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Abstract: This paper presents a universal approach to shaping the mechanical properties of the
interaction between a collaborative robot and its environment through an end-effector Cartesian
compliance shaping. More specifically, the focus is on the class of kinematically redundant robots,
for which a novel redundancy reconfiguration scheme for online optimization of the Cartesian
compliance of the end-effector is presented. The null-space reconfiguration aims to enable the more
efficient and versatile use of collaborative robots, including robots with passive compliant joints.
The proposed approach is model-based and gradient-based to enable real-time computation and
reconfiguration of the robot for Cartesian compliance while ensuring accurate position tracking.
The optimization algorithm combines two coordinate frames: the global (world) coordinate frame
commonly used for end-effector trajectory tracking; and the coordinate frame fixed to the end-effector
in which optimization is computed. Another attractive feature of the approach is the bound on the
magnitude of the interaction force in contact tasks. The results are validated on a torque-controlled
7-DOF KUKA LWR robot emulating joint compliance in a quasi-static experiment (the robot exerts a
force on an external object) and a peg-in-hole experiment emulating an assembly task.

Keywords: Cartesian compliance; collaborative robots; null space; redundant robots

1. Introduction

We face numerous global challenges that require the use of robots in areas where
they have never been used before. The COVID-19 pandemic underscores the need for
a wider use of robots [1] in production lines, everyday service tasks, and especially in
hospitals to directly support healthcare providers and patients or for rehabilitation and
intervention purposes.

In all of the above cases, robots must work with or near humans. Therefore, safety
measures must be considered to ensure safe but efficient physical human–robot interaction
(pHRI) [2]. A safe pHRI is achieved through end-effector (EE) compliance. EE compliance
is the ability of the robot’s EE to make displacements from the equilibrium position while
an interaction force is applied. Compliance can be achieved in two ways: (1) passive
compliance: technology where elastic elements are embedded between the link side and
the actuator side; and (2) active compliance: compliant behavior is achieved with a control
loop based on force/torque measurements. The use of flexible mechanical joints (passive
compliance) [3,4] and complementary active compliance technologies [5–7] has led to the
development of modern collaborative robots [8,9]. Modern collaborative robots can enable
safe interaction through compliant joints without additional safety hardware (e.g., laser
curtains or mechanical guards), which reduces the required space [10]. However, for such
robots to remain versatile, new tools and methods must be developed that can utilize
compliant joints [11]. Thus, in this paper, we propose a framework for a novel redundancy
resolution scheme for fast online optimization of Cartesian stiffness for collaborative robots.

Previous works. The typical approach to shaping the EE Cartesian stiffness is active
control, where the EE stiffness matrix is adjusted by controlling the joint torques of a
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rigid-joint robot [12,13]. One of the shortcomings of active control for rigid-joint robots
is a high force amplitude reaction in the case of a collision with the environment since
the controller cannot react immediately. This problem is partly solved by using compli-
ant actuators, which introduce elasticity between the actuator and the robot joint [4]. EE
Cartesian stiffness shaping of a kinematically redundant robot with passive joint stiffness
could be considered as a two-part optimization problem [14]: (i) fast (linear) optimization
in the space of joint stiffness values, where linearity is achieved by selecting an appropriate
optimization norm; and (ii) slow (nonlinear) optimization into the null space of the robot,
which can be computed only offline, in the planning phase for the working posture. Fur-
thermore, according to Ref. [15], the two complementary approaches to EE compliance
shaping for VSA-driven robots are defined and referred to as (i) configuration-dependent
stiffness (CDS)—redundancy is exploited to achieve desired EE stiffness ellipsoid shape,
and (ii) common-mode stiffness (CMS)—the CMS is an additional control parameter that
linearly scales all joint stiffness and thus linearly scales the EE stiffness. The approach
from [14] and one that combines passive and active stiffness for better performance [16]
deals with the control of all six EE coordinates (three positions and three orientations)
and 21 different elements in the full 6× 6 EE symmetric stiffness matrix. This results in
27 variables. Therefore, the control design in this multi-variable non-linear coupled space
is very challenging due to many variables and physical constraints (limited range of joint
motion and stiffness) and few control inputs. Lack of degree of redundancy could lead to
poor performance in shaping EE stiffness [17]. However, as shown in [18], the control of
the diagonal elements of the stiffness matrix is essential in most applications. Additionally,
control of the EE stiffness of VSA-driven robots can be achieved by extending the redundant
inverse kinematics problem to include variable compliance in each joint [19]. Ref. [20]
presents an algorithm that shapes the impedances according to constrained task dynamics
along/about specific directions while computing stiffness and damping for optimal EE
impedance planning is discussed in [21]. Both of these papers address robots with active
compliance and do not consider robots with constant (passive) joint stiffness. Several
null-space controllers for EE compliance shaping developed in [22–25] aim at robots with
active compliance, while the research proposed in this paper has broader usage. In our
research, the active compliance KUKA LWR robot was used as a research platform without
limiting our results only to active compliance robots. Thus, this paper presents a control
framework that can be applied to robots with active compliance and robots with passive
compliance. One of the most significant contributions is for redundant robots driven with
constant passive compliance that cannot be changed, but all EE stiffness shaping has to be
done in null space.

Paper Contributions. In this paper, we present a novel computationally efficient
model-based EE compliance shaping for robots with constant joint stiffness while maintain-
ing trajectory tracking performance. The EE compliance of the robot is adjusted through
null-space projection as originally introduced by the authors of the present paper in [26].
An important technical aspect of the presented research is related to online computation
during the execution of the task, in contrast to most of the results available in the literature
that consider only the static pose of the robot. Typically, a 7 DOF robot has very few degrees
of redundancy, so it is not possible to control all elements of the EE stiffness/compliance
matrix. Therefore, the research presented in this paper mainly focuses on the design of
task-relevant stiffness along the axis of movement. The proposed solution was experimen-
tally validated in a peg-in-hole task on the KUKA LWR robot. It showed that appropriate
modulation of the stiffness along the motion axis could improve the performance of the task.

Paper structure: Section 2 presents the main contribution of the paper. It summarizes
the theoretical background for the implementation of inverse kinematics with the secondary
task of shaping EE compliance, followed by a stability analysis of the control algorithm.
Section 3 explains the implementation of the algorithm, and Section 4 presents experimental
results on the KUKA LWR robot to validate the algorithm. Section 5 contains the discussion,
while conclusions are provided in Section 6.



Machines 2023, 11, 35 3 of 14

2. Null-Space Projection Shaping Approach

It is known that the Cartesian stiffness of EE (given by the matrix KC) depends on
the stiffness of the individual joints (given by the matrix Kj) and the robot configuration,
which is reflected in the Jacobian matrix J that maps joint velocities to EE velocities. This
relationship between joint stiffness and Cartesian stiffness is explained in more detail in [14]
and [16] and is given by

KC =
(

J(q)K−1
j J(q)T

)−1
, (1)

whereas the relationship between the EE Cartesian compliance matrix CC and the joint
stiffness matrix Kj is represented in the less computationally demanding form as follows

CC = J(q)K−1
j J(q)T . (2)

Here, KC (CC) is the symmetric m × m Cartesian stiffness (compliance) matrix, Kj
is the n × n diagonal joint stiffness matrix, J is the m × n Jacobian matrix, and q is the
n-dimensional joint position vector. The parameters m and n are the dimensions of the task
and the joint space, respectively.

For the robot shown in Figure 1, the EE Cartesian position (Xw), orientation (Rw), and
Jacobian matrix (Jw) in a world frame are defined in [27] as

Xw = RpXr + Xp, (3)

Rw = RpRr, (4)

Jw =

[
Rp O
O Rp

]
J, (5)

where O is the zero matrix of appropriate dimension.
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Figure 1. MuJoCo HAPTIX simulation environment for the platform-mounted KUKA LWR robot
corresponding to a laboratory setting: (a) solid and (b) grid illustration. The world frame coordinate
system is defined with xw, yw, and zw axes, while xr, yr, and zr define moving coordinate system
related to the robot EE.

The Euler angles for the EE orientation φ, ψ, and θ in the world frame are extracted
from the orientation matrix Rw. Therefore, the EE position vector in the world frame is
defined as X = [x, y, z, φ, ψ, θ]T . The platform position offset and the rotation matrix with
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respect to the world frame are denoted by Xp and Rp, respectively, whereas Xr and Rr are
the robot EE position and orientation matrices corresponding to the robot base coordinate
frame, respectively.

To obtain a mathematical model of the EE compliance behavior in the EE frame, it is
necessary to compute the Jacobian matrix in EE the frame (JEE) as

JEE =

[
RT

r O
O RT

r

]
J. (6)

By adopting the Jacobian from (6) and substituting it in (2), the expression for compli-
ance in the EE frame, CEE, becomes

CEE = JEEK−1
j JT

EE. (7)

The stiffness in the EE frame, KEE, is computed as

KEE = C−1
EE . (8)

An illustration of the world frame and the EE frame coordinate systems is depicted in
Figure 1.

The general norm (Hc) for the robot’s EE Cartesian compliance shaping, which is the
measure of how close the achieved compliance is to the desired compliance, can be defined
as follows

Hc = ‖CCD − CCEE(q)‖, (9)

where CCD is the desired compliance and CCEE is the achieved compliance in the EE frame.
The challenge of adjusting Cartesian compliance while moving along a defined path

can be observed as the minimization of Hc. One of the computational approaches to the
norm Hc defined in general form (9) is Euclidean norm in combination with a weighted
matrix to have the form as

Hc = ∑
i,j

Wij

(
CCDij − CCEE(q)ij

)2
, (10)

where W is the m×m weighted matrix and i and j denote the elements of the corresponding
matrix. The role of the weighted matrix is to prioritize some elements over others when
multiple elements are shaped simultaneously, considering that there are enough degrees
of redundancy. Prioritization of particular axes is essential when only a few degrees of
redundancy are available, meaning that very few elements within the EE compliance matrix
can be adjusted. Usually, the weighted matrix is chosen to optimize compliance according
to the requirements of the task.

For a redundant robot, a general solution to the inverse kinematics [28] is described as
.
q = J†

w
.

X +
(

In − J†
w Jw

) .
qN (11)

where
.

X is the EE velocity vector in the world frame,
.
qN is an arbitrary joint-space velocity,

In is the n-dimensional identity matrix, and J†
w is the general pseudo-inverse of Jw. The

Moore–Penrose pseudo-inverse will be used hereafter, defined as J†
w = JT

w
(

Jw JT
w
)−1 [29],

where Jw J†
w = I.

For kinematically redundant robots, the arbitrary joint space velocity
.
qN can be com-

puted to perform a secondary task. In the present case, the secondary task can be the
minimization of the norm given in (10). Since the secondary task is to minimize the norm
Hc, joint velocity

.
qN is calculated using the gradient of Hc [28]

.
qN = Kn∇Hc(q), (12)

where Kn is the diagonal gain matrix with positive values on the main diagonal and
∇Hc(q) is the gradient of Hc. The inverse kinematic Cartesian controller at the velocity
level is given by

.
X = K(Xd − X), (13)

where K is the diagonal gain matrix with positive values on the main diagonal and Xd is
the commanded Cartesian position.
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A Cartesian controller with Cartesian stiffness matrix shaping is obtained by substitut-
ing (12) and (13) into (11),

.
q = J†

w K(Xd − X) +
(

In − J†
w Jw

)
Kn∇Hc(q). (14)

The controller obtained in (14) has two functions: (1) the first addition (J†
w K(Xd − X))

secures trajectory tracking performance in the world frame; and (2) the second addition
(
(

In − J†
w Jw

)
Kn∇Hc(q)) secure EE stiffness shaping in the EE frame while keeping the

influence of the first addition unchanged.
The desired joint positions qd are computed as

qd = q0 +
∫

.
qdt, (15)

where q0 is the n-dimensional vector of initial joint positions. By substituting (14) into (15),
the final expression for the desired joint positions qd is

qd = q0 +
∫ (

J†
w K(Xd − X) +

(
In − J†

w Jw

)
Kn∇Hc(q)

)
dt. (16)

The proposed gradient-based null-space control algorithm guarantees the stability of
the algorithm and smooth position trajectories while adjusting the compliance of EE in an
arbitrary direction. The proof of stability for the algorithm can be found in Appendix A.

3. Algorithm Implementation

The proposed algorithm was validated on the KUKA LWR robot arm with actively
controlled compliant joints. To validate the approach, joint compliance was emulated with
PD torque control at the joint level. Joint torques τ were computed as

τ = Kp(qd − q) + Kd
( .
qd −

.
q
)
+ g(q), (17)

where Kp and Kd are gains (diagonal gain matrix with positive values on the main diagonal)
of the torque PD controller and g(q) is the gravity compensation term. Proportional gain is a
diagonal matrix whose values correspond to the desired joint stiffness values, Kp = Kj. The
differential gain matrix, Kd, corresponds to joint damping, which reduces joint oscillations
as Kd = 2

√
Kp. The gain magnitudes, Kp and Kd, are tuned according to the values of the

joint stiffness matrix, Kj. The gravity compensation is obtained from KUKA’s Fast Robot
Interface (FRI).

The desired position vector qd was numerically computed in two steps. In the first
step, the gradient ∇Hc was numerically obtained as ∇Ĥc

∇Ĥc(q) =
[
∇Ĥ1 ∇Ĥ2 ∇Ĥ3 ∇Ĥ4 ∇Ĥ5 ∇Ĥ6∇Ĥ7

]T , (18)

where

∇Ĥi =
Hc(q + ∆qi)− Hc(q)

ε
, i = 1 . . . 7 (19)

∆qj,i =

{
0 i 6= j
ε i = j

, i, j = 1 . . . 7

ε was a small enough constant required to numerically compute the gradient ∇H,
where the norm Hc is computed according to Equation (10) when the weight element is
omitted. The ∆qi is the i-th column of the diagonal matrix ∆q. In the second step, joint
velocity was computed using control (14) and the desired joint position qk+1 from (18) and
(19) in a discrete space:

qk+1 = qk +
.
q ∆t, (20)

where ∆t is the sample period in the control loop.
The algorithm implementation structure of the proposed optimization algorithm is

given in Figure 2.



Machines 2023, 11, 35 6 of 14

Machines 2022, 10, x FOR PEER REVIEW 6 of 15 
 

 

where 𝛻𝐻෡௜ = 𝐻௖(𝑞 + ∆𝑞௜) − 𝐻௖(𝑞)𝜖 , 𝑖 = 1 … 7 (19) 

∆𝑞௝,௜ = ൜0       𝑖 ≠ 𝑗𝜖       𝑖 = 𝑗 ,     𝑖, 𝑗 =  1 … 7  𝜖 was a small enough constant required to numerically compute the gradient ∇𝐻, where 
the norm 𝐻௖ is computed according to Equation (10) when the weight element is omitted. 
The ∆𝑞௜ is the 𝑖-th column of the diagonal matrix ∆𝑞. In the second step, joint velocity 
was computed using control (14) and the desired joint position 𝑞௞ାଵ from (18) and (19) in 
a discrete space: 𝑞௞ାଵ = 𝑞௞ + 𝑞ሶ  ∆𝑡, (20) 

where ∆𝑡 is the sample period in the control loop. 
The algorithm implementation structure of the proposed optimization algorithm is 

given in Figure 2. 

 
Figure 2. End-effector stiffness shaping algorithm implementation structure. Steps: (1) measuring 
of external force; (2) computing next iteration path state; (3) computing EE position from RBF 

Figure 2. End-effector stiffness shaping algorithm implementation structure. Steps: (1) measuring of
external force; (2) computing next iteration path state; (3) computing EE position from RBF decoding;
(4) computing numeric gradient; (5) computation of joint space velocity and next iteration joint
positions; (6) computation of control torques; (7) checking if the end of the path is reached.

4. Experiment Results

The proposed method was validated in a static experiment (steady state after collision)
and a peg-in-hole experiment, simulating an assembly task. In the static experiment, the
robot interacted with a compliant environment, i.e., pushing the sponge, which created an
interaction force. The interaction force prevented the robot EE from reaching the desired
position within the sponge. In the peg-in-hole experiment, the goal of the robot was to
place the peg into a mold as smoothly as possible while avoiding high interaction forces.
This was achieved by the EE varying the compliance of the robot along the direction of
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motion. The experiment emulated a typical assembly task where the interaction force was
generated by the interaction between an object in the gripper and the environment. The
parameters of the robot platform can be found in [30]. All values for joint stiffness were set
to 400 Nm/rad. The gain parameters, Kp and Kd, were set as diagonal matrices with all
values equal and set to 400 Nm/rad and 40 Nms/rad, respectively. The inverse kinematic
control parameters, K and Kn, were diagonal matrices with all values equal and set to
10 and 1, respectively. The parameter for the numerical calculation of the gradient was
∆q = 10−7 rad, and the control loop interval was set to ∆t = 0.01 s.

4.1. Validation: End-Effector in Contact with a Soft Surface

The method was applied in a static experiment that also allowed visual validation.
For better illustration, the compliance of the EE along the direction of motion was set to the
smallest or largest possible value without losing generality. Since there was only one degree
of redundancy, the compliance shaping stopped when one of the joints reached its limit or
a local minimum for the norm Hc was reached. The experiment is shown in Figure 3, which
illustrates EE contact with a surface. In this experiment, the robot’s EE moved downward
toward the sponge, with its endpoint reference 5 cm into the area of the sponge. Then the
EE adjusted its stiffness. This was repeated to minimize and maximize the stiffness along
the z-axis. The effect of adjusting the stiffness on the EE is shown by comparing the two
images at the end of the shaping algorithm in Figure 3, and the measurements are shown
in Figure 4. The ability to adjust the stiffness is also limited to the pose of the robot. When
the robot is positioned at the end of its range, there is less maneuverability than in the
middle of the workspace. The results showed that there was a strong correlation between
the estimated and expected stiffness of the EE. The estimated stiffness was slightly higher
than the theoretical. Nevertheless, these values had a high level of correlation. Videos of
the sponge experiments are available as Supplementary Materials.
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Figure 4. Two contact-with-surface scenarios. Changing the posture to increase stiffness (left):
(a) joint positions; (b) interaction forces; and (c) theoretical stiffness compared to estimated. Changing
the posture to decrease stiffness (right): (d) joint positions; (e) interaction forces; and (f) theoretical
stiffness compared to estimated.

4.2. Peg-In-Hole Example

The peg-in-hole experiment emulated a typical assembly task. The robot’s goal was
to put a peg into the mold as smoothly as possible while adjusting EE compliance and
avoiding high interaction forces as discussed in [31,32]. This was accomplished by having
the EE change the compliance of the robot along the direction of motion. The peg was
attached to the gripper of the robot and the mold was clamped to a table. The length of the
gripper with the peg was 20 cm. In this experiment, the compliance was adjusted along the
vertical axis of the peg, i.e., the z-axis.

The path in the Cartesian space was recorded using kinaesthetic teaching [33]. The
recorded sequence is shown in Figure 5. The steps of the EE trajectory can be divided into
stages [32]: (1) initial stage (initial position—Figure 5a); (2) approaching stage (transition be-
tween initial state (Figure 5a) and entrance state (Figure 5b), where EE moves toward a hole
in a mold at an acute angle); (3) contacting stage (making contact with mold—Figure 5b);
(4) aligning stage (from contact state (Figure 5b) to aligned state (Figure 5c) where EE is
rotating until the peg aligns with the hole in mold); and (5) inserting stage (pushing the peg
into the hole from the aligned state (Figure 5c) to the finished state (Figure 5d)). EE motion
sequence is illustratively presented in the Supplementary Video material. The recorded
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trajectory cannot be described analytically. Thus, a suitable parametrization method is
needed to approximate the path. As a suitable solution, the radial basis functions (RBF)
based on Gaussian kernel functions are selected [34]. The RBF-coded trajectory allowed
adjustment of the movement speed. The additional RBF encoding also allowed for forward
and backward movement along the recorded trajectory by modulating the parameter that
defined the relative path state.
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Figure 5. Peg-in-hole experiment steps: (a) initial position; (b) peg moving toward a hole in a mold at
an acute angle; (c) EE with peg rotating to a position where the peg is above the hole; and (d) pushing
of the peg into the hole.

The experiment was conducted as follows: First, the maximum interaction threshold
Fthres was defined. As long as the interaction force was lower than Fthres, the EE would
continue forward along the recorded path. If the interaction force reached Fthres, the robot
maintained its position and began to reshape EE compliance by reconfiguring in null space
until the pose with a lower interaction force was reached. To demonstrate the performance
of the proposed controller, a shape with sharp edges and a tight fit was selected as it
prevented easy peg insertion.

Following the work reported in [34], the path was encoded with the parameter
s ∈ [0− 1], where 0 and 1 denote the beginning and end of a path, respectively. In
that paper, we proposed to compute s as

sk+1 =

{
sk + k f (Fthres − |F|)∆t, |F| ≤ Fthres

sk, |F| > Fthres
. (21)

Here, F is the interaction force in a moving direction and the parameter k f affects how
fast the path reference will be changed. In the experiment, k f was set at 1. The compliance
shaping algorithm was activated only in the interval during which the interaction force
exceeded the threshold value.
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The results of the peg-in-hole experiment are shown in Figure 6. The joint trajectory
tracking is shown in Figure 6a. The Cartesian velocity EE is shown in Figure 6 with the
time intervals when the optimization is activated indicated by black dashed squares. The
normalized path parameter s is shown in Figure 6c. The force values are shown in Figure 6d.
Figure 6e shows the theoretical stiffness value. This value changes during motion and in
intervals when the shaping algorithm is activated, the value increases as needed. Green
areas in Figure 6c–e indicate time intervals when optimization is activated. The video of
the peg-in-hole experiment can be found in the Supplementary Materials.
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5. Discussion

There are two typical approaches to shaping impedance or admittance that exist,
namely, active control with stiff joints and passive with mechanically compliant joints [5,6].
The main difference between these two approaches is that active control with stiff joints
typically uses cascaded position and force loops, where the inner loop is faster, and the
outer loop is responsible for shaping the impedance or admittance. Here, the admittance
control approach does not work well in a high-impedance environment, while impedance
control has some limitations when interacting with a low-impedance environment [5,6].
To overcome these limitations, an approach that uses implicit impedance control with
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a single position feedback loop in which position gains are adjusted as needed can be
used. Nevertheless, such an approach is not appropriate when unpredictable impacts are
expected in a high-impedance environment. Note that active control can only respond after
the impact has been detected, which means that the system response is always delayed
by at least one sampling time. To improve the impact response, a mechanism with elastic
joints must be used. For this purpose, various variable stiffness actuators (VSA) and
serial elastic actuators (SEA) actuators have been proposed. Here, the passive element is
connected in series to facilitate force control [4]. However, the main drawback is that a force
measurement is always required to observe the non-collocated subsystem, which means
that impedance control is always explicit. While the VSA actuators are typically bulkier
and heavier and require two motors, the SEA actuators have no inherent ability to adjust
joint stiffness.

The main focus of this research is to demonstrate a new method that can explore
kinematic redundancy in order to shape the EE compliance of robots with constant joint
stiffness. The proposed method can be generalized to a broader class of robots with SEA or
VSA control or rigid robots with some transmission elasticity. The main advantage of the
proposed method is that it could significantly improve the use of SEA-controlled robots by
achieving arbitrary EE stiffness or compliance values within a physically reasonable range.
Note that for SEA-controlled robots, due to the minimum number of DOFs required to
control a full stiffness matrix and their limitations [14], it is usually not possible to actively
control the joint stiffness and, thus, all other elements of the stiffness/compliance matrix
simultaneously. A possible solution, as proposed in this work, is to control the compliance
along the direction of motion by exploiting robot redundancy.

Most collaborative robots on the market today only have one degree of redundancy [35].
For such robots, the proposed optimization method considering only one degree of re-
dundancy would either converge to the optimal configuration or one of the joints would
reach its mechanical limits. However, even in this latter case, the approach provides a valid
solution for a robot with an elastic joint since the position of the joint and the position of the
actuator are connected by a passive compliant element whose parameters are preserved.
The redundancy possibilities can be extended if the robot is mounted on a mobile plat-
form [14,36]. An additional degree of redundancy allows the use of the weight matrix to
prioritize tasks in combination with control strategies that can lock a joint that reaches (or
is very close to) its limit. In this way, the robot platform is considered as a system with
fewer degrees of freedom until the motion that drives the joint out of its limits is computed.
A control strategy to lock the joints is future work that still needs to be investigated.

6. Conclusions

In this paper, we present a novel model-based redundancy resolution method for
adjusting the Cartesian stiffness/compliance of the robot EE, which is achieved by solving
an online optimization problem. The proposed method was evaluated on a 7DOF KUKA
LWR robot arm with one DOF redundancy to demonstrate the shaping of Cartesian stiff-
ness by adjusting the robot configuration, but it can be applied to other redundant robots
with compliance. The proposed method was validated and tested in two representative
experiments—a quasi-static experiment illustrating the modulation of Cartesian compli-
ance and a peg-in-hole experiment as a typical application task where the modulation of
compliance in different directions is important. The results showed a good match between
theoretical and achieved compliance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/machines11010035/s1, Video S1: Online Cartesian compliance
shaping of redundant robots in assembly tasks.

https://www.mdpi.com/article/10.3390/machines11010035/s1
https://www.mdpi.com/article/10.3390/machines11010035/s1
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Appendix A

Since this algorithm uses the gradient method that enables online adaptation, con-
vergence to the global optimum cannot be guaranteed. Note that the selection of the gain
parameters K and Kn should be considered carefully since their values affect algorithm
convergence and optimization speed. The sign of Kn determines whether norm Hc is mini-
mized or maximized. It is assumed that the robot moves in a region of the configuration
space free of kinematic singularities, so the Jacobian matrix Jw is always of full rank and its
pseudoinverse J†

w always exists.
The stability analysis provided in [27] uses the EE position tracking error vector e,

computed as the difference between the desired and achieved Cartesian position as

e = Xd − Xw. (A1)
If the derivatives of both sides of (A1) are calculated using the relation

.
Xw = Jw(q)

.
q, then

.
e =

.
Xd − Jw(q)

.
q. (A2)

Introducing the inverse kinematic controller for a full rank Jacobian matrix at joint
velocity level .

qd = J−1
w

( .
Xd + Ke

)
, (A3)

and substituting into (A2), the EE position error dynamics is expressed as
.
e + Ke = 0. (A4)

For kinematically redundant robots, the controller proposed in (A3) is substituted by
the generalized form .

qd = J†
w

( .
Xd + Ke

)
+
(

In − J†
w Jw

)
Kn

.
qN (A5)

and substituting it into (A2) gives the same EE position error dynamics as in (A4). The
condition for exponential stability of a linear system is having all poles in the left part of
a complex halfplane. For the system defined in (A4), it can be achieved for K which is
a positive definite matrix. The control algorithm proposed in (14) is a special case of the
controller (A5) for

.
Xd = 0. Thus, everything that applies to (A5) also applies to (14).

Additional analysis can be provided using the Lyapunov method. For the system to
be stable, the candidate function V must have the following properties:

V(e(t) = 0) = V(0) = 0 (A6)

V(e(t)) > 0 ∀ e(t) 6= 0 (A7)

V(e(t))→ ∞ when ||e(t)|| → ∞ (A8)
.

V(e(t)) = dV(e(t))/dt < 0 for e(t) 6= 0 (A9)

The candidate function can be selected as

V = eT Pe, (A10)
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where P is chosen to be a positive definite matrix. The first three conditions are thus
satisfied.

The derivatives of both sides of the equation (A6) are
.

V =
dV
dt

=
d
(
eT Pe

)
dt

, (A11)

.
V =

.
eT Pe + eT P

.
e, (A12)

.
V = −eTKT Pe− eT PKe = −eT

(
KT P + PK

)
e (A13)

.
V = −eTQe (A14)

where Q = KT P + PK. To satisfy the fourth condition, Q must be a positive definite matrix.
K is a positive definite matrix control parameter. Therefore, the positive definite property
of matrix Q can be achieved by setting P as a diagonal positive definite matrix (i.e., identity
matrix). Thus, the system is stable for K being a positive definitive.
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