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Abstract: Let {ξ1, ξ2, . . .} be a sequence of independent possibly differently distributed random
variables, defined on a probability space (Ω,F ,P) with distribution functions {Fξ1 , Fξ2 , . . .}. Let η be
a counting random variable independent of sequence {ξ1, ξ2, . . .}. In this paper, we find conditions
under which the distribution function of randomly stopped sum Sη = ξ1 + ξ2 + . . . + ξη belongs to
the class of generalized subexponential distributions.
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1. Introduction

Let {ξ1, ξ2, . . .} be a sequence of independent random variables (r.v.s) with distribution
functions (d.f.s) {Fξ1 , Fξ2 , . . .}, and let η be a counting random variable, that is, a nonnega-
tive, nondegenerate at 0, and integer-valued r.v. In addition, we suppose that the r.v. η and
the sequence {ξ1, ξ2, . . .} are independent.

Let S0 := 0, Sn := ξ1 + . . . + ξn for n ∈ N, and let

Sη =
η

∑
k=1

ξk

be the randomly stopped sum of the r.v.s ξ1, ξ2, . . .
By FSη

we denote the d.f. of Sη , and, by F, we denote the tail function (t.f.) of a d.f.
F, that is, F(x) = 1− F(x) for x ∈ R. It is obvious that the following equalities hold for
positive x:

FSη
(x) = P(η = 0) +

∞

∑
n=1

P(η = n)P(Sn 6 x),

FSη
(x) =

∞

∑
n=1

P(η = n)P(Sn > x).

In this paper, we consider a sequence {ξ1, ξ2, . . .} of independent and possibly non-
identically distributed r.v.s. We suppose that some of the d.f.s of these r.v.s belong to the
class of generalized subexponential distributions OS , and we find conditions under which
d.f. FSη

remains in this class.
We use the following notations for the asymptotic relations of arbitrary positive func-

tions f and g: f (x) = o(g(x)) means that lim
x→∞

f (x)/g(x) = 0; f (x) ∼
x→∞

cg(x), c > 0, means
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that lim
x→∞

f (x)/g(x) = c; f (x) = O
(

g(x)
)

means that lim sup
x→∞

f (x)
g(x) < ∞; and f (x) �

x→∞
g(x)

means that

0 < lim inf
x→∞

f (x)
g(x)

6 lim sup
x→∞

f (x)
g(x)

< ∞.

The rest of the paper is organized as follows. In Section 2, we describe a class of
generalized subexponential distributions. Section 4 consists of some results on closure
under randomly stopped sums for regularity classes related with generalized subexponen-
tial distributions. The main results of the paper are formulated in Section 3. The proofs
of the main results are given in Sections 5 and 6. Finally, in Section 7, we provide two
examples to expose the analytical usefulness of our results, and in section 8, we present
short conclusions.

2. Generalized Subexponentiality

Let ξ be an r.v. defined on a probability space (Ω,F ,P) with d.f. Fξ .

• A d.f. Fξ of a real-valued r.v. is said to be generalized subexponential, denoted Fξ ∈ OS , if

lim sup
x→∞

Fξ ∗ Fξ(x)
Fξ(x)

< ∞,

where Fξ ∗ Fξ denote the convolution of d.f. Fξ with itself, i.e.,

Fξ ∗ Fξ(x) = F∗2ξ (x) :=
∫ ∞

−∞
Fξ(x− y)dFξ(y), x ∈ R.

For distributions of nonnegative r.v.s, classOS was introduced by Klüppelberg [1] and
later, for real-valued r.v.s, was studied by Shimura and Watanabe [2], Baltrūnas et al. [3],
Watanabe and Yamamuro [4], Yu and Wang [5], Cheng and Wang [6], Lin and Wang [7],
Konstantinides et al. [8], and Mikutavičius and Šiaulys [9], among others.

In [2], the class of distributions OS is considered together with other distribution
regularity classes. In that paper, several closedness properties of the class OS were proven.
For example, it is shown that the class OS is not closed under convolution roots. This
means that there exists r.v. ξ such that n-fold convolution F∗nξ ∈ OS for all n > 2, but
Fξ /∈ OS . In [3], the simple conditions are provided under which a d.f. of the special form

Fξ(x) = 1− exp
{
−

x∫
0

q(u)du
}

belongs to the class OS , where q is some integrable hazard rate function. For distributions
of class OS , the closure under tail-equivalence and the closure under convolution are
established in [4]. The detailed proofs of these closures for nonnegative r.v.s are presented
in [1] and, for real-valued r.v.s, in [5]. The closure under convolution means that, in the case
of independent r.v.s ξ1, ξ2, conditions Fξ1 ∈ OS , Fξ2 ∈ OS imply that Fξ1 ∗ Fξ2 = Fξ1+ξ2 ∈
OS . The closure under tail-equivalence means that conditions Fξ1 ∈ OS , Fξ1(x) �

x→∞
Fξ2(x)

imply Fξ2 ∈ OS .
A counterexample, showing that Fξ1 , Fξ2 ∈ OS for independent r.v.s ξ1, ξ2 does not

imply Fξ1∨ξ2 ∈ OS , can be found in [7]. Moreover in that paper, the closure under
minimum is established, which means that Fξ1 , Fξ2 ∈ OS , for independent r.v.s ξ1, ξ2, imply
Fξ1∧ξ2 ∈ OS . The authors of articles [8,9] consider when the distribution of the product
of two independent random variables ξ, θ belongs to the class OS . For instance, in [9], it
is proven that d.f. Fξθ is generalized subexponential if Fξ ∈ OS and θ is nonnegative and
nondegenerate at point zero.
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3. Main Results

In this section, we formulate two theorems which are the main assertions of this paper.
The first theorem deals with the case when the counting r.v. has a finite support.

Theorem 1. Let {ξ1, ξ2, . . .} be a sequence of independent r.v.s, and η be a counting r.v. indepen-
dent of {ξ1, ξ2, . . .}. If η is bounded, Fξ1 ∈ OS , and, for other indices k > 2, either Fξk ∈ OS or
Fξk (x) = O

(
Fξ1(x)

)
, then d.f. of randomly stopped sum FSη

belongs to the class OS .

The case of unbounded support of counting r.v. is considered in the second theorem.
In such a case, to be FSη

∈ OS , we need the counting random variable to have a light tail.

Theorem 2. Let {η, ξ1, ξ2, . . .} be independent r.v.s, where counting r.v. η is such that Eeλη < ∞
for all λ > 0. Then, FSη

∈ OS, if Fξ1 ∈ OS and one of the conditions below is satisfied:

(i) P(η = 1) > 0 and lim sup
x→∞

sup
k>1

Fξk (x)
Fξ1(x)

< ∞;

(ii) 0 < lim inf
x→∞

inf
k>1

Fξk (x)
Fξ1(x)

6 lim sup
x→∞

sup
k>1

Fξk (x)
Fξ1(x)

< ∞.

We present the proofs of both theorems in Section 6. According to the statements of
these theorems, many random variables with generalized subexponential distributions can
be constructed. We demonstrate such constructions in Section 7.

4. Similar Results for Related Regularity Classes

In this section, we describe several classes of distributions related to the class OS . For
the described classes, we present some results on their closure with respect to a randomly
stopped sum. We note that for some classes, the closedness of the randomly stopped sum
is studied only in the case where the summands are identically distributed.

The class of generalized subexponential distributions is the direct generalization of

Ŝ =
⋃

γ>0
S(γ),

where S(0) = S is the class of the subexponential distributions and {S(γ), γ > 0} are the
convolution equivalent distributions classes.

• A d.f. Fξ of a nonnegative r.v. ξ is said to be subexponential, denoted Fξ ∈ S , if

Fξ ∗ Fξ(x) ∼
x→∞

2Fξ(x).

A d.f. Fξ of a real-valued r.v. ξ is called subexponential if the positive part of d.f.

F+
ξ (x) = Fξ(x)I[0,∞)(x)

belongs to the class S .

The class of subexponential distributions was introduced by Chistyakov [10] and later
considered by Athreya and Ney [11], Chover et al. [12,13], Embrechts and Goldie [14],
Embrechts and Omey [15], Cline [16], and Cline and Samorodnitsky [17], among others.
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• A d.f. Fξ of a real-valued r.v. ξ is said to be convolution equivalent with parameter γ > 0,
denoted Fξ ∈ S(γ), if the following requirements are satisfied:

(i) F̂ξ(γ) :=
∫ ∞

−∞
eγxdFξ(x) < ∞;

(ii) lim
x→∞

Fξ(x− y)
Fξ(x)

= eγy for all y > 0;

(iii) lim
x→∞

Fξ ∗ Fξ(x)
Fξ(x)

= 2cξ for some constant cξ .

The study of class S(γ) goes back to Chover et al. [12,13], Embrechts and Goldie [14],
and Klüppelberg [18]. It is well known that F ∈ S(γ) if and only if F+

ξ ∈ S(γ) (see

Corollary 2.1(i) in [19]), and the constant cξ in the definition above is equal to F̂ξ(γ),
(see [19–21]). For γ > 0, a standard example of d.f. in S(γ) is d.f. F satisfying

F(x) ∼
x→∞

c e−γxx−α

with parameters c > 0, γ > 0, α > 1 (see [22,23]).
For the class S , the following result is obtained in Theorem 3.37 of [24] (see

also [11,25–27]).

Theorem 3. Let {ξ1, ξ2, . . . } be a sequence of independent real-valued r.v.s with common distribu-
tion Fξ ∈ S , and let η be independent of {ξ1, ξ2, . . .} counting r.v. with expectation Eη, such that
E(1 + ε)η < ∞ for some ε > 0. Then,

FSη
(x) ∼ EηFη(x),

and FSη
∈ S .

For the class S(γ) with γ > 0, the following assertion is derived in Theorem C of [28]
(see also [29–31] for related results).

Theorem 4. Let {ξ1, ξ2, . . . } be independent real-valued r.v.s with common distribution Fξ ∈
S(γ), γ > 0, and let η be counting r.v. independent of {ξ1, ξ2, . . . }. If

∞

∑
n=0

P(η = n)max
{(

F̂ξ(γ) + ε
)n, 1

}
< ∞

for some ε > 0, then FSη
∈ S(γ).

We note that, in Theorems 3 and 4, r.v.s in the sequences {ξ1, ξ2, . . . } are identically
distributed. However, there are related regularity classes for which similar results can be
obtained in cases where r.v.s in {ξ1, ξ2, . . . } are not necessarily identically distributed. Here,
we discuss two such classes:

• A d.f. Fξ of a real-valued r.v. ξ is said to be dominatedly varying, denoted Fξ ∈ D, if

lim sup
x→∞

Fξ(yx)
Fξ(x)

< ∞

for all (or, equivalently, for some) y ∈ (0, 1);
• A d.f. Fξ of a real-valued r.v. ξ is said to be exponential-like-tailed, denoted Fξ ∈ L(γ), if

lim
x→∞

Fξ(x− y)
Fξ(x)

= eγy
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for all y > 0.
• A d.f. Fξ of a real-valued r.v. ξ is said to be long-tailed, denoted Fξ ∈ L(0) = L, if

lim
x→∞

Fξ(x− y)
Fξ(x)

= 1

for all (or,equivalently, for some) y > 0.

Class of dominatedly varying d.f.s D was introduced by Feller [32] and later con-
sidered in [4,33–38], among others. The class of long-tailed d.f.s L was introduced by
Chistyakov [10] in the context of branching processes. The class L(γ) with γ > 0 was
introduced by Chover et al. [12,13]. Later, the various properties of long-tailed and
exponential-like-tailed d.f.s were considered in [1,19,24,28,37,39,40], for instance. Here, we
recall only that L ∩D ⊂ S and S(γ) ⊂ L(γ) for γ > 0.

The following assertion on FSη
∈ D is presented in Theorem 4 of [41].

Theorem 5. Let {ξ1, ξ2, . . .} be a sequence of independent real-valued r.v.s with common d.f.
Fξ ∈ D, and let η be a counting r.v. independent of {ξ1, ξ2, . . .}. Then, FSη

∈ D if Eηp+1 < ∞
for some

p > J+Fξ
:= − lim

y→∞

1
log y

log lim inf
x→∞

Fξ(xy)
Fξ(x)

.

In the inhomogeneous case, when sumands are not necessarily identically distributed,
the following statement is obtained in Theorem 2.1 of [42].

Theorem 6. Let {ξ1, ξ2, . . . } be a sequence independent nonnegative r.v.s, and let η be a counting
r.v. independent of {ξ1, ξ2, . . . }. Then, FSη

∈ D if the following three conditions are satisfied:

(i) Fξκ ∈ D for some κ ∈ supp(η) := {n ∈ N0 : P(η = n) > 0};

(ii) lim sup
x→∞

sup
n>κ

1
nFξκ (x)

n
∑

i=1
Fξi (x) < ∞;

(iii) Eηp+1 < ∞ for some p > J+Fξκ
.

Examples of conditions for the function FSη
to belong to the class L(γ) are given

in the theorems below. Theorem 7, proven in [41], presents conditions for the homoge-
neous case for class L = L(0), while Theorem 8, proven in [43], gives conditions for the
inhomogeneous case for class L(γ) with γ > 0.

Theorem 7. Suppose that {ξ1, ξ2, . . .} are independent nonnegative r.v.s with common distribution
Fξ ∈ L, and let η be a counting r.v. independent of {ξ1, ξ2, . . .}. If

Fη(δx) = o
(√

x Fξ(x)
)

for any δ ∈ (0, 1), then FSη
∈ L.

Theorem 8. Let {ξ1, ξ2, . . .} be a sequence of independent r.v.s such that, for some γ > 0,

sup
k>1

∣∣∣∣ Fξk (x + y)
Fξk (x)

− e−γy
∣∣∣∣ →x→∞

0

for each fixed y > 0, and let η be a counting r.v. independent of {ξ1, ξ2, . . .}. If

P(η = k + 1)
P(η = k)

→
k→∞

0,

then FSη
∈ L(γ).
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In the context of the randomly stopped sums, the classOS was considered by Shimura
and Watanabe [2]. In Proposition 3.1 of that paper, the following assertion is presented.

Theorem 9. Let {ξ1, ξ2, . . .} be a sequence of nonnegative independent r.v.s with common d.f. Fξ ,
and let η be a counting r.v. independent of {ξ1, ξ2, . . .} such that

P(η > 1) > 0, sup
{

x > 1 :
∞

∑
k=0

P(η = k)xk < ∞
}

= ∞.

Then, Fξ ∈ OS if and only if FSη
(x) �

x→∞
Fξ(x).

From the information presented, it can be seen that our main Theorems 1 and 2, in
fact, are inhomogeneous versions of the formulated Theorem 9.

5. Auxiliary Lemmas

In this section, we present and prove some auxiliary lemmas that are then applied to
the derivations of the main theorems, i.e., Theorems 1 and 2.

Lemma 1. Let X and Y be two real-valued r.v.s with corresponding d.f.s FX and FY. The following
statements hold:

(i) FX ∈ OS if and only if sup
x∈R

FX∗FX(x)
FX(x)

< ∞;

(ii) If FX ∈ OS and FY(x) �
x→∞

FX(x), then FY ∈ OS ;

(iii) If FX ∈ OS and FY ∈ OS , then FX ∗ FY ∈ OS ;

(iv) If FX ∈ OS , then FX ∈ OL i.e., lim sup
x→∞

FX(x−1)
FX(x)

< ∞;

(v) If FX ∈ OS and FY(x) = O
(

FX(x)
)
, then FX ∗ FY ∈ OS and FX ∗ FY(x) �

x→∞
FX(x).

Proof. A large part of the properties of the class OS listed in Lemma 1 can be found, for
instance, in [1,2,4,5]. However, for the sake of exposition completeness, we present the full
proof of the formulated lemma.

Part (i). If FX ∈ OS, then

lim sup
x→∞

FX ∗ FX(x)
FX(x)

< ∞ (1)

according to the definition. This estimate implies that FX(x) > 0 for each x ∈ R. In
addition, the inequality (1) gives that

FX ∗ FX(x)
FX(x)

6 M

if x > xM for some M and xM.
If x < xM, then, obviously, FX(x) > FX(xM) and FX ∗ FX(x) 6 1.
Therefore, for each x ∈ R, we obtain that

FX ∗ FX(x)
FX(x)

6 max
{

M,
1

FX(xM)

}
< ∞

because FX(xM) > 0. The last estimate finishes the proof of part (i), because the condition

sup
x∈R

FX ∗ FX(x)
FX(x)

< ∞
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implies (1), obviously.

Part (ii). The condition FY(x) �
x→∞

FX(x) implies

lim inf
x→∞

FY(x)
FX(x)

> 0 and lim sup
x→∞

FY(x)
FX(x)

< ∞. (2)

It follows from this that
FY(x)
FX(x)

6 N, x > xN ,

for some N and xN . If x < xN , then

FY(x)
FX(x)

6
1

FX(xN)
< ∞

because FX ∈ OS . According to the derived estimates,

sup
x∈R

FY(x)
FX(x)

= max
{

N,
1

FX(xN)

}
= C < ∞.

Therefore, for each x ∈ R, we have

FY ∗ FY(x) =
∞∫
−∞

FY(x− y)
FX(x− y)

FX(x− y)dFY(y) 6 C
∞∫
−∞

FX(x− y)dFY(y)

= C
∞∫
−∞

FY(x− y)dFX(y) = C
∞∫
−∞

FY(x− y)
FX(x− y)

FX(x− y)dFX(y)

6 C 2
∞∫
−∞

FX(x− y)dFX(y) = C 2 FX ∗ FX(x).

This estimate implies that

lim sup
x→∞

FY ∗ FY(x)
FY(x)

6 C 2 lim sup
x→∞

FX ∗ FX(x)
FY(x)

6 C 2 lim sup
x→∞

FX ∗ FX(x)
FX(x)

1

lim inf
x→∞

FY(x)
FX(x)

< ∞

due to the assumption FX ∈ OS and the first inequality in (2). The last estimate gives that
d.f. FY belongs to the class OS . Part (ii) of the lemma is proven.

Part (iii). According to part (i), we have that

sup
x∈R

FX ∗ FX(x)
FX(x)

= C1 < ∞ and sup
x∈R

FY ∗ FY(x)
FY(x)

= C2 < ∞.
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Let X1, X2, Y1, Y2 be independent r.v.s. Suppose that X1, X2 are distributed according to the
d.f. FX , and Y1, Y2 are distributed according to the d.f. FY. For each x ∈ R, we obtain

((FX ∗ FY)∗)2(x) = (FX ∗ FY) ∗ (FX ∗ FY)(x) = P(X1 + Y1 + X2 + Y2 > x)

= P(X1 + X2 + Y1 + Y2) > x) =
∞∫
−∞

P(X1 + X2 > x− y)dP(Y1 + Y2 6 y)

=

∞∫
−∞

FX ∗ FX(x− y)
FX(x− y)

FX(x− y)dP(Y1 + Y2 6 y)

6 C1

∞∫
−∞

FX(x− y)dP(Y1 + Y2 6 y) = C1P(X1 + Y1 + Y2 > x)

= C1

∞∫
−∞

FY ∗ FY(x− y)
FY(x− y)

FY(x− y)dP(X1 6 y)

6 C1C2

∞∫
−∞

FY(x− y)dFX(y) = C1C2FX ∗ FY(x).

Hence,

sup
x∈R

((FX ∗ FY)∗)2(x)
FX ∗ FY(x)

6 C1C2

implying that FX ∗ FY ∈ OS by part (i). Part (iii) of the lemma is proven.

Part (iv). Due to part (i),

sup
x∈R

FX ∗ FX(x)
FX(x)

= C3 < ∞.

In addition, for x > 2, we obtain

FX ∗ FX(x) =
∞∫
−∞

FX(x− t)dFX(t) >
∫

(1,x]

FX(x− t)dFX(t)

> FX(x− 1)(FX(x)− FX(1)).

When x is large enough, we have F(x)− F(1) > 0, and, therefore,

FX(x− 1)
FX(x)

6
FX ∗ FX(x)

FX(x)
1

FX(x)− FX(1)
.

Hence,

lim sup
x→∞

FX(x− 1)
FX(x)

6
C3

FX(1)
< ∞,

and part (iv) of the lemma is proven.

Part (v). Since FY(x) = O
(

FX(x)
)
, we have

FY(x)
FX(x)

6 Q, x > xQ,
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with certain constants Q and xQ. If x < xQ, then

FY(x)
FX(x)

6
1

FX(xQ)
< ∞

because FX ∈ OS implies FX(xQ) > 0. From the above inequalities, it follows that

sup
x∈R

FY(x)
FX(x)

6 max

{
Q,

1
FX(xQ)

}
= C4.

Consequently, for x ∈ R, we obtain

FX ∗ FY(x) =
∞∫
−∞

FY(x− y)dFX(y) 6 C4

∞∫
−∞

FX(x− y)dFX(y)

= C4FX ∗ FX(x) 6 C5FX(x) (3)

with some positive constant C5, where the last step in the above derivation follows from
part (i) of the lemma.

On the other hand, there exists a real b ∈ R for which

FY(b) = 1− FY(b) >
1
2

.

For this b, we obtain

FX ∗ FY(x) >
∫

(b,∞)

FX(x− y)dFY(y) > FX(x− b)
∫

(b,∞)

dFY(y)

= FX(x− b)FY(b) >
1
2

FX(x)
FX(x− b)

FX(x)
.

Hence,

lim inf
x→∞

FX ∗ FY(x)
FX(x)

>
1
2

lim inf
x→∞

FX(x− b)
FX(x)

. (4)

In part (iv) of the lemma, we proved that FX ∈ OL. It is easy to verify that

FX ∈ OL ⇔ lim sup
x→∞

FX(x− 1)
FX(x)

< ∞ ⇔ FX(x− y) �
x→∞

FX(x) for each y ∈ R.

Therefore, the estimate (4) implies that

lim inf
x→∞

FX ∗ FY(x)
FX(x)

> 0. (5)

From inequalities (3) and (5), it follows that FX ∗ FY(x) �
x→∞

FX(x). Moreover, by part (ii) of
the lemma, FX ∗ FY ∈ OS . This finishes the proof of the last part of the lemma.

Lemma 2. Let {ξ1, ξ2, . . .} be a sequence of independent r.v.s, for which Fξ1 ∈ OS , and, for other
indices k > 2, either Fξk ∈ OS or Fξk (x) = O(Fξ1(x)). Then, FSn ∈ OS for all n ∈ N.

Proof. If n = 1, then the statement is obvious because S1 = ξ1. If n = 2, then two options
are possible: Fξ2 ∈ OS or Fξ2 = O(Fξ1(x)). In the first case, FS2 = Fξ1 ∗ Fξ2 ∈ OS according
to part (iii) of Lemma 1. In the second case, FS2 ∈ OS by part (v) of the same lemma.
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Now, let n > 2, and denote

K = {k ∈ {2, ..., n} : Fξk (x) = O(Fξ1(x))}.

Initially, assume that the set K is empty. In such a case, Fξk ∈ OS for all indices k ∈ Kc =
{1, 2, 3, . . . , n}. By part (iii) of Lemma 1, we know that FSn ∈ OS .

Now, let the index set K = {k1, k2, . . . , kr} ⊂ {1, . . . , n} no longer be empty. Since

Fξk1
(x) = O(Fξ1(x)),

part (v) of Lemma 1 implies that

Fξ1 ∗ Fξk1
∈ OS , (6)

and
Fξ1 ∗ Fξk1

(x) �
x→∞

Fξ1(x). (7)

According to relation (7),

lim sup
x→∞

Fξk2
(x)

Fξ1 ∗ Fξk1
(x)

6 lim sup
x→∞

Fξk2
(x)

Fξ1(x)
1

lim inf
x→∞

Fξ1
∗Fξk1

(x)

Fξ1
(x)

< ∞

because Fξk2
(x) = O(Fξ1(x)). This means that

Fξk2
(x) = O(Fξ1 ∗ Fξk1

(x)).

Hence, according to (6) and part (v) of Lemma 1, we obtain

Fξ1 ∗ Fξk1
∗ Fξk2

= (Fξ1 ∗ Fξk1
) ∗ Fξk2

∈ OS ,

and
Fξ1 ∗ Fξk1

∗ Fξk2
(x) �

x→∞
Fξ1 ∗ Fξk1

(x).

Continuing the process we obtain

FK := Fξ1 ∗
r

∏
j=1
∗ Fξkj

= Fξ1 ∗ Fξk1
∗ Fξk2

∗ . . . ∗ Fξkr
∈ OS ,

and
Fξ1 ∗ Fξk1

∗ Fξk2
∗ . . . ∗ Fξkr

(x) �
x→∞

Fξ1 ∗ Fξk1
∗ Fξk2

∗ . . . ∗ Fξkr−1
(x).

For the remaining indices k ∈ Kc = {2, 3, . . . , n} \ {k1, k2, . . . , kr}, d.f. Fξk belongs to the
class OS . By part (iii) of Lemma 1, we obtain

FKc := ∏
k∈Kc
∗ Fξk ∈ OS .

Using part (iii) of Lemma 1 again, we derive that

FSn = FK ∗ FKc ∈ OS .

This finishes the proof of Lemma 2.
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Lemma 3. Let ξ1, ξ2, . . . be a sequence of independent random variables, for which Fξ1 ∈ OS and

lim sup
x→∞

sup
k>1

Fξk (x)
Fξ1(x)

< ∞ (8)

Then, there exists a constant Ĉ > 1 such that

FSn(x) 6 Ĉ n−1Fξ1(x) (9)

for all x ∈ R and for all n > 2.

Proof. The condition (8) implies that

sup
k>1

Fξk (x)
Fξ1(x)

6 C6

for all x > A, with some constants C6 > 1 and A > 0. If x < A, then

sup
k>1

Fξk (x)
Fξ1(x)

6
1

Fξ1(x)
6

1
Fξ1(A)

< ∞.

Therefore, for each x ∈ R,

sup
k>1

Fξk (x)
Fξ1(x)

6 max

{
C6,

1
Fξ1(A)

}
:= C7. (10)

In addition, part (i) of Lemma 1 gives that

Fξ1 ∗ Fξ1(x) 6 C8Fξ1(x) (11)

for all x ∈ R with some constant C8 > 1.
We prove the inequality (9) with constant Ĉ = C7 C8. If n = 1, the inequality (9) holds,

evidently, because FS1(x) = Fξ1(x). If n = 2, then, by (10) and (11), for x ∈ R, we have

FS2(x) =
∞∫
−∞

Fξ2(x− y)dFξ1(y) 6 C7

∞∫
−∞

Fξ1(x− y)dFξ1(y)

= C7Fξ1 ∗ Fξ1(x) 6 Ĉ Fξ1(x).

Suppose now that the inequality (9) holds for n = m > 2, i.e.,

FSm(x)
Fξ1(x)

6 Ĉ m−1, x ∈ R.

After choosing n = m + 1, from this assumption and from (10) and (11), we obtain

FSm+1(x) =
∞∫
−∞

FSm(x− y)dFξm+1(y) 6 Ĉ m−1
∞∫
−∞

Fξ1(x− y)dFξm+1(y)

= Ĉ m−1
∞∫
−∞

Fξm+1(x− y)dFξ1(y) 6 Ĉ m−1C7

∞∫
−∞

Fξ1(x− y)dFξ1(y)

= Ĉ m−1C7 Fξ1 ∗ Fξ1(x) 6 Ĉ m Fξ1(x), x ∈ R.

According to the induction principle, the inequality (9) holds for all n ∈ N. Lemma 3 is
proven.
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6. Proofs of the Main Results

In this section, we present proofs of the main results of the paper.

Proof of Theorem 1. According to conditions of the theorem, P(η ∈ {0, 1, . . . , L}) = 1 and
P(η = L) > 0 for some L ∈ N. We have

FSη
(x) =

L

∑
n=1

P(η = n)FSn(x), x > 0.

Hence, for each positive x,

FSη
(x)

FSL(x)
>

P(η = L)FSL(x)
FSL(x)

= P(η = L) > 0. (12)

On the other hand,

FSη
(x) =

L−1

∑
k=0

P(η = L− k)P(SL−k > x), x > 0. (13)

For any random variable ξk, k ∈ {1, 2, . . . , L}, there exists a negative number−ak, for which
P(ξk > −ak) > 1/2. We have

P(SL−1 > x) = P(SL−1 − aL > x− aL, ξL > −aL) + P(SL−1 > x, ξL < −aL)

6 P(SL > x− aL) + P(SL−1 > x)P(ξL < −aL).

From this, we derive that

P(SL−1 > x) 6 2P(SL > x− aL)

for each x ∈ R. Similarly,

P(SL−2 > x) 6 2P(SL−1 > x− aL−1) 6 4P(SL > x− aL−1 − aL)

also for each real number x. Continuing the process, we obtain

P(SL−k > x) 6 2kP
(

SL > x−
k−1

∑
j=0

aL−j

)

for all x ∈ R and for all k = 1, 2, . . . , L − 1. After inserting the derived estimates into
inequality (13), we obtain that

FSη
(x) 6

L−1

∑
k=0

P(η = L− k) 2k P(SL > x−
k−1

∑
j=0

aL−j)

6 P(SL > x− a)
L−1

∑
k=0

2k P(η = L− k)

= C∗FSL(x− a),

where

C∗ =
L−1

∑
k=0

2k P(η = L− k), and a =
L

∑
j=1

aj.
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Consequently, for all positive x,

FSη
(x)

FSL(x)
6

C∗FSL(x− a)
FSL(x)

.

By Lemma 2 and part (iv) of Lemma 1, we have that FSL ∈ OS ⊂ OL. Therefore,

lim sup
x→∞

FSη
(x)

FSL∗ (x)
< ∞. (14)

By (12) and (14), we have that
FSη

(x) �
x→∞

FSL(x).

Therefore, FSη
∈ OS , together with FSL by part (ii) of Lemma 1. Theorem 1 is proven.

Proof of Theorem 2. Part (i) Because

FSη
(x) =

∞

∑
n=1

P(η = n)FSn(x), x > 0,

by Lemma 3 for all positive numbers x, we obtain

FSη
(x)

Fξ1(x)
6

∞
∑

n=1
Ĉ n−1P(η = n)Fξ1(x)

Fξ1(x)
6 E eη log Ĉ < ∞, (15)

where Ĉ > 1 is some constant.
On the other hand,

FSη
(x) > P(η = 1)Fξ1(x).

Hence, under conditions of part (i), we have that FSη
(x) �

x→∞
Fξ1(x). Therefore, FSη

∈ OS
according to part (ii) of Lemma 1. Part (i) of Theorem 2 is proven.

Part (ii). If P(η = 1) > 0, then assertion of this part follows from the proven part
(i). Hence, we can further suppose that P(η = 1) = 0, implying that P(η > 2) > 0. Since
Eeλη < ∞ for each λ > 0, the inequality (15) implies that

lim sup
x→∞

FSη
(x)

Fξ1(x)
< ∞. (16)

In addition, conditions of part (ii) of the theorem give that

inf
k>1

Fξk (x)
Fξ1(x)

> ∆

for all x > x∆ and some positive ∆. If x < x∆, then

inf
k>1

Fξk (x)
Fξ1(x)

> inf
k>1

Fξk (x∆) > inf
k>1

Fξk (x∆)

Fξ1(x∆)
Fξ1(x∆) > ∆ Fξ1(x∆) := C̃ > 0

due to the assumption Fξ1 ∈ OS . The derived inequalities imply that

Fξk (x) > C̃ Fξ1(x)

for some positive constant C̃, and for all x ∈ R, k ∈ {1, 2, . . .}.
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Using the last estimate, we obtain

FS2(x) =
∞∫
−∞

Fξ2(x− y)
Fξ1(x− y)

Fξ1(x− y)dFξ1(y)

> C̃ Fξ1 ∗ Fξ1(x) > C̃ Fξ1(0)Fξ1(x), x ∈ R.

Similarly,

FS3(x) =
∞∫
−∞

FS2(x− y)
Fξ1(x− y)

Fξ1(x− y)dFξ1(y)

> C̃ Fξ1(0)Fξ1 ∗ Fξ1(x) > C̃
(

Fξ1(0)
)2 Fξ1(x), x ∈ R.

Continuing the process, we obtain

FSn(x) > C̃
(

Fξ1(0)
)n−1 Fξ1(x)

for all x ∈ R and n ∈ {2, 3, . . .}.
Therefore,

lim inf
x→∞

FSη
(x)

Fξ1(x)
> lim inf

x→∞

P(η = L̃)FS L̃
(x)

Fξ1(x)

> P(η = L̃) C̃
(

Fξ1(0)
)L̃−1

> 0, (17)

where L̃ = min{n > 2 : P(η = n) > 0}.
The derived inequalities (16) and (17) imply FSη

(x) �
x→∞

Fξ1(x). By part (ii) of Lemma 1,
we have FSη

∈ OS . Theorem 2 is proven.

7. Illustration of the Results

In this section, we present two examples showing how, using Theorems 1 and 2, it
is possible to construct distributions belonging to the class OS . It is practically impos-
sible to write the analytical expression of d.f FSη

in the general case, but, according to
Theorems 1 and 2, we can establish whether the constructed distributions are generalized
subexponential.

Example 1. Let ξ1 be r.v. having the t.f.

Fξ1(x) = I(−∞,0)(x) +
e−x

(1 + x)3

(
1 +

sin x
d

)
I[0,∞)(x),

where d > 2. According to the results of [44], the d.f. Fξ1 belongs to classOS . Therefore, Theorem 1
gives that d.f. FSη

belongs to OS for each sequence of independent r.v.s {ξ1, ξ2, . . .} such that either
Fξk ∈ OS or

Fξk (x) = O
(

e−x

(1 + x)3

)
when k ∈ {2, 3, . . .}, and for each bounded counting r.v. η independent of {ξ1, ξ2, . . .}.

In particular, the d.f. with tail

FSη
(x) = I(−∞,0)(x) +

1
3

(
Fξ1(x) + Fξ1 ∗ Fξ2(x) + Fξ1 ∗ Fξ2 ∗ Fξ3(x)

)
I[0,∞)(x)
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belongs to the class OS with

Fξ1(x) = I(−∞,0)(x) +
e−x

(1 + x)3

(
1 +

sin x
3

)
I[0,∞)(x),

Fξ2(x) = I(−∞,0)(x) +
e−x

(1 + x)3

(
1 +

sin x
4

)
I[0,∞)(x),

Fξ3(x) = I(−∞,0)(x) +
e−x

(1 + x)3 I[0,∞)(x).

Example 2. Let {η, ξ1, ξ2, . . .} be independent r.v.s, where counting r.v. η is distributed according
to the Poisson law with parameter µ > 0, and

Fξk (x) =

{
I(−∞,1)(x) + e1−xx−2 I[1,∞)(x) if k ∈ {1, 3, 5, . . .},
I(−∞,2)(x) + 4 e2−xx−2 I[2,∞)(x) if k ∈ {2, 4, 6, . . .}.

According to the results of [22], d.f. Fξ1 belongs to the class OS . In addition,

lim sup
x→∞

sup
k>1

Fξk (x)
Fξ1(x)

= 4 e.

Hence, d.f. FSη
with the t.f.

FSη
(x) = I(−∞,1)(x) + e−µ

∞

∑
n=1

µn

n!
Fξ1 ∗ Fξ2 ∗ . . . Fξn(x) I[1,∞)(x)

is generalized subexponential, due to Theorem 2.

8. Concluding Remarks

One of the incentives to study the closure properties is the evolution of ruin probability
in the insurance business. We recall that, in the renewal risk model (Sparre Andersen
model), the risk process is

Rx(t) = x + pt−
N(t)

∑
i=1

Zi, t > 0,

where x > 0 is the initial capital, p > 0 is the premium rate, {Z1, Z2, . . .} is a sequence of
nonnegative independent and identically distributed random claims, and

N(t) = #{n > 1 : θ1 + θ2 + . . . + θn 6 t}

is a counting process generated by independent and identically distributed inter-arrival
times {θ1, θ2, . . .}. In addition, it is assumed that the sequences {Z1, Z2, . . .} and {θ1, θ2, . . .}
are independent.

It is well known (see, for instance, [25,45–47]) that the model ruin probability

ψ(x) = P
(

inf
t>0

Rx(t) < 0
)
∼

x→∞

1
ρ

FI(x)

in the case when ρ = (pEθ1/EX1)− 1 > 0 and the integrated tail d.f.

FI(x) =
1

EX1

∫ x

0
P(X1 > y)dy

belongs to the class S . The similar results for the generalized subexponential distributions
are presented in [48–50].
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The results obtained in this work can be applied to the analysis of the compound
renewal risk model, which is described in [51–53], for instance, and in which the claim
amount has the form of a randomly stopped sum.
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