Paleopressure during Hydrocarbon Charging and Its Evolution in the Funing Formation of the Gaoyou Sag, Subei Basin, Eastern China
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
3.1. Samples
3.2. Methods
3.2.1. Petrography
3.2.2. Fluorescence Microspectroscopy
3.2.3. Microthermometry and Thermodynamic Modeling
4. Results
4.1. Petrography
4.2. Fluorescence Microspectroscopy
4.3. Microthermometry and Thermodynamic Modeling
5. Discussion
5.1. Maturity Difference in Inclusion Oils
5.2. Hydrocarbon Charging Periods
5.3. Paleopressure and Its Evolution
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, M.K.; Williams, D.D. Paleohydrology of the Delaware Basin, western Texas: Overpressure development, hydrocarbon migration, and ore genesis. AAPG Bull. 2000, 84, 961–974. [Google Scholar]
- Finkbeiner, T.; Zoback, M.; Flemings, P.; Stump, B. Stress, pore pressure, and dynamically constrained hydrocarbon columns in the South Eugene Island 330 field, northern Gulf of Mexico. AAPG Bull. 2001, 85, 1007–1031. [Google Scholar]
- Nelson, P.H.; Gianoutsos, N.J.; Drake, R.M., II. Underpressure in Mesozoic and Paleozoic rock units in the Midcontinent of the United States. AAPG Bull. 2015, 99, 1861–1892. [Google Scholar] [CrossRef]
- Su, A.; Chen, H.; Lei, M.; Li, Q.; Wang, C. Paleo-pressure evolution and its origin in the Pinghu slope belt of the Xihu Depression, East China Sea Basin. Mar. Petrol. Geol. 2019, 107, 198–213. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, N.; Hu, W.; Li, H.; Shen, F.; Yao, Q. Temperature and pressure characteristics of Ordovician gas condensate reservoirs in the Tazhong area, Tarim Basin, northwestern China. AAPG Bull. 2019, 103, 1351–1381. [Google Scholar] [CrossRef]
- Zeng, S.; Qiu, N.; Li, H.; Gao, J.; Long, K.; Jia, J.; Zhu, X. Generation and distribution of overpressure in ultra-deep carbonate reservoirs controlled by intra-cratonic strike-slip faults: The Ordovician of Shuntuoguole area in the Tarim Basin. Mar. Petrol. Geol. 2023, 158, 106515. [Google Scholar] [CrossRef]
- Law, B.E.; Spencer, C.W. Abnormal pressures in hydrocarbon environments. In Abnormal Pressures in Hydrocarbon Environments; Memoir 70; Law, B.E., Ulmishek, G.F., Slavin, V.I., Eds.; AAPG: Tulsa, OK, USA, 1998; pp. 1–11. [Google Scholar]
- Mann, D.M.; Mackenzie, A.S. Prediction of pore fluid pressure in sedimentary basins. Mar. Petrol. Geol. 1990, 7, 55–65. [Google Scholar] [CrossRef]
- Zhang, J. Pore pressure prediction from well logs: Methods, modifications, and new approaches. Earth-Sci. Rev. 2011, 108, 50–63. [Google Scholar] [CrossRef]
- Kong, L.; Chen, H.; Ping, H.; Zhai, P.; Liu, Y.; Zhu, J. Formation pressure modeling in the Baiyun Sag, northern South China Sea: Implications for petroleum exploration in deep-water areas. Mar. Petrol. Geol. 2018, 97, 154–168. [Google Scholar] [CrossRef]
- Roedder, E.; Bodnar, R.J. Geologic pressure determinations from fluid inclusion studies. Annu. Rev. Earth Planet. Sci. 1980, 8, 263–301. [Google Scholar] [CrossRef]
- Aplin, A.C.; Macleod, G.; Larter, S.R.; Pedersen, K.S.; Sorensen, H.; Booth, T. Combined use of Confocal Laser Scanning Microscopy and PVT simulation for estimating the composition and physical properties of petroleum in fluid inclusions. Mar. Petrol. Geol. 1999, 16, 97–110. [Google Scholar] [CrossRef]
- Thiéry, R.; Pirononl, J.; Walgenwitz, F.; Montel, F. PIT (Petroleum Inclusion Thermodynamic): A new modeling tool for the characterization of hydrocarbon fluid inclusions from volumetric and microthermometric measurements. J. Geochem. Explor. 2000, 69–70, 701–704. [Google Scholar] [CrossRef]
- Ping, H.; Thiéry, R.; Chen, H. Thermodynamic modeling of petroleum inclusions: The prediction of the saturation pressure of crude oils. Geofluids 2011, 11, 328–340. [Google Scholar] [CrossRef]
- Aplin, A.C.; Larter, S.R.; Bigge, M.A.; Macleod, G.; Swarbrick, R.E.; Grunberger, D. Confocal microscopy of fluid inclusions reveals fluid-pressure histories of sediments and an unexpected origin of gas condensate. Geology 2000, 28, 1047–1050. [Google Scholar] [CrossRef]
- Chen, H.; Yao, S.; Wang, J.; Li, C. Thermodynamic modeling of fluid-bearing natural gas inclusions for geothermometer and geobarometer of overpressured environments in Qiongdongnan Basin, South China Sea. J. China Univ. Geosci. 2002, 13, 240–247. [Google Scholar]
- Munz, I.A.; Wangen, M.; Girard, J.P.; Lacharpagne, J.C.; Johansen, H. Pressure–temperature–time–composition (P–T–t–X) constraints of multiple petroleum charges in the Hild field, Norwegian North Sea. Mar. Petrol. Geol. 2004, 21, 1043–1060. [Google Scholar] [CrossRef]
- Chen, L. Estimation of the amount of erosion at unconformities in the late stage of the Eocene Sanduo period in the Subei Basin, China. Pet. Sci. 2009, 6, 383–388. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Q.; Wang, X.; Hu, K.; Cao, S.; Wu, L.; Gao, F. Influence of normal fault growth and linkage on the evolution of a rift basin: A case from the Gaoyou depression of the Subei Basin, eastern China. AAPG Bull. 2017, 101, 265–288. [Google Scholar] [CrossRef]
- Gao, G.; Yang, S.; Zhang, W.; Wang, Y.; Gang, W.; Lou, G. Organic geochemistry of the lacustrine shales from the Cretaceous Taizhou Formation in the Gaoyou Sag, Northern Jiangsu Basin. Mar. Petrol. Geol. 2018, 89, 594–603. [Google Scholar] [CrossRef]
- Su, P.; Hu, S.; Li, S.; Song, Y. Hydrocarbon generation kinetics of salinized lacustrine source rocks in the upper Cretaceous-Paleocene South Yellow Sea Basin, offshore eastern China. Geoenergy Sci. Eng. 2023, 227, 211888. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, C.M.; Yin, Y.; Zhang, N.; Zhou, J.; Liu, Y.R. Sedimentary characteristics and processes of the Paleogene Dainan Formation in the Gaoyou Depression, North Jiangsu Basin, eastern China. Pet. Sci. 2016, 13, 385–401. [Google Scholar] [CrossRef]
- Liu, X.; Lai, J.; Fan, X.; Shu, H.; Wang, G.; Ma, X.; Liu, M.; Guan, M.; Luo, Y. Insights in the pore structure, fluid mobility and oiliness in oil shales of Paleogene Funing Formation in Subei Basin, China. Mar. Petrol. Geol. 2020, 114, 104228. [Google Scholar] [CrossRef]
- Liu, C.; Xie, Q.; Wang, G.; Zhang, C.; Wang, L.; Qi, K. Reservoir properties and controlling factors of contact metamorphic zones of the diabase in the northern slope of the Gaoyou Sag, Subei Basin, eastern China. J. Nat. Gas Sci. Eng. 2016, 35, 392–411. [Google Scholar] [CrossRef]
- Munz, I.A. Petroleum inclusions in sedimentary basins: Systematics, analytical methods and applications. Lithos 2001, 55, 195–212. [Google Scholar] [CrossRef]
- Goldstein, R.H.; Reynolds, T.J. Systematics of Fluid Inclusions in Diagenetic Minerals; Short Course 31; SEPM: Tulsa, OK, USA, 1994; 199p. [Google Scholar]
- Chi, G.; Diamond, L.W.; Lu, H.; Lai, J.; Chu, H. Common problems and pitfalls in fluid inclusion study: A review and discussion. Minerals 2021, 11, 7. [Google Scholar] [CrossRef]
- Stasiuk, L.D.; Snowdon, L.R. Fluorescence micro-spectrometry of synthetic and natural hydrocarbon fluid inclusions: Crude oil chemistry, density and application to petroleum migration. Appl. Geochem. 1997, 12, 229–241. [Google Scholar] [CrossRef]
- Goldstein, R.H. Fluid inclusions in sedimentary and diagenetic systems. Lithos 2001, 55, 159–193. [Google Scholar] [CrossRef]
- Swarbrick, R.E.; Osborne, M.J.; Grunberger, D.; Yardley, G.S.; Macleod, G.; Aplin, A.C.; Larter, S.R.; Knight, I.; Auld, H.A. Integrated study of the Judy Field (Block 30/7a)—An overpressured Central North Sea oil/gas field. Mar. Petrol. Geol. 2000, 17, 993–1010. [Google Scholar] [CrossRef]
- McLimans, R.K. The application of fluid inclusions to migration of oil and diagenesis in petroleum reservoirs. Appl. Geochem. 1987, 2, 585–603. [Google Scholar] [CrossRef]
- Guilhaumou, N.; Szydlowskii, N.; Pradier, B. Characterization of hydrocarbon fluid inclusions by infra-red and fluorescence microspectrometry. Mineral. Mag. 1990, 54, 311–324. [Google Scholar] [CrossRef]
- George, S.C.; Ruble, T.E.; Dutkiewicz, A.; Eadington, P.J. Assessing the maturity of oil trapped in fluid inclusions using molecular geochemistry data and visually-determined fluorescence colours. Appl. Geochem. 2001, 16, 451–473. [Google Scholar] [CrossRef]
- Oxtoby, N.H. Comments on: Assessing the maturity of oil trapped in fluid inclusions using molecular geochemistry data and visually-determined fluorescence colours. Appl. Geochem. 2002, 17, 1371–1374. [Google Scholar] [CrossRef]
- George, S.C.; Ruble, T.E.; Dutkiewicz, A.; Eadington, P.J. Reply to comment by Oxtoby on “Assessing the maturity of oil trapped in fluid inclusions using molecular geochemistry data and visually-determined fluorescence colours”. Appl. Geochem. 2002, 17, 1375–1378. [Google Scholar] [CrossRef]
- Ping, H.; Chen, H.; George, S.C.; Li, C.; Hu, S. Relationship between the fluorescence color of oil inclusions and thermal maturity in the Dongying Depression, Bohai Bay Basin, China: Part 1. Fluorescence evolution of oil in the context of hydrous pyrolysis with increasing maturity. Mar. Petrol. Geol. 2019, 100, 1–19. [Google Scholar] [CrossRef]
- Ping, H.; Chen, H.; George, S.C.; Li, C.; Hu, S. Relationship between the fluorescence colour of oil inclusions and thermal maturity in the Dongying Depression, Bohai Bay Basin, China: Part 2. fluorescence evolution of oil in the context of petroleum generation, expulsion and cracking under geological conditions. Mar. Petrol. Geol. 2019, 103, 306–319. [Google Scholar]
- Parnell, J.; Carey, P.; Duncan, W. History of hydrocarbon charge on the Atlantic margin: Evidence from fluid-inclusion studies, West of Shetland. Geology 1998, 26, 807–810. [Google Scholar] [CrossRef]
- Parnell, J.; Middleton, D.; Chen, H.; Hall, D. The use of integrated fluid inclusion studies in constraining oil charge history and reservoir compartmentation: Examples from the Jeanne d’Arc Basin, offshore Newfoundland. Mar. Petrol. Geol. 2001, 18, 535–549. [Google Scholar] [CrossRef]
- Liu, K.; Eadington, P. Quantitative fluorescence techniques for detecting residual oils and reconstructing hydrocarbon charge history. Org. Geochem. 2005, 36, 1023–1036. [Google Scholar] [CrossRef]
- Gong, S.; George, S.C.; Volk, H.; Liu, K.; Peng, P. Petroleum charge history in the Lunnan Low Uplift, Tarim Basin, China—Evidence from oil-bearing fluid inclusions. Org. Geochem. 2007, 38, 1341–1355. [Google Scholar] [CrossRef]
- Atwah, I.; Mohammadi, S.; Moldowan, J.M.; Dahl, J. Episodic hydrocarbon charge in tight Mississippian reservoirs of Central Oklahoma, USA: Insights from oil inclusion geochemistry. Mar. Petrol. Geol. 2021, 123, 104742. [Google Scholar] [CrossRef]
- Volk, H.; George, S.C. Using petroleum inclusions to trace petroleum systems—A review. Org. Geochem. 2019, 129, 99–123. [Google Scholar] [CrossRef]
- Cao, J.; Jin, Z.; Hu, W.; Zhang, Y.; Yao, S.; Wang, X.; Zhang, Y.; Tang, Y. Improved understanding of petroleum migration history in the Hongche fault zone, northwestern Junggar Basin (northwest China): Constrained by vein-calcite fluid inclusions and trace elements. Mar. Petrol. Geol. 2010, 27, 61–68. [Google Scholar] [CrossRef]
- Li, C.; Chen, H. Hydrocarbon inclusion characteristics in the Cambrian-Ordovician carbonates of the TS2 well: Implication for deep hydrocarbon exploration in the Tahe oilfield, Tarim Basin, northwest China. Acta Geol. Sin. (Engl. Ed.) 2015, 89, 852–860. [Google Scholar]
- Zhao, X.; Zhang, L.; Jin, F.; Wang, Q.; Bai, G.; Li, Z.; Wang, J. Hydrocarbon charging and accumulation history in the Niudong buried hill field in the Baxian Depression, eastern China. Mar. Petrol. Geol. 2017, 88, 343–358. [Google Scholar] [CrossRef]
- Li, C.; Chen, H.; Liu, H. Fluid inclusion constrained multiple petroleum chargings in the lithologic reservoirs of the late Eocene Shahejie Formation in the Minfeng Sag, Bohai Bay Basin, east China. Energies 2022, 15, 3682. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, Y. Forming mechanism and distribution characteristics of overpressure in the first member of Funing Formation in Sha–Hua–Wa area of Gaoyou Sag. Complex Hydrocarb. Reserv. 2016, 9, 1–5. (In Chinese) [Google Scholar]
Well | Sample # | Depth (m) | Formation | Lithology | Fluorescence Color | λmax (nm) | Q650/500 | Thoil (°C) | Thaq (°C) | Occurrence |
---|---|---|---|---|---|---|---|---|---|---|
SX51 | 1 | 2699.00 | E1f3 | Siltstone | Yellow | 567.9 | 0.71 | 68.6 | 80.4 | CTQG |
Blue | 521.0 | 0.39 | 88.7 | 98.5 | CTQG | |||||
2 | 3058.60 | E1f1 | Siltstone | Yellow | 542.7 | 0.57 | 75.6 | 84.3 | CWQG | |
SX53 | 3 | 2854.85 | E1f3 | Siltstone | Yellow | 542.2 | 0.64 | 95.6 | 106.5 | CTQG |
HX14 | 4 | 3143.30 | E1f1 | Siltstone | Yellow | 545.0 | 0.72 | 62.6 | 72.6 | CWQG |
Blue | 520.1 | 0.44 | 98.6 | 108.5 | CTQG | |||||
5 | 3147.60 | E1f1 | Siltstone | Yellow | 579.1 | 0.79 | 68.1 | 78.1 | CTQG and CWQG | |
Blue | 523.3 | 0.42 | 100.4 | 112.3 | CWQG | |||||
HX28 | 6 | 3265.89 | E1f3 | Siltstone | Blue | 499.7 | 0.28 | 93.4 | 103.4 | CTQG |
7 | 3268.00 | E1f3 | Siltstone | Yellow | 543.1 | 0.60 | 87.8 | 97.8 | CTQG | |
HX33 | 8 | 3201.75 | E1f1 | Siltstone | Yellow | 543.1 | 0.78 | 93.4 | 103.5 | CTQG and CWQG |
9 | 3208.90 | E1f1 | Siltstone | Yellow | 541.8 | 0.56 | 91.3 | 100.2 | CTQG | |
10 | 3295.00 | E1f1 | Siltstone | Blue | 504.3 | 0.30 | 98.4 | 108.4 | CTQG | |
FSX1 | 11 | 3553.60 | E1f3 | Fine sandstone | Blue | 490.2 | 0.27 | 109.8 | 119.2 | CWQG |
12 | 3557.60 | E1f3 | Fine sandstone | Yellow | 574.6 | 0.75 | 93.4 | 103.4 | CWQG | |
Blue | 511.1 | 0.37 | 95.6 | 105.6 | CTQG | |||||
13 | 3845.30 | E1f2 | Mudstone with calcite vein | Blue | 493.4 | 0.22 | 96.4 | 106.4 | Calcite veins | |
14 | 3949.00 | E1f1 | Mudstone with calcite vein | Blue | 496.6 | 0.26 | 107.9 | 117.2 | Calcite veins | |
15 | 4046.50 | E1f1 | Fine sandstone with calcite vein | Blue | 487.5 | 0.32 | 106.8 | 117.2 | Calcite veins | |
H158 | 16 | 3162.20 | E1f4 | Mudstone with calcite vein | Yellow | 549.9 | 0.66 | 101.9 | 111.9 | Calcite veins |
Blue | 517.0 | 0.33 | 129.1 | 139.1 | Calcite veins |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Qian, S.; Zheng, Y. Paleopressure during Hydrocarbon Charging and Its Evolution in the Funing Formation of the Gaoyou Sag, Subei Basin, Eastern China. Minerals 2024, 14, 821. https://doi.org/10.3390/min14080821
Li C, Qian S, Zheng Y. Paleopressure during Hydrocarbon Charging and Its Evolution in the Funing Formation of the Gaoyou Sag, Subei Basin, Eastern China. Minerals. 2024; 14(8):821. https://doi.org/10.3390/min14080821
Chicago/Turabian StyleLi, Chunquan, Shiyou Qian, and Yuancai Zheng. 2024. "Paleopressure during Hydrocarbon Charging and Its Evolution in the Funing Formation of the Gaoyou Sag, Subei Basin, Eastern China" Minerals 14, no. 8: 821. https://doi.org/10.3390/min14080821