Evaluating the Behavior of Bauxite Tailings Dewatering in Decanter Centrifuges
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solids’ Characterization
2.2. Spin Tests
2.3. Pilot Tests
- A sizer-type crusher, with an opening of 50 mm;
- A slurry chute that uses high-pressure jet technology to promote disaggregation of the clay particles on the bauxite particles;
- A sieve with 1 mm screen;
- Decanter centrifuge.
- Sample the slurry at the feed of the centrifuge, taking 1 aliquot of 2.5 L at every 20 min of operation, with at least 3 aliquots per test;
- Minimum operating time of 1 h straight per condition.
- Sample at the top of the dewatered clay pile to obtain an aliquot of 10 kg every 20 min of operation, with at least 3 aliquots per test;
- Minimum operating time of 1 h straight per condition.
- Sample slurry at the clarified pumping outlet, obtain an aliquot of 7 L every 20 min of operation, with at least 3 aliquots per test;
- Minimum operating time of 1 h straight per condition.
- Ds = solid (ore) density;
- Dp = liquid density.
- G = G-force (N)
- n = bowl speed (rpm)
- Db = Inner bowl diameter (m)
3. Results and Discussion
3.1. Technological Characterization of the Ore
3.2. Solid’s Settling
3.3. Laboratory Spin Tests
3.4. Pilot Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Banerjee, K.; Mankar, A.U.; Kumar, V. Chapter 4—Beneficiation of bauxite ores. In Mineral Processing; Rajendran, C.H.S., Murty, V.G.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 117–166. [Google Scholar]
- Sampaio, J.A.; Andrade, M.C.; Dutra, A.; Bauxita, J.B. Rochas e Minerais Industriais, 2nd ed.; Luz, A.B., Lins, F.A.F., Eds.; CETEM/MCT: Rio de Janeiro, Brazil, 2008; pp. 311–377. [Google Scholar]
- Carvalho, A. 1989. Bauxitas No Brasil: Síntese de um Programa de Pesquisa. Doctoral Dissertation, Instituto de Geociências, Universidade de São Paulo, São Paulo, Brazil, 1989. [Google Scholar]
- Ruan, W.; Liao, J.; Gu, X.; Mo, J.; Cai, M.; Guo, M.; Li, F.; Zhu, Y.; Ma, X. Effects of bauxite tailings and sodium silicate on mechanical properties and hydration mechanism of magnesium phosphate cement. Constr. Build. Mater. 2023, 366, 130055. [Google Scholar] [CrossRef]
- Hansen, A.M.; Larsen, S.V.; Steenholdt, N.C.; Aaen, S.B.; Graugaard, N.D.; Kollias, K. Social impacts of bauxite mining and refining: A review. Extr. Ind. Soc. 2023, 14, 101264. [Google Scholar] [CrossRef]
- Li, Y. Segregation and Hindered Settling Behavior of Mine Tailings Suspension. Ph.D. Thesis, University of British Columbia, Vancouver, OK, Canada, 2015; 226p. [Google Scholar]
- Klug, R.; Schwarz, N. Dewatering Tailings: Rapid water recovery by use of centrifuges. In Proceedings of the 22nd International Conference on Paste, Thickened and Filtered Tailings, Cape Town, South Africa, 8–10 May 2019; Australian Centre for Geomechanics: Perth, Australia, 2019. [Google Scholar]
- Klug, R.; Rivadeneira, A.; Schawrz, N. Dewatering Tailings for Dry Stacking: Rapid Water Recovery by Means of Centrifuges. In Paste 2019: Proceedings of the 22nd International Conference on Paste, Thickened and Filtered Tailings; Australian Centre for Geomechanics: Perth, Australia, 2019; pp. 369–383. [Google Scholar] [CrossRef]
- Wills, B.A.; Finch, J.A. Tailings Disposal. In Wills’ Mineral Processing Technology, 8th ed.; Butterworth-Heinemann: Amsterdam, The Netherlands, 2016; pp. 439–447. [Google Scholar]
- Franks, D.M.; Boger, D.V.; Cote, C.M.; Mulligan, D.R. Sustainable Development Principles for The Disposal of Mining and Mineral Processing Wastes. Resour. Policy 2011, 36, 114–122. [Google Scholar] [CrossRef]
- Schubert, T.; Meric, A.; Boom, R.; Hinrichs, J.; Atamer, Z. Application of a decanter centrifuge for casein fractionation on pilot scale: Effect of operational parameters on total solid, purity and yield in solid discharge. Int. Dairy J. 2018, 84, 6–14. [Google Scholar] [CrossRef]
- Chaves, A.P. Teoria e Prática do Tratamento de Minérios: Desaguamento, Espessamento e Filtragem, 4th ed.; Oficina de Textos: São Paulo, Brazil, 2013; Volume 2, pp. 1–240. [Google Scholar]
- Menesklou, P.; Nirschl, H.; Gleiss, M. Dewatering of finely dispersed calcium carbonate-water slurries in decanter centrifuges: About modelling of a dynamic simulation tool. Sep. Purif. Technol. 2020, 251, 117287. [Google Scholar] [CrossRef]
- Records, A.; Sutherland, K. Decanter Centrifuge Handbook; Elsevier: Oxford, UK, 2001. [Google Scholar]
- Gleiss, M.; Nirschl, H. Modeling separation process in decanter centrifuges by considering the sediment build-up. Chem. Eng. Technol. 2015, 38, 1873–1882. [Google Scholar] [CrossRef]
- Rong, R.X.; Hitchins, J. Preliminary study of correlations between fine coal characteristics and properties and their dewatering behaviour. Miner. Eng. 1995, 8, 293–309. [Google Scholar] [CrossRef]
- Menesklou, P.; Sinn, T.; Nirschl, H.; Gleiss, M. Scale-Up of Decanter Centrifuges for the Particle Separation and Mechanical Dewatering in the Minerals Processing Industry by Means of a Numerical Process Model. Minerals 2021, 11, 229. [Google Scholar] [CrossRef]
- França, S.C.A.; Massarani, G. Separação Sólido-Líquido. In Tratamento de Minérios, 6th ed.; CETEM: Rio de Janeiro, Brazil, 2018. [Google Scholar]
- Albertson, O.E.; Guidi, E.E., Jr. Centrifugation of waste sludges. Water Pollut. Control Fed. 1969, 41, 607–628. [Google Scholar]
- Gleiss, M.; Hammerich, S.; Kespe, M.; Nirschl, H. Application of the dynamic flow sheet simulation concept to the solid-liquid separation: Separation of stabilized slurries in continuous centrifuges. Chem. Eng. Sci. 2017, 163, 167–178. [Google Scholar] [CrossRef]
- Gleiss, M.; Nirschl, H. About Modeling and Optimization of Solid Bowl Centrifuges. Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT) Germany. KONA Powder Part. J. 2023. [Google Scholar] [CrossRef]
- Leung, W.W.F. (Ed.) Flocculation with Decanter Centrifuges. In Centrifugal Separations in Biotechnology, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2020; pp. 331–352. [Google Scholar]
- Schuber, T.; Ergin, I.; Panetta, F.; Hinrichs, J.; Atamer, Z. Application of a temperature-controlled decanter centrifuge for the fractionation of αS-, β- and κ-casein on pilot scale. Int. Dairy J. 2021, 122, 105148. [Google Scholar] [CrossRef]
- Bai, C.; Park, H.; Wang, L. A Model–Based Parametric Study of Centrifugal Dewatering of Mineral Slurries. Minerals 2022, 12, 1288. [Google Scholar] [CrossRef]
- Wills, B.A.; Finch, J. Will’s Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, 8th ed.; Butterworth-Heinemann: Oxford, UK, 2016. [Google Scholar]
- Luz, A.B.D.; Sampaio, J.A.; França, S.C.A. Tratamento de Minérios, 5th ed.; CETEM/MCT: Rio de Janeiro, Brazil, 2010; pp. 161–180. [Google Scholar]
- Schwarz, N. Selecting the Right Centrifuge—The Jargon Demystified; 2011; Available online: https://www.sgconsulting.co.za/images/Selecting%20the%20right%20centrifuge.pdf (accessed on 29 August 2023).
- Bai, C.; Park, H.; Wang, L. Modelling solid-liquid separation and particle size classification in decanter centrifuges. Sep. Purif. Technol. 2022, 263, 118408. [Google Scholar] [CrossRef]
- Jackson, J.F. Solid Bowl Decanter Centrifuges of the Scroll Discharge Type. U.S. Patent 4240578A, 23 December 1980. [Google Scholar]
- Leung, W.W.F. Decanter Centrifuge, Centrifugal Separations in Biotechnology; Butterworth-Heinemann: Oxford, UK, 2020; pp. 121–133. [Google Scholar]
- Klima, M.S.; DeHart, I.; Coffman, R. Baseline testing of a filter press and solid-bowl centrifuge for dewatering coal thickener underflow slurry. Int. J. Coal Prep. Util. 2011, 31, 258–272. [Google Scholar] [CrossRef]
- Zhu, M.; Hu, D.; Xu, Y.; Zhao, S. Design and Computational Fluid Dynamics Analysis of a Three-Phase Decanter Centrifuge for Oil-Water-Solid Separation. Chem. Eng. Technol. 2020, 43, 1005–1015. [Google Scholar] [CrossRef]
- Doi, A.; Nguyen, T.A.; Nguyen, N.N.; Nguyen, C.V.; Raji, F.; Nguyen, A.V. Enhancing shear strength and handleability of dewatered clay-rich coal tailings for dry-stacking. J. Environ. Manag. 2023, 344, 118488. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Rong, B.; Rui, X.; Liu, Y.; Wang, G. Study on the solid-liquid separation mechanism of the inverting filter centrifuge’s dewatering process. Dry. Technol. 2023, 1–17. [Google Scholar] [CrossRef]
- Nguyen, C.V.; Nguyen, A.V.; Doi, A.; Dinh, E.; Nguyen, T.V.; Ejtemaei, M.; Osborne, D. Advanced solid-liquid separation for dewatering fine coal tailings by combining chemical reagents and solid bowl centrifugation. Sep. Purif. Technol. 2020, 259, 118172. [Google Scholar] [CrossRef]
Centrifuge | Bowl Diameter (mm) | Bowl Length (mm) |
---|---|---|
1 | 620 | 2800 |
2 | 457 | 1372 |
3 | 353 | 1445 |
Centrifuge | G-Force (G) | Differential Speed (rpm) | Bowl Speed (rpm) | Feed Flow (m³/h) |
---|---|---|---|---|
1 | 1500 | 12 to 23 | 1400 | 50 |
2 | 2000 | 10 | 2800 | 7 |
3 | 2700 | 17 | 3700 | 6.6 |
Centrifuge | Feed Solid Content (%) | Cake Solid Content (%) | Centrate Solid Content (%) | Recovery (%) |
---|---|---|---|---|
1 | 12.5 | 81.7 | 0.46 | 97.7 |
2 | 6.6 | 65.6 | 1.64 | 77.6 |
3 | 12.0 | 77.2 | 0.27 | 98.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moura, C.B.; Chaves, A.P.; Felipe, R.A.d.S.; Júnior, H.D. Evaluating the Behavior of Bauxite Tailings Dewatering in Decanter Centrifuges. Minerals 2024, 14, 827. https://doi.org/10.3390/min14080827
Moura CB, Chaves AP, Felipe RAdS, Júnior HD. Evaluating the Behavior of Bauxite Tailings Dewatering in Decanter Centrifuges. Minerals. 2024; 14(8):827. https://doi.org/10.3390/min14080827
Chicago/Turabian StyleMoura, Camila Botarro, Arthur Pinto Chaves, Rafael Alves de Souza Felipe, and Homero Delboni Júnior. 2024. "Evaluating the Behavior of Bauxite Tailings Dewatering in Decanter Centrifuges" Minerals 14, no. 8: 827. https://doi.org/10.3390/min14080827