Periodic Third-Order Problems with a Parameter
Abstract
:1. Introduction
2. Definitions and a Priori Estimations
3. Existence Result
4. Periodic Catatonic Phenomena with a Parameter
Author Contributions
Funding
Conflicts of Interest
References
- Ambrosetti, A.; Prodi, G. On the inversion of some differentiable mappings with singularities between Banach spaces. Ann. Mat. Pura Appl. 1972, 93, 231–246. [Google Scholar] [CrossRef]
- Minhós, F. On some third order nonlinear boundary value problems: Existence, location and multiplicity results. J. Math. Anal. Appl. 2008, 339, 1342–1353. [Google Scholar] [CrossRef] [Green Version]
- Minhós, F. Existence, nonexistence and multiplicity results for some beam equations. In Differential Equations, Chaos and Variational Problems; Progr. Nonlinear Differential Equations Appl., 75; Springer: Basel, Switzerland, 2008; pp. 257–267. [Google Scholar]
- Minhós, F.; Fialho, J. Existence and multiplicity of solutions in fourth order BVPs with unbounded nonlinearities. Am. Inst. Math. Sci. 2013, 2013, 555–564. [Google Scholar] [CrossRef]
- Sovrano, E. Ambrosetti-Prodi type result to a Neumann problem via a topological approach. Discret. Contin. Dyn. Syst. Ser. 2018, 11, 345–355. [Google Scholar] [CrossRef]
- Senkyrik, M. Existence of multiple solutions for a third order three-point regular boundary value problem. Math. Bohem. 1994, 119, 113–121. [Google Scholar] [CrossRef]
- Fabry, C.; Mawhin, J.; Nkashama, M.N. A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations. Bull. Lond. Math. Soc. 1986, 18, 173–180. [Google Scholar] [CrossRef]
- Feltrin, G.; Sovrano, E.; Zanolin, F. Periodic solutions to parameter-dependent equations with a φ-Laplacian type operator. Nonlinear Differ. Equ. Appl. 2019, 26, 38. [Google Scholar] [CrossRef]
- Manásevich, R.; Mawhin, J. Periodic solutions for nonlinear systems with p-Laplacian-like operators. J. Differ. Equ. 1998, 145, 367–393. [Google Scholar] [CrossRef]
- Mawhin, J. The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian. J. Eur. Math. Soc. 2006, 8, 375–388. [Google Scholar] [CrossRef] [Green Version]
- JMawhin; Rebelo, C.; Zanolin, F. Continuation Theorems for Ambrosetti-Prodi Type Periodic Problems. Commun. Contemp. Math. 2000, 2, 87–126. [Google Scholar] [CrossRef]
- Mbadiwe, H. Periodic Solutions of Some Nonlinear Boundary Value Problems of ODE’s: Periodic Boundary Value Problems for Some Nonlinear Higher Order Differential Equations; LAP Lambert Academic Publishing: Chisinau, Moldova, 2011; ISBN-13 978-3844317602. [Google Scholar]
- Obersnel, F.; Omari, P. On the periodic Ambrosetti–Prodi problem for a class of ODEs with nonlinearities indefinite in sign. Appl. Math. Lett. 2021, 111, 106622. [Google Scholar] [CrossRef]
- Sovrano, E.; Zanolin, F. Ambrosetti-Prodi periodic problem under local coercivity conditions. Adv. Nonlinear Stud. 2018, 18, 169–182. [Google Scholar] [CrossRef]
- Torres, P. Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskiĭ fixed point theorem. J. Differ. Equ. 2003, 190, 643–662. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Lu, S. A singular periodic Ambrosetti–Prodi problem of Rayleigh equations without coercivity conditions. Commun. Contemp. Math. 2021. [Google Scholar] [CrossRef]
- Bereanu, C.; Mawhin, J. Multiple periodic solutions of ordinary differential equations with bounded nonlinearities and φ-Laplacian. NoDEA Nonlinear Differ. Equ. Appl. 2008, 15, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Fialho, J.; Minhós, F. On higher order fully periodic boundary value problems. J. Math. Anal. Appl. 2012, 395, 616–625. [Google Scholar] [CrossRef] [Green Version]
- Cabada, A.; López-Somoza, L. Lower and Upper Solutions for Even Order Boundary Value Problems. Mathematics 2019, 7, 878. [Google Scholar] [CrossRef] [Green Version]
- Grossinho, M.R.; Minhós, F. Existence Result for Some Third Order Separated Boundary Value Problems. Nonlinear Anal. TMA Ser. 2001, 47, 2407–2418. [Google Scholar] [CrossRef]
- Danziger, L.; Elmergreen, G.L. Mathematical Theory of Periodic Relapsing Catatonia. Bull. Math. Biophys. 1954, 16, 15–21. [Google Scholar] [CrossRef]
- Danziger, L.; Elmergreen, G.L. The thyroid-pituitary homeostatic mechanism. Bull. Math. Biophys. 1956, 18, 1–13. [Google Scholar] [CrossRef]
- Mukhopadhyay, B.; Bhattacharyya, R. A mathematical model describing the thyroid-pituitary axis with time delays in hormone transportation. Appl. Math. 2006, 51, 549–564. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minhós, F.; Oliveira, N. Periodic Third-Order Problems with a Parameter. Axioms 2021, 10, 222. https://doi.org/10.3390/axioms10030222
Minhós F, Oliveira N. Periodic Third-Order Problems with a Parameter. Axioms. 2021; 10(3):222. https://doi.org/10.3390/axioms10030222
Chicago/Turabian StyleMinhós, Feliz, and Nuno Oliveira. 2021. "Periodic Third-Order Problems with a Parameter" Axioms 10, no. 3: 222. https://doi.org/10.3390/axioms10030222
APA StyleMinhós, F., & Oliveira, N. (2021). Periodic Third-Order Problems with a Parameter. Axioms, 10(3), 222. https://doi.org/10.3390/axioms10030222