9 | 1.3 | 21.1 | 0.4 | 303.5 | 2040.4 | 5721.8 |
Practical Abnormalities of the Outer Girdle | 500.0 | 0.1 | 15.0 | 28.4 | 32.7 | 83.5 | 0.4 | 14.9 | 2.9 | 1.3 | 21.1 | 0.4 | 303.5 | 2040.4 | 5721.8 |
abnormal in practicality | 1000.0 | 0.2 | 30.0 | 56.8 | 65.3 | 167.0 | 0.8 | 29.8 | 5.9 | 2.7 | 42.2 | 0.8 | 607.1 | 4080.9 | 11,443 |
Practical internal band anomalies | 2000.0 | 0.4 | 60.0 | 113.5 | 130.7 | 334.0 | 1.5 | 59.6 | 11.8 | 5.3 | 84.3 | 1.6 | 1214. | 8161.7 | 22,887 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, S.; Wang, X.; Tan, Q.; Liu, P.; Zheng, L. Three-Dimensional Prospective Modeling and Deep Metallogenic Prediction of the Lintan Gold Deposit in Guizhou Province, China. Minerals 2024, 14, 1295. https://doi.org/10.3390/min14121295
Cheng S, Wang X, Tan Q, Liu P, Zheng L. Three-Dimensional Prospective Modeling and Deep Metallogenic Prediction of the Lintan Gold Deposit in Guizhou Province, China. Minerals. 2024; 14(12):1295. https://doi.org/10.3390/min14121295
Chicago/Turabian StyleCheng, Shenghong, Xiaolong Wang, Qinping Tan, Peng Liu, and Lujing Zheng. 2024. "Three-Dimensional Prospective Modeling and Deep Metallogenic Prediction of the Lintan Gold Deposit in Guizhou Province, China" Minerals 14, no. 12: 1295. https://doi.org/10.3390/min14121295
APA StyleCheng, S., Wang, X., Tan, Q., Liu, P., & Zheng, L. (2024). Three-Dimensional Prospective Modeling and Deep Metallogenic Prediction of the Lintan Gold Deposit in Guizhou Province, China. Minerals, 14(12), 1295. https://doi.org/10.3390/min14121295